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The flow topologies of compressible turbulent boundary layers at Mach 2 are
investigated by means of direct numerical simulation (DNS) of the compressible
Navier–Stokes equations, and statistical analysis of the invariants of the velocity
gradient tensor. We identify a preference for an unstable focus/compressing topology
in the inner layer and an unstable node/saddle/saddle (UN/S/S) topology in the
outer layer. The dissipation and dissipation production originate mainly from this
UN/S/S topology. The enstrophy depends mainly on an unstable focus/stretching (UFS)
topology, and the enstrophy production relies on a UN/S/S topology in the inner
layer and on a UFS topology in the outer layer. The compressibility effect on the
statistical properties of the topologies is investigated in terms of the ‘incompressible’,
compressed and expanding regions. It is found that the locally compressed region
tends to be more stable and the locally expanding region tends to be more
dissipative. The compressibility is mainly related to unstable focus/compressing and
stable focus/stretching topologies. Moreover, the features of the average dissipation,
enstrophy, dissipation production and enstrophy production of the various topologies
are clarified in the locally compressed and expanding regions.
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1. Introduction
Owing to the obvious importance of fundamental research in turbulence, great effort

has been made to study the local flow topology in turbulent flows. The topological
methodology is based on an analysis of the velocity gradient tensor invariants and
utilizes critical point theory to classify the local flow topologies (Perry & Chong
1987; Chong, Perry & Cantwell 1990). Usually, the tensorial invariants are essential
for understanding the kinematics and dynamics of turbulent motions (Wallace 2009).
For example, the tensorial invariants can be used to educe the vortical structures
(Soria & Cantwell 1994; Jeong & Hussain 1995; Chacı́n, Cantwell & Kline 1996;
Chong et al. 1998; Bermejo-Moreno, Pullin & Horiuti 2009) and to reveal turbulence
processes such as dissipation (Andreopoulos & Honkan 2001; Lee, Girimaji & Kerimo
2009), scalar mixing (Abe, Antonia & Kawamura 2009) and vortex stretching (Buxton
& Ganapathisubramani 2010). Moreover, the dynamics can be used to model the
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subgrid-scale stress tensor (Cantwell 1992; Chertkov, Pumir & Shraiman 1999; van der
Bos et al. 2002; Wang et al. 2006; Li et al. 2009) and for analysing the intermittency
of turbulence (Li & Meneveau 2005, 2006; Meneveau 2011).

A general classification of flow fields based on the invariants of the velocity gradient
tensor was proposed by Chong et al. (1990). For incompressible turbulence, as the
first invariant (P) is zero, a turbulent flow field can thus be described by the two-
dimensional plane of the second (Q) and third (R) invariants. Extensive investigations
of the statistical properties in the Q–R plane have been performed numerically and
experimentally. Perry & Chong (1994) and Soria et al. (1994) analysed the topology
of fine-scale motions for time-developing mixing layers and found that motions with
large positive values of Q are most likely to have a topology of stable focus/stretching.
Blackburn, Mansour & Cantwell (1996) investigated the topological features of the
velocity gradient field of turbulent channel flow. The joint probability density functions
(p.d.f.s) of R and Q were analysed to indicate that topologies of stable focus/stretching
and unstable node/saddle/saddle are the preferred ones away from the wall. Moreover,
the topology of turbulent boundary layers was studied using the invariants of the
velocity gradient tensor (e.g. Chong et al. 1998; Chacin & Cantwell 2000). They
revealed that the joint p.d.f.s exhibit a self-similar teardrop shape from the buffer layer
onwards. Ooi et al. (1999) studied the topology of isotropic turