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Numerical investigation of a sonic jet from a blunt body opposing a supersonic
flow with a free stream Mach number M∞ = 2.5 was carried out using large-eddy
simulation for two total pressure ratios of the jet to the free stream, i.e. P = 0.816
and 1.633. Results have been validated carefully against experimental data. Various
fundamental mechanisms dictating the flow phenomena, including shock/jet interaction,
shock/shear-layer interaction, turbulent shear-layer evolution and coherent structures,
have been studied systematically. Based on the analysis of the flow structures and
features, two typical flow states, i.e. unstable and stable states corresponding to the
two values of P , are identified and the behaviours relevant to the flow states are
discussed. Small-scale vortical structures mainly occur in the jet column, and large-
scale vortices develop gradually in a recirculation region when the jet terminates
through a Mach disk and reverses its orientation as a conical free shear layer. The
turbulent fluctuations are enhanced by the rapid deviation of the shear layer and the
interaction with shock waves. Moreover, the coherent structures of the flow motion
are analysed using the proper orthogonal decomposition technique. It is found that the
dominant mode in the cross-section plane exhibits an antisymmetric character for the
unstable state and an axisymmetric one for the stable state, while statistical analysis of
unsteady loads indicates that the side loads can be seen as a rotating vector uniformly
distributed in the azimuthal direction. Further, we clarify a feedback mechanism
whereby the unsteady motion is sustained by the upstream-propagating disturbance to
the Mach disk through the recirculation subsonic region and downstream propagation
in the conical shear layer. Feedback models are then proposed which can reasonably
well predict the dominant frequencies of the two flow states. The results obtained in
this study provide physical insight into the understanding of the mechanisms relevant
to the opposing jet/supersonic flow interaction.
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1. Introduction
The opposing jet in supersonic flows has attracted much attention in recent decades

because of the extensive applications and the physical complexity (e.g. Warren 1950;
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Finley 1966; Fujita 1995; Fujita & Karashima 1999; Shang et al. 2001; Debiève,
Ardissone & Dussauge 2003). These researchers mainly focused on improving the
aerodynamic performance of aerospace vehicles, such as drag reduction and heating
reduction. Moreover, the opposing jet in supersonic flows involves some important
and complicated phenomena related to the coupled shearing and compressing
processes, such as shock/jet interaction, shock/turbulence interaction, compressible
turbulent shear-layer evolution and jet impingement (e.g. Finley 1966; Rockwell &
Naudasher 1979; Shang et al. 2001). However, the physical mechanisms dictating
these phenomena are still unclear and are of great interest for further detailed studies.

The early experiments on a jet from a blunt body opposing supersonic flows
mainly investigated the mean flow quantities, such as the pressure distribution on
the body surface, the bow shock stand-off mean position and the shock structures
(e.g. Warren 1950; Finley 1966; Karashima & Sato 1975). These studies revealed that
the total pressure ratio of the jet to the free stream is a key parameter governing
the aerodynamic features. In addition, complex sustained motions of the flow field
were observed experimentally in some jet conditions (e.g. Fujita & Karashima 1999;
Shang et al. 2001; Fujita 2002; Shang 2002). For example, a sonic jet from a
hemispherical nose opposing a supersonic flow for a free stream Mach number
M∞ = 2.5 was experimentally studied for two typical values of the total pressure
or stagnation pressure ratio of the jet to the free stream (i.e. 0.816 and 1.633), and
the corresponding dominant frequencies of the sustained flow motion were obtained
as 3 kHz and 17 kHz, respectively (Karashima & Sato 1975; Fujita & Karashima
1999; Fujita 2002). Moreover, experimental measurements and visualizations of shock
motion and turbulence in a jet from a sphere against a supersonic flow M∞ = 2.29
have been taken by Debiève et al. (2003). They noticed that strong pressure
fluctuations occur on the body surface and turbulent fluctuations have a significant
influence on the flow characteristics.

Some numerical simulations of an opposing jet in supersonic flows have been
performed to deal with the unsteady flow behaviours. The unsteady flow field around
a hemispherical nose with an opposing sonic jet in a supersonic flow M∞ = 2.5
was simulated using the axisymmetric Navier–Stokes equations (Fujita 1995) and the
three-dimensional (3D) equations (Fujita 2002). In these simulations, no turbulence
model was used and the influence of turbulent fluctuations could not be considered.
Also, a joint experimental and computational investigation was performed to study
the complex self-sustained flow motion (Shang et al. 2001). They compared the
computational results obtained using the Reynolds-averaged Navier–Stokes equations
with turbulent closure and laminar flow equations, and found that the flow structures
from the laminar computation are not supported by the experimental observations,
consistent with the experimental findings by Debiève et al. (2003). Thus, these
investigations indicate that turbulent simulations are needed in order to predict the
flow characteristics reliably.

The sustained motions of the flow field mentioned above are associated with the
shear-layer impingement phenomenon (e.g. Rockwell & Naudasher 1979; Shang et al.
2001). A comprehensive review has indicated that the self-sustained oscillations of
impinging shear layers involve a series of interacting events, such as disturbance
feedback, onset of oscillation and resonance effects. The disturbance feedback is
an essential feature (Rockwell & Naudasher 1979). For a jet opposing high-speed
flows, Shang et al. (2001) proposed a feedback mechanism where the oscillatory flow
motions are sustained by the feedback of upstream pressure propagation through the
subsonic recirculation region with a selective amplification of fluctuations in the shear
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layer. This sustained motion phenomenon is complex and requires further detailed
analysis to interpret the relevant feedback mechanisms and to establish reliable
feedback models.

The shock/turbulence interaction is an important issue in understanding the flow
characteristics in jets opposing supersonic flows. The early linear interaction analysis
on turbulence modification by a shock wave has been performed with an emphasis on
acoustic wave generation behind the shock wave (Ribner 1954). Through the linear
analysis, it is found that turbulent fluctuations are amplified across the shock wave
and significant acoustic noise is also generated due to the interaction of vortical
turbulence with the shock wave. Idealized shock/turbulence interactions have been
reviewed by Andreopoulos, Agui & Briassulis (2000). These investigations indicate
that turbulence amplification through shock wave interaction is a direct effect of the
Rankine–Hugoniot relations. Moreover, the flow considered here involves complex
interaction phenomena and the relevant flow behaviours deserve study.

The evolution of the conical shear layer generated by the jet reversing its orientation
because of the counterflow interaction has a significant influence on the turbulence
structure of the flow field (Debiève et al. 2003; Chen, Xu & Lu 2010a). Moreover,
the shearing and compressing processes should be coupled to affect the shear-layer
evolution. The understanding of free-shear flows is of primary interest due to the
complex physics features involved. For axisymmetric compressible shear layers, some
studies (e.g. Freund, Lele & Moin 2000; Simon et al. 2007) have dealt with the
3D shape of the turbulent eddies. It is also noted that axisymmetric compressible
shear layers may lead to the occurrence of a wide range of phenomena coupled
with complex interactions (Simon et al. 2007). In the flow considered here, the rapid
deviation of the shear layer occurs as the jet terminates through a Mach disk, and
then the shear-layer reattachment to the body causes a pressure rise (e.g. Finley 1966;
Shang et al. 2001). Thus, both the streamline curvature and the adverse pressure
gradient along the conical shear layer constitute extra strain rates as defined by
Bradshaw (1974), which will have an important influence on the turbulent flow field.

The unsteady flow field of a jet from a blunt body opposing supersonic
flows involves an array of intricate phenomena, such as shock/jet interaction,
shock/turbulence interaction, recirculation zone, and cell structures in the jet column.
Characterizing dynamical processes in flow evolution is still one of the fundamental
challenges in fluid mechanics. Usually, the dynamical processes are analysed by the
proper orthogonal decomposition approach (Lumley 1967; Berkooz, Holmes & Lumley
1993) and vortical structures are often discussed relative to the importance of vortices
(e.g. Robinson 1991; Jeong & Hussain 1995). As a typical example, Meyer, Pedersen
& Özcan (2007) employed the proper orthogonal decomposition to investigate a
turbulent jet in crossflow and to analyse the coherent vortical structures and the
interactions between the jet core and the crossflow.

In this paper, a large-eddy simulation (LES) technique, which has provided a
powerful tool for studying the dynamics of turbulent flows, is utilized to investigate
the complicated interactions between a jet issued from a blunt body and a supersonic
counterflow. The purpose is to achieve an improved understanding of some of
the fundamental phenomena involved in this flow, including shock/jet interaction,
shock/shear-layer interaction, turbulent shear-layer evolution and coherent structures.

This paper is organized as follows. The mathematical formulation and numerical
method are briefly presented in § 2. The computational overview and validation are
described in § 3. Detailed results are then given in § 4 and concluding remarks in § 5.
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2. Mathematical formulation and numerical methods
2.1. Governing equations and turbulence modelling

To investigate a jet from a blunt body opposing a supersonic flow, the three-
dimensional Favre-filtered compressible Navier–Stokes equations in generalized
coordinates are employed. The equation of state for an ideal gas is used and the
molecular viscosity is assumed to obey the Sutherland law. To non-dimensionalize the
equations, we use the free stream variables including the density ρ∞, temperature T∞,
speed of sound a∞, and the diameter of the hemisphere D as characteristic scales.

The LES is implemented in the present work for turbulence closure. Some terms in
the Favre-filtered equations arise from unresolved scales and need to be modelled in
terms of resolved scales. Then, dynamic subgrid-scale (SGS) models for compressible
flows are employed. A detailed description of the mathematical formulation of the non-
dimensionalized equations and the subgrid-scale models can be found in our previous
papers (Lu et al. 2005; Xu, Chen & Lu 2010).

2.2. Numerical procedure

The governing equations are numerically solved by a finite-volume method. The
convective terms are discretized by a central/upwind hybrid scheme for shock-
capturing and the viscous terms by a fourth-order central difference (Xu et al. 2010).
The temporal integration is performed using an implicit approximate-factorization
method with sub-iterations to ensure second-order accuracy (Simon et al. 2007).

To capture the discontinuity caused by a shock wave, a second-order upwind
scheme with Roe’s flux-difference splitting is introduced into the inviscid flux. Based
on the detection of shocks proposed by Hill, Pantano & Pullin (2006), the spatial
discretization has been constructed explicitly to be shock capturing with the upwind
scheme and to revert to a central stencil with a fourth-order central scheme (Rai &
Chakravarthy 1993; Génin & Menon 2010) in turbulent flow regions away from shock.
A detailed description of the formulation can be found in our previous papers (Chen,
Xu & Lu 2010b; Xu et al. 2010).

In the present study, the initial and boundary conditions are given as follows. The
initial condition is set as the free-stream quantities. No-slip and adiabatic conditions
are applied on the body surface. The far-field boundary and downstream boundary
conditions are treated by a characteristic method based on Riemann invariants
(Thomas & Salas 1986). The jet boundary conditions are set on the surface using
a specified velocity profile, total temperature and constant static pressure (e.g. Bodony
& Lele 2005; Bogey & Bailly 2006). The density can be obtained by using the
Crocco–Busemann relation. The jet velocity profile is chosen as the hyperbolic-tangent
function (Bodony & Lele 2005)
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where Uj is the velocity at the jet axis, θ0 is the initial momentum thickness, r0 is
the jet radius with the diameter Dj = 2r0, and r =√y2 + z2. As suggested by Bodony
& Lele (2005), θ0/Dj = 0.045 in the calculations. Small random disturbances are also
added to the mean velocity profiles to seed the turbulence development (Bogey &
Bailly 2006).
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Grid a∞1t/D St(P = 0.816) St(P = 1.633)

Case 1 150× 150× 80 0.005 0.231 1.453
Case 2 200×200×120 0.002 0.251 1.497
Case 3 300×300×240 0.001 0.252 1.506
EXP 0.262 1.485

TABLE 1. Validation of grid resolution and time step. Here, St = fD/U∞ with f being the
dominant frequency of the sustained flow motion and D the diameter of the hemisphere;
EXP represents the experimental data with f = 3 kHz at P = 0.816 and f = 17 kHz at
P = 1.633 (Fujita 2002).

3. Computational overview and validation
3.1. Computational overview

We consider a supersonic flow with a free-stream Mach number M∞ = 2.5 around
a hemispherical nose perturbed by an opposing sonic jet placed on its axis. Based
on previous experiments (e.g. Karashima & Sato 1975; Fujita & Karashima 1999;
Fujita 2002), an ideal gas is assumed for the free stream and the jet. The diameter
of the injector Dj is set as D/10. The values of the total pressure or stagnation
pressure ratio of the jet to the free stream P = p0j/p0∞ are chosen as 0.816 and
1.633, and the corresponding momentum flux ratios J = ρjU2

j /ρ∞U2
∞ are obtained as

1.178 and 2.358. The total temperature or stagnation temperature ratio T = T0j/T0∞
is 1.0 with T0∞ = 294 K. The Reynolds number defined as ReD = U∞D/µ∞ is
1.47 × 106. The selected parameters are the same as those in the experiments.
The relevant experimental data will thus be employed to validate the present
calculation.

The grid topology is carefully designed to ensure the computation accuracy. An
orthogonal grid distribution in the meridian plane is used and the azimuthal grid is
divided uniformly. Grid stretching is employed to increase the grid resolution near
the body surface and in the nose region and ensures that there are at least 55 nodes
located in the radius of the injector. The minimum size of the grid in the wall-normal
direction is 1yn = 5 × 10−5D, corresponding to 1y+n < 0.1 based on the wall friction
parameters. The tangential spacing on the surface of the spherical nose lies in the
range 1s+ ∼ 12–16, which is fine enough to capture the fine-scale flow structures (e.g.
Georgiadis, Rizzetta, Fureby 2010).

To assess the effects of grid resolution and time step on the calculated results,
three typical cases with different grid resolutions and time steps are listed in table 1.
Detailed comparisons of the calculated results using different computational conditions
will be given in § 3.2. The present code is equipped with a multi-block domain
decomposition feature to facilitate parallel computing and the computational domain
is divided into 32 sub-domains for parallel processing. The computation runs for time
∼200D/U∞ to obtain statistically meaningful turbulence properties in the temporal
averaging operation.

Several averaging operations in the post-processing are performed based on the time-
dependent resolved density ρ̄, pressure p̄, temperature T̃ and velocity ũi. Moreover, the
velocity ũi is represented in the cylindrical coordinate system and the corresponding
axial, radial and azimuthal components are denoted ũx, ũr and ũφ . To clearly present
the post-processing, some symbols used in this paper are introduced as follows: 〈 〉
means the average in time (after careful elimination of the transient part of the
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Comparison of the
calculated results with experimental data and validation of the results obtained by different
grid resolutions and time steps (i.e. cases 1–3) given in table 1 for P = 0.816 and 1.633:
(a) mean pressure 〈p̄w〉 and experimental data (Karashima & Sato 1975; Fujita & Karashima
1999), (b) mean skin-friction coefficient, (c) pressure fluctuation p′rms, and (d) temperature
fluctuation T ′′rms on the body surface. Here, θ increases from the axisymmetric axis to
the shoulder of the blunt body. In (a), the axisymmetric result without an opposing jet
obtained with grid 300 × 300 and comparisons with the experimental data at M∞ = 2.5
and ReD = 1.4 × 106 (Finley 1966) and modified Newtonian theory (Finley 1966) are also
shown.

time-dependent variations) and in the azimuthal direction, and {f } = 〈ρ̄f 〉/〈ρ̄〉 for a
variable f . Then, the fluctuations are obtained as (Garnier, Sagaut & Deville 2002)
ρ ′ = ρ̄ − 〈ρ̄〉, p′ = p̄− 〈p̄〉, T ′′ = T̃ − {T̃} and u′′i = ũi − {ũi}, respectively.

3.2. Validation
To validate the present simulation, we compare numerical results and experimental
data (Finley 1966; Karashima & Sato 1975; Fujita & Karashima 1999) in terms of the
mean wall pressure and the dominant frequency of flow motion as given in table 1.
Figure 1(a) shows the distributions of mean wall pressure 〈p̄w〉/p0f , where p0f is the
stagnation pressure downstream of the bow shock. The results compare well with
the experimental data. Moreover, validation of the results predicted by different grid
resolutions and time steps (i.e. cases 1–3) listed in table 1 is also performed. It is
shown that the results for the three cases are consistent with the experimental data.

Assessments of the effect of grid resolution and time step on the calculated
solutions have been performed. Figure 1(b–d) shows the distributions of the skin-
friction coefficient τw, and the pressure and temperature fluctuations on the surface,
respectively. We have identified that the results for cases 2 and 3 collapse together,
indicating a reasonable convergence for the grid resolution and time step given in
table 1. Moreover, an axisymmetric result without an opposing jet was obtained

http://journals.cambridge.org/flm
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with grid 300 × 300, which agrees well with the experimental data (Finley 1966)
and modified Newtonian theory (Finley 1966). To make the prediction accurate, the
results given below were calculated using the parameters in case 3, i.e. the number of
grid points 300 × 300 × 240 in the axial (x), radial (r) and azimuthal (φ) direction,
respectively, and time step 0.001D/a∞.

The resolved energy spectrum obtained using the parameters in case 3 has been
examined. The resolved scales seem to reach an inertial subrange, reasonably close
to St−5/3 scaling (Kawai & Fujii 2005). The spatial spectrum can be approximately
obtained using Taylor’s hypothesis which is limited to homogeneous turbulence with
small turbulence intensity (Pope 2000). Moreover, the resolved energy spectra obtained
by the present numerical method were also examined in some previous investigations
(e.g. Chen et al. 2010b; Xu et al. 2010).

We have further assessed the appropriateness of the grid resolution used in this
study in terms of the SGS turbulent kinetic energy (SGS-TKE) and the Kolmogorov
scale. Similar to the treatment in Matheou et al. (2010), we have calculated the
SGS-TKE using the data in case 3 and identified that the ratio of the SGS-TKE
to the total TKE is less than 20 %, indicating a sufficiently resolved LES resolution
(Pope 2004; Ferrante, Matheou & Dimotakis 2011). Moreover, the Kolmogorov scale
η is also estimated as η/D ∼ O(10−4) and the grid spacing in the shear layer region
is δ/D ∼ O(10−3). Then, the ratio δ/η is O(10). Compared to the LES of a mixing
layer with δ/η ∼ O(102) (Matheou et al. 2010), it is verified that the grid resolution
is sufficient to resolve turbulence in the flow field. Thus, the quality of the present
simulation is capable of capturing meaningful turbulence.

Furthermore, the present numerical strategy has already been applied with success to
a wide range of turbulent flows such as compressible turbulent swirling flows injected
into a coaxial dump chamber (Lu et al. 2005) as well as compressible flows past an
aerofoil (Chen et al. 2010b) and over a circular and wavy cylinder (Xu, Chen & Lu
2009; Xu et al. 2010). We have carefully examined the physical model and numerical
approach used in this study and have verified that the calculated results are reliable.

4. Results and discussion
4.1. Flow structures and flow features

4.1.1. Mean flow structures
The mean flow quantities are obtained in terms of the time average and spatial

average in the azimuthal direction. The numerical schlieren pattern and streamlines of
the mean flow for P = 0.816 and 1.633 are shown in figure 2(a,b), respectively. As
a jet issues from the body against the supersonic flow, the bow shock stands away
from the body surface and takes a form appropriate for a combined influence of the
body and the jet flow. From the numerical schlieren pattern in figure 2(a), the structure
within the jet exhibits two oblique shocks with regular reflection to form an X-type
structure in the plane (or a conical shock wave structure in 3D) and the jet column
terminates at a Mach disk, across which the jet total pressure is reduced to the free
stagnation value. The fluid from the jet reverses its orientation as a conical free shear
layer and is partly entrained to generate a recirculation zone outside the jet column,
which is clearly depicted by the streamlines. As the conical shear layer reattaches to
the body surface, the flow realigns with the body contour and also causes a pressure
rise; a reattachment shock is then generated which intersects with the bow shock to
form a triple point. Because of the unsteady motion of the shock system shown below,
the shocks are blurred based on the mean pattern in figure 2(a), consistent with the
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(a) (b)

FIGURE 2. Numerical schlieren-like visualization by contours of ‖∇ρ̄‖ and streamlines of
the mean flow for (a) P = 0.816 and (b) 1.633.

experimental photographs (Karashima & Sato 1975; Shang et al. 2001). Moreover, the
phenomena described above can be confirmed based on the temporal evolution of the
flow field and will be further discussed later.

For P = 1.633 in figure 2(b), the jet exhibits a single-cell structure with a well
established Mach disk at the end of the jet column and a barrel shock inside the jet
layer. The other features of the mean flow field are similar to those in figure 2(a),
such as the recirculation zone outside the jet column, the reattachment shock and its
intersection with the bow shock. The relevant difference of the mean flow structures
in figures 2(a) and is 2(b) associated with two typical flow states, i.e. unstable state
for P = 0.816 and stable state for P = 1.633 (Karashima & Sato 1975; Fujita
1995; Fujita & Karashima 1999). Moreover, the bow shock stand-off mean position is
obtained as x/D = −0.849 for P = 0.816 and x/D = −0.792 for P = 1.633, which
agree well with the experimental data −0.85 and −0.789 (Karashima & Sato 1975;
Fujita & Karashima 1999), respectively.

The existence of shock/turbulence interaction is related to the compressible effect.
To understand this flow feature, figure 3 shows the local Mach number based on the
mean flow quantities in the meridian plane. The distributions of local Mach number
clearly distinguish the supersonic and subsonic regions. From figure 3(a), the subsonic
region exists behind the core region of the bow shock and in the recirculation zone
and the conical shear-layer region. The supersonic flow occurs in the jet column and
the local supersonic Mach number does not change much across the reattachment
shock since it is weak. From figure 3(b) at P = 1.633, the subsonic region over the
recirculation zone and the conical shear layer are smaller compared to figure 3(a) at
P = 0.816, which may be related to the magnitude of the dominant frequency of this
self-sustained unsteady flow system. Moreover, the disturbances possibly propagate in
the subsonic region to influence the jet structure. A feedback mechanism of the free
shear layer and the Mach disk was proposed by Shang et al. (2001). The relevant
feedback mechanisms for the two flow states will be discussed in detail in § 4.3.2.

4.1.2. Instantaneous flow structures
The instantaneous flow field is further examined to analyse the flow phenomena.

Figure 4(a,b) shows the flow structures using the iso-contours of ‖∇ρ̄‖ in the
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FIGURE 3. Distributions of the mean local Mach number Ml for (a) P = 0.816 and (b)
1.633. Here, solid lines denote Ml > 1 and dashed lines Ml < 1 with a contour increment 0.1.

meridian planes for P = 0.816. The deviation of the jet back to the body results
in a complicated conical shear layer (Finley 1966; Shang et al. 2001), as marked
in figure 4(a). The conical shear layer eventually reattaches to the body surface,
triggering a series of compression waves in the near region of body surface and
causing a pressure rise, which is also confirmed by the mean pressure distribution
on the body surface in figure 1(a). Then, a reattachment shock is generated and
intersects with the bow shock to form a triple point in the plane. According to the
evolution of the flow structures, it is identified that the bow shock surface presents a
small distortion because of the disturbances from the jet and the conical shear layer.
Moreover, the bow shock interacting with the shear layer results in a self-sustained
off-axis motion of flow structures, which induces a blurred schlieren pattern of the
mean flow field in figure 2(a). This kind of flow behaviour is usually classified as the
unstable state (Karashima & Sato 1975; Fujita 1995; Fujita & Karashima 1999).

To clearly illustrate the flow structures in the jet, figure 4(c,d) shows the
corresponding enlarged patterns. The jet flow undergoes a series of expansion waves
and then experiences a pair of oblique shocks in the plane. The oblique shocks
interact with a regular reflection to form an X-type structure, consistent with the
experimental observations. Moreover, the jet layer becomes unstable quickly and the
vortical coherent structures convect downstream on the outside of the jet column.
Since the subsonic region occurs as typically shown in figure 3(a), there exists a
feedback resonance mechanism between the conical shear layer and the Mach disk of
this flow field (Shang et al. 2001). The jet structures undergo a corresponding change
subsequently. As shown in figure 4(c), the jet layer evolves into the jet column behind
the X-type structure and the Mach disk nearly disappears. Then, the oblique shocks
become somewhat weak and the Mach disk appears again in figure 4(d).

Figure 5(a,b) shows the instantaneous flow structures using the iso-contours of
‖∇ρ̄‖ in the meridian planes for P = 1.633. As marked in figure 5(a), a complicated
conical shear layer is generated and reattaches to the body surface. Meanwhile, a
series of compression waves is triggered in the near region of the body surface and a
reattachment shock is formed which intersects with the bow shock. The corresponding
jet structures are shown in figure 5(c,d). Similar to the case of P = 0.816, as a
feedback resonance mechanism occurs, the jet structures are also accompanied by the
evolution of the conical shear layer. From figure 5(c), the jet cell structure exhibits
a Mach reflection with a well established Mach disk and barrel shock. A reflected
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FIGURE 4. Numerical schlieren-like visualizations by contours of ‖∇ρ̄‖ in the meridian
plane for P = 0.816 at two instants in (a) and (b) and the corresponding enlarged jet
structures in (c) and (d).

shock is formed from the intersection of the barrel shock with the Mach disk. Then,
from the influence of the conical shear layer, the barrel shock becomes obviously
weak and the Mach disk behaves like a normal shock wave in figure 5(d). We have
carefully examined the evolution of the flow structures and identified that the barrel
shock occurs intermittently. As suggested in previous works (Karashima & Sato 1975;
Fujita 1995; Fujita & Karashima 1999), this kind of flow is classified as the stable
state. Note that there still exists unsteady motion in the stable state.

As illustrated above for the instantaneous flow structures, motion of the bow shock
and reattachment shock are observed because of the perturbation of the entire flow
(Debiève et al. 2003). The evolution of the jet structures is closely associated with
the unsteady off-axis motion, consistent with the experimental observations (e.g.
Karashima & Sato 1975; Shang et al. 2001). These 3D flow phenomena cannot be
predicted by an axisymmetric simulation (e.g. Fujita 1995; Shang 2002). Moreover,
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FIGURE 5. Numerical schlieren-like visualizations by contours of ‖∇ρ̄‖ in the meridian
plane for P = 1.633 at two instants in (a) and (b) and the corresponding enlarged jet
structures in (c) and (d).

according to experimental measurement of a jet issuing from a sphere against a
supersonic flow (Debiève et al. 2003), the conical shear layer originating from the
deviation of the jet leads to apparent turbulent fluctuations. Thus, turbulence has a
significant influence on the flow characteristics and will be discussed in § 4.2.1.

To assess the existence of vortical structures in the flow field, figure 6 shows an
instantaneous snapshot of the flow field depicted by an iso-surface of the Q criterion
(Jeong & Hussain 1995)

Q=− 1
2(‖S ‖2−‖Ω ‖2), (4.1)

where S and Ω denote the strain and the rotation tensors, respectively. A positive
value of Q represents the regions where the rotation exceeds the strain. It must be
recalled that the criterion (4.1) is only applied to the resolved scales obtained by
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FIGURE 6. Iso-surface of the Q criterion for (a) P = 0.816 and (b) 1.633.

LES and that the vortical structures could be different if the whole flow field were
considered (Simon et al. 2007; Chen et al. 2010b).

From the region occupied by the vortical structures, it is reasonably well identified
that the jet penetration at P = 1.633 is higher than at P = 0.816, consistent with
the bow shock stand-off position obtained above. The small-scale vortical structures
mainly occur in the jet column. When the jet terminates through the Mach disk and
the fluid from the jet is deflected back, large-scale vortices develop gradually in the
outer region of the jet column, corresponding to the recirculation zone (figure 2)
with a subsonic flow (figure 3). The occurrence of large-scale hairpin vortices in the
attachment region is clearly shown in figure 6(a). This kind of coherent structure
was also observed in backward-facing step flows (Robinet 2007) and axisymmetric
separating–reattaching flow (Deck & Thorigny 2007). An apparent unsteady evolution
of the conical shear layer has been identified in the unstable state, which is caused by
the convection of large-scale vortices along the shear layer, leading to an obvious
asymmetrical distribution of the instantaneous pressure in the azimuthal direction
(Bourdon & Dutton 2000). Moreover, as shown in figure 6(b), the rolled-up eddies
exhibit a vortex-ring-like axisymmetric coherent structure convecting downstream and
interact with the body surface.

4.1.3. Dynamic features on the body surface
The flow structures are closely associated with the dynamic features on a body

(Wu, Lu & Zhuang 2007). The mean pressure 〈p̄w〉/p0f on the surface is shown in
figure 1(a); 〈p̄w〉 varies smoothly with θ , then rises to a maximum at θ = 38◦–40◦

and finally decreases, tending to the value with no jet. The pressure rise is related to
the reattachment of the conical shear layer as shown in figures 4 and 5. According
to the analysis by Finley (1966), the reattachment is believed to occur just before the
pressure maximum, which therefore can be called the reattachment pressure. Moreover,
a reattachment process in steady flow is usually characterized by the local skin friction
vanishing on the surface. Thus, from the mean skin friction in figure 1(b), it is
identified that the mean reattachment point is around θ = 40◦, consistent with the
location of the reattachment pressure.

The root-mean-square value of pressure fluctuation p′rms/p0f along the surface is also
shown in figure 1(c). It exhibits a higher value at θ = 5◦ because of the influence
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FIGURE 7. Distributions of the specific turbulent kinetic energy for (a) P = 0.816 and
(b) 1.633.

of the jet layer. As θ increases, p′rms increases quickly after a minimum at θ = 10◦,
which is related to the fact that the organized shear-layer structures become stronger
and evolve closer to the surface (Hudy, Naguib & Humphreys 2003). Then p′rms
reaches its maximum 0.17 at approximately θ = 29◦ for P = 0.816 and 0.14 at
θ = 32◦ for P = 1.633, lying upstream of the mean reattachment location. Further,
p′rms decreases along the surface due to the flow acceleration and the surface convex
curvature (Pope 2000; Debiève et al. 2003). For comparison, the value of p′rms/p0f

at θ = 15◦ is 0.09 for P = 0.816 and 0.08 for P = 1.633; the corresponding
axisymmetric values were obtained as 0.10 and 0.09 by Fujita (1995). Moreover,
as shown in figure 1(d) the temperature fluctuation increases from its minimum to
maximum at ∼θ = 23◦ and then decreases gradually to an approximate equilibrium
value in the attached boundary layer of ∼0.04 for P = 0.816 and 0.02 for P = 1.633.
Obviously, the pressure and temperature fluctuations at P = 0.816 for the unstable
state are higher than those at P = 1.633 for the stable state.

4.2. Turbulent flow field and side loads
4.2.1. Velocity fluctuations and conical shear-layer

For a jet issuing from a sphere against a supersonic flow, the shearing process of
the jet layer and conical shear layer can result in strong turbulent fluctuations, which
will have a significant influence on the flow characteristics (Debiève et al. 2003).
Moreover, the shock movement which is related to the compressing process also
strengthens the flow fluctuations (Andreopoulos et al. 2000). It should be expected
that the fluctuations due to shock movement show up in the turbulence statistics.
Figure 7 shows typical the iso-contours of the specific turbulent kinetic energy (TKE),
i.e. k = {u′′i u′′i }/2U2

∞. The distribution of higher TKE mainly occurs in the regions
of the deviation of the jet and downstream of the bow shock. It is identified that
its maximum value is around 0.076 for P = 0.816 and 0.063 for P = 1.633 in the
region where the jet interacts with the Mach disk and is deflected back. Moreover, the
region of higher TKE for P = 0.816 is larger than that for P = 1.633 because of the
influence of strong unsteadiness of the unstable state.

The turbulent flow field is mainly influenced by the conical shear layer because of
the deviation of the jet (Debiève et al. 2003). To understand the conical shear-layer
evolution, the iso-contours of specific turbulent shear stress τ ′′xr = {u′′x u′′r }/U2

∞ are shown
in figure 8(a,b) for P = 0.816 and 1.633, respectively. Positive τ ′′xr mainly occurs
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FIGURE 9. Distributions of the shear stress (a) and the normal stress anisotropy ratios
(b) along the shear layer.

in the conical shear-layer region and the boundary layer region after the shear-layer
reattachment, while negative τ ′′xr is distributed in the bow shock region and the jet layer
region. For the purpose of better understanding the shear-layer evolution, the location
of the shear layer in terms of local peak shear stress magnitude (Herrin & Dutton
1997; Simon et al. 2007) is determined and exhibited by the dashed line with labels
A–D in figure 8.

To reveal the development of the conical shear layer, the profiles of local peak
Reynolds stresses {u′′i u′′j }/U2

∞ along the shear layer are shown in figure 9. The
spatial evolution of the peak shear stress {u′′x u′′r }/U2

∞ is shown in figure 9(a). The
distribution of this shear stress for the unstable state at P = 0.816 is higher than
that for the stable state at P = 1.633 because the unstable state flow system is
characterized by a stronger unsteadiness as mentioned above. Along the shear layer,
the first maximum is related to the formation of vortex-ring-like coherent structures
after the jet reverses its direction, which is similar to an incompressible counterflow
(Yoda & Fiedler 1996). The shear stress decreases as the coherent structures are
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distorted and convected downstream, and then increases rapidly to reach the second
maximum which is associated with the onset of the recompression process due to the
shear-layer reattachment. The shear stress decreases monotonically after approximately
x/D = −0.5 because of the convex streamline curvature near the body surface
(Debiève et al. 2003; Simon et al. 2007).

The Reynolds stress anisotropy in the shear layer is further analysed in terms of the
ratios between the stresses which are expressed as σui = {u′′i u′′i }1/2. Figure 9(b) shows
the development of a primary-to-secondary stress ratio (σux/σur)

2 and a secondary-to-
secondary stress ratio (σuφ/σur)

2 along the conical shear layer. It is observed that the
streamwise normal stress is dominant for the two flow states. The profiles of (σux/σur)

2

vary smoothly for approximately x/D < −0.55 and then decay rapidly because of
the reattachment process. Downstream of the reattachment, the streamwise fluctuations
are damped to the same order as the radial ones, and the relative normal stress
distributions seem to reach an equilibrium state in the boundary layer. Moreover,
the secondary-to-secondary stress ratio (σuφ/σur)

2 remains around 1.0, indicating little
difference in the turbulent energy redistribution mechanism among these components.

The evolution of the primary-to-secondary stress ratio (σux/σur)
2 is associated with

the flow motion feature (Amatucci et al. 1992; Herrin & Dutton 1997; Simon et al.
2007). The value of (σux/σur)

2 lies in the range of 6.0–7.0 around the region of
x/D = −0.6 for P = 0.816, which is related to the antisymmetric motion of the
compressible shear layers behind a thick base (Amatucci et al. 1992). Correspondingly,
(σux/σur)

2 is ∼3.5 for P = 1.633 before its decay. For comparison, the primary-
to-secondary stress ratio is around 3.0 in axisymmetric flows (Herrin & Dutton
1997; Simon et al. 2007). The analysis suggests that the flow motion may have an
antisymmetric feature for the unstable state and an axisymmetric one for the stable
state.

4.2.2. Proper orthogonal decomposition analysis of the velocity field
The flow field can be quantitatively analysed using the proper orthogonal

decomposition (POD) approach to extract energetic coherent structures from the
simulation data (Berkooz et al. 1993). For a given flow property, f (x, t), the POD
analysis can determine a set of orthogonal functions, φj(x), j = 1, 2, . . . , such that
projection of f onto the first n functions

f̂ (x, t)= f̄ (x, t)+
n∑

j=1

aj(t)φj(x), (4.2)

has the smallest error, defined as 〈‖f − f̂ ‖2〉t, where 〈 〉t and ‖ · ‖ denote the time
average and a norm in the L2 space, respectively. Here, aj(t) represents the temporal
variation of the jth mode. The function f can be extended to a vector F by introducing
an appropriate inner product on F. A more complete discussion of this subject can be
found in Berkooz et al. (1993).

The analysis has been conducted using Nt = 1500 snapshots of the streamwise
velocity component, which is dominant among the three components, spanning a time
period of 82.5D/U∞, and the temporal resolution is 0.055D/U∞, corresponding to a
cutoff Strouhal number ∼9.09. The energy of the jth mode, Ej, is defined as

Ej = 〈‖aj(t)φj(x) ‖2〉t . (4.3)
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FIGURE 10. Spatial distributions of the first two POD modes: (a) first mode and (b) second
mode for P = 0.816; (c) first mode and (d) second mode for P = 1.633.
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The normalized energy of the mth mode is then defined as Em/
∑Nt

j=1Ej, and the

energy sum from mode 1 to m is solved as
∑m

j=1Ej/
∑Nt

j=1Ej. Using the time-varying
coefficient aj(t) in (4.2), one can obtain the frequency spectrum of the jth mode and
the phase difference from the adjacent modes (Wang, Hsieh & Yang 2005; Chen et al.
2010b). Figure 10 shows the mode shape distributions of the first two modes in the
cross-section plane at x/D = −0.55 for P = 0.816 and 1.633. Correspondingly, the
energy distribution of the POD modes is shown in figure 11. The coherent structures
can be captured by the POD analysis and presented by the mode shapes.
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For the unstable state at P = 0.816, the first two modes account for ∼18 %
of the total energy of the fluctuating velocity field as shown in figure 11(a) and
exhibit antisymmetric shapes in figure 10(a,b). The captured energy is similar to the
previous POD analysis for turbulent flows in turbomachinery (Wang et al. 2005)
and turbulent jets in crossflow (Meyer et al. 2007). The dominant frequency of
the first two modes is approximately St = 0.25 which is obtained by the spectral
analysis of the time-varying coefficient aj(t) in (4.2). The dominant modes display the
antisymmetric motion feature, which is associated with the off-axial flow motion in the
cross-section plane.

For the stable state at P = 1.633, the first two modes occupy ∼21 % of the total
energy as shown in figure 11(b) and display axisymmetric shapes in figure 10(c,d).
Similarly, from the time-varying coefficient aj(t) the dominant frequency of the two
modes is determined as approximately St = 1.51. The mode shapes show that the
dominant coherent structures have the axisymmetric feature. Thus, the analysis of
the coherent structures has revealed the different dominant motions for the unstable
and stable states, which are associated with the underlying mechanisms of the self-
sustained motions and will be helpful in establishing the feedback models in § 4.3.2.

4.2.3. Statistical analysis of side loads
The occurrence of turbulent flow structures influences unsteady loads, which can

be obtained by integrating the unsteady pressure and friction on the body surface. To
analyse the character of the fluctuating side loads, figure 12 shows a typical polar
plot of the side loads, i.e. Fy(t) and Fz(t), which represent the y- and z-direction
components of the load in the cross-section plane, respectively. To qualify the statistics
of the side loads for the axisymmetrical geometry considered here, we also plot a 95 %
confidence ellipse whose boundary in R2 space is defined by Deck & Nguyen (2004):

(F̃ −M)tC−1(F̃ −M)= 2 log(1− α), (4.4)

where α = 0.95, F̃ = (Fy,Fz)
t denotes a bi-dimensional random variable defined by its

mean value M = [F̄y, F̄z]t and its covariance C = F̃F̃t − MMt. The number of points
outside the equiprobability ellipse can then be compared with the theoretical number,
N(1 − α), corresponding to a two-dimensional Gaussian distribution (Deck & Nguyen
2004). Moreover, if the covariance matrix is symmetric, the ellipse becomes a circle,
which is centred at zero. As shown in figure 12 for P = 0.816 and 1.633, we have
identified that the calculated number of points outside the confidence circle is less than
0.1 % of the theoretical number. Thus, we learn that, for an averaged axisymmetric
flow, the mean side loads are absent, i.e. F̄y = F̄z = 0.

To obtain quantitatively the statistical behaviour of the side loads, figure 13(a,b)
shows the side-load probability density functions (p.d.f.s) for P = 0.816 and 1.633,
respectively. The computed results are close to a Rayleigh distribution with their
discrepancies being less than 1 %. This feature is consistent with previous findings
in different flows (e.g. Deck & Nguyen 2004; Deck & Thorigny 2007) and may
be expected for an axisymmetric geometry because the Rayleigh distribution is the
particular case of a χ 2 distribution with two degrees of freedom, which correlates with
normally distributed side-load components.

Further, figure 13(c,d) shows the p.d.f.s of the side-load direction denoted by the
azimuthal angle φ with a normal distribution. It is seen that the computed p.d.f.s of
the side-load direction fluctuate around the uniform law within the interval [0, 2π]
(or [0◦, 360◦]). The higher-order statistical quantities, such as the skewness factor
Sφ and the kurtosis factor Kφ with their definitions, are given in table 2, which can
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then be compared with theoretical values of the uniform distribution. It is noted that
the computed results agree with the theoretical values for the unstable (P = 0.816)
and stable (P = 1.633) states. The skewness factor Sφ = 0 indicates the symmetry
of the distribution, which means that no load direction is preferred. The kurtosis
factor Kφ = 1.8 shows that the direction does not follow a Gaussian distribution
(i.e. Kφ = 3). Thus, according to the statistical analysis, the side loads can be seen as
a rotating vector uniformly distributed within the interval [0, 2π] and whose magnitude
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Statistical moment Uniform law P = 0.816 1(%) P = 1.633 1(%)

φ̄/π 1 0.999 0.1 0.992 0.8
σ 2
φ/π

2 1/3 0.333 0.1 0.319 4.3

Sφ = φ′3/φ′2
3/2

0 6.32× 10−3 0.6 0.027 2.7

Kφ = φ′4/φ′2
2

9/5 1.76 2.2 1.840 2.2

TABLE 2. Comparison of statistical moments between the present calculation and the
uniform distribution.
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FIGURE 14. Spectrum of the load component Fy for (a) P = 0.816 and (b) 1.633.

follows Rayleigh’s law, consistent with the behaviour for an axisymmetric step flow
(Deck & Thorigny 2007).

4.3. Spectral analysis and feedback models

4.3.1. Spectral analysis
From the preceding description of the statistical behaviours of side loads, spectral

analysis is further used to determine the dominant frequency of the flow evolution.
Figure 14(a,b) shows the power spectral densities (PSDs) of Fy(t) for P = 0.816 and
1.633, respectively. The profiles of PSD contain a series of peaks including the highest
one at St = 0.252 for the unstable state and St = 1.506 for the stable state, which are
in agreement with the values predicted by the POD analysis. Moreover, based on the
approach used by Deck & Nguyen (2004), we can identify that the frequency range
St ∈ [0.20, 0.35] contributes 68 % of the load component for the unstable state and the
range St ∈ [1.40, 1.65] contributes 50 % of the load for the stable state.

Moreover, to examine the dominant frequency related to the recirculation region
(figure 2) and the relevant spectrum behaviour, figure 15 shows the PSD of the
time-dependent pressure in the boundary layer at the onset of the recirculation region.
For the unstable state at P = 0.816, the PSD exhibits a dominant frequency around
St = 0.252, as listed in table 1, in agreement with the experimental data 0.262 or
f = 3 kHz (Fujita & Karashima 1999; Fujita 2002). For the stable state at P = 1.633,
the PSD indicates a dominant frequency St = 1.506, consistent with the experimental
value 1.485 or f = 17 kHz given in table 1. Moreover, it is identified that the spectrum
varies like St−4 at higher frequencies, which is caused by the ‘active’ inner-layer
motion in the boundary layer (Bradshaw 1967) and is consistent with the findings in
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turbulent boundary layers (e.g. Simpson, Ghodbane & McGrath 1987; Na & Moin
1998).

The dominant frequency is closely related to the flow states and the coherent
motions. From experimental observation and analysis, Fujita (2002) proposed that the
lower frequency f = 3 kHz in the unstable state may be induced by the unsteady
off-axial motion of the flow system, and the higher frequency of f = 17 kHz in the
stable state may be caused by the axisymmetric motion. Thus, the above detailed
analysis verifies Fujita’s assumption. As shown in figure 10(a,b), we obtain that the
dominant modes of the unstable state are antisymmetric with St = 0.252 (i.e. the
dominant frequency of flow evolution detected in figures 14 and 15), which is related
to the off-axial motion. Moreover, as exhibited in figure 10(c,d), the dominant modes
of the stable state are axisymmetric with St = 1.506 (i.e. the dominant frequency of
flow evolution), which is related to the axisymmetric coherent structure evolution.

4.3.2. Feedback models
Self-sustained motions of a jet from a blunt body opposing a supersonic flow have

been observed (e.g. Finley 1966; Karashima & Sato 1975; Shang et al. 2001). This
feature is usually associated with shear-layer impingement phenomena and disturbance
feedback (e.g. Rockwell & Naudasher 1979; Shang et al. 2001; Fujita 2002). Based
on injection experiments in high-speed flows, Shang et al. (2001) suggested a feedback
mechanism whereby the oscillatory motion is sustained by the upstream disturbance
propagation of selectively amplified frequencies from the free shear layer to the
Mach disk through the embedded subsonic domain. Fujita (2002) also proposed a
feedback model describing the evolution of the jet structure. However, they did not
give the relevant feedback model to determine quantitatively the frequency. Here we
will attempt to propose feedback models to predict the dominant frequencies in the
unstable and stable states.

For the shear-layer impingement phenomena, a model was proposed by Tam (1974)
based on acoustic resonance and it has been usually used to obtain the characteristic
frequency of the oscillation:

L

Vd
+ L

aloc
= n

f
, (4.5)

where L represents the characteristic length over which the shear layer develops,
aloc is the local speed of sound and is associated with the upstream propagating
disturbance, Vd is the speed of the downstream propagating wave and n is the stage of
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the oscillation, such as vortex pairing, shear-layer oscillation, and so on (Ho & Nosseir
1981; Deck & Thorigny 2007).

Based on the above analysis, we propose a feedback loop of upstream propagating
disturbance to the Mach disk through the recirculation subsonic region and
downstream propagation in the conical shear layer. The characteristic length in (4.5) is
reasonably well given by the distance, Ls, between the Mach disk and the jet injection
point (Shang et al. 2001), and can be determined as Ls = 0.241D for the unstable state
and Ls = 0.126D for the stable state from figure 2(a,b).

We here deal with the speed of downstream propagating pressure disturbances,
which is used in the feedback model. Two-point cross-correlation of the unsteady
pressure is used to quantitatively determine the propagation speed of the pressure
disturbances along a given path. A covariance coefficient Cij for two pressure signals
pi(t) and pj(t) with time delay τ can be defined as

Cij(τ )=
〈(pi(t)− 〈pi〉t)(pj(t − τ)− 〈pj〉t)〉t
〈(pi(t)− 〈pi〉t)2(pj(t)− 〈pj〉t)2〉t

, (4.6)

where 〈 〉t denotes time average. Then, the cross-correlation analysis is conducted for
the probes A–D shown in figure 8 and the results are given in figure 16(a,b) for the
unstable and stable state, respectively. Positive time delays are obtained, indicating
that the pressure disturbances in the conical shear layer propagate downstream towards
the body surface. The local propagation speed of the pressure disturbances can be
calculated by dividing the streamwise spatial distances between neighbouring probes
by the time delays between the peaks of the corresponding cross-correlations (Chen
et al. 2010b). Then, the speed is obtained as approximately 0.30U∞ for the unstable
state and 0.31U∞ for the stable state.

As the dominant motion exhibits axisymmetric shapes for the stable state, we can
directly apply (4.5) to this case (Tam 1974). Based on the above description of the
feedback loop, with a schematic in figure 17(a), the feedback model for stable flow
state is simply proposed as

T = Ls

Vd
+ Ls

aloc
. (4.7)

Here, the speed of downstream propagation in the shear layer Vd is 0.31U∞ and the
local speed of sound in the recirculation region aloc is obtained as 0.54U∞ for the
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aloc
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(a) (b) (c)

FIGURE 17. Schematics of feedback loops for the stable state (a) and the unstable state (b,c).

stable state. Then, the non-dimensional frequency of the feedback loop is calculated as
St = 1.563, which is consistent with St = 1.506 as shown in figure 15(b).

Further, according to the analysis of the coherent structures of flow motion and
the experimental findings (e.g. Fujita & Karashima 1999; Fujita 2002), the dominant
motion of the conical shear layer for the unstable state exhibits an antisymmetric
character. Here, we will try to extend the above idea for the feedback model to the
unstable state. Based on the analysis of flow evolution, it is noticed that the conical
shear layer exhibits an off-axial flapping motion and the downstream-propagating
waves occur alternately in one side and then the other side, as schematically exhibited
in figure 17(b,c). Thus, we may refer to one complete period as the processes involved
in both sides or as twice the period for the feedback loop in one side. We then
assume that the mean speed over the complete period is taken as half the speed
of downstream-propagating waves in one side, i.e. V̄d = Vd/2. Based on the above
analysis, a feedback model is proposed to describe one complete period of flow system
as

T = 2
(

Ls

V̄d
+ Ls

aloc

)
. (4.8)

Here, V̄d = 0.15U∞ and aloc = 0.54U∞ for the unstable state. We apply (4.8) to obtain
the non-dimensional frequency of the feedback loop St = 0.244, which is consistent
with St = 0.252 obtained from the spectral analysis shown in figure 15(a). Moreover,
note that a similar treatment has been applied to proposing the feedback model of a
self-sustained shock motion on the upper and lower sides of a circular-arc aerofoil in
transonic flow (Chen et al. 2010b).

Basically, we recognize the limitations of the simplified analysis of the feedback
models; nevertheless, we feel that the results obtained from the models will be helpful
in the understanding of the physical mechanisms of the self-sustained motions in the
unstable and stable states.

5. Concluding remarks
Numerical investigation of a jet from a blunt body opposing a supersonic flow was

carried out by means of an LES technique for two typical total pressure ratios of the
jet to the free stream. Various fundamental mechanisms dictating the complex flow
characteristics, including shock/jet interaction, shock/shear-layer interaction, turbulent
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shear-layer evolution and feedback mechanisms, were examined systematically and are
summarized briefly as follows.

The flow features and structures depend mainly on the total pressure ratio P . As
the jet issues from the body against the supersonic flow, the bow shock stands away
from the body surface and takes a form appropriate to the combined influence of
the body and the jet flow. Based on the analysis of the mean and instantaneous flow
behaviours, we have identified two typical flow states, i.e. the unstable and stable
states, respectively. For the unstable state at P = 0.816, the oblique shocks generated
in the jet column interact with regular reflections to form an X-type structure in the
plane, and the bow shock interacting with the shear layer results in a self-sustained
off-axis motion of flow structures. For the stable state at P = 1.633, the jet cell
structure exhibits a Mach reflection with a well-established Mach disk, and the
jet interacting with the Mach disk reverses its orientation as a conical shear layer
convecting to the body surface. The existence of vortical structures in the flow field is
also assessed. The small-scale vortical structures mainly occur in the jet column. As
the jet terminates through the Mach disk and the fluid from the jet is deflected back,
large-scale vortical structures develop gradually in the recirculation region.

The fluctuating quantities on the surface are examined. It is reasonably clearly
identified that the pressure and temperature fluctuations for the unstable state are
higher than those for the stable state. Moreover, the turbulent fluctuations are enhanced
by the rapid deviation of the shear layer and the interaction with shock waves. The
analysis of local peak Reynolds stresses along the conical shear layer indicates that
the streamwise stress for the unstable state is higher than that for the stable state.
The development of the primary-to-secondary stress ratio is associated with the flow
motion feature and predicts that the antisymmetric motion is related to the unstable
state and the axisymmetric motion to the stable state.

The coherent structures of the flow motion are analysed using the POD technique.
The dominant modes for the unstable state exhibit antisymmetric patterns which are
associated with the off-axial motion in the cross-section plane. Correspondingly, the
dominant modes for the stable state display axisymmetric shapes which are related to
the axisymmetric motion. Furthermore, the occurrence of coherent structures over the
body surface influences unsteady loads. Statistical analysis of side loads indicates that
they can be seen as a rotating vector uniformly distributed within the interval [0, 2π]
and whose magnitude follows Rayleigh’s law for the unstable and stable states.

The feedback mechanism and dominant frequency of the self-sustained motions are
further investigated. The dominant frequencies for the unstable and stable states are
obtained based on the spectral analysis of the side load and the pressure signal in
the flow field and agree well with the previous experimental data. It is confirmed that
the lower frequency in the unstable state is induced by the unsteady off-axial motion
of the flow system, and the higher frequency in the stable state is caused by the
axisymmetric motion. Further, we clarify a feedback mechanism whereby the unsteady
motion is sustained by the upstream-propagating disturbance to the Mach disk through
the recirculation subsonic region and the downstream-propagating disturbance in the
conical shear layer. Then, feedback models are proposed that reasonably well predict
the dominant frequencies for the two flow states.
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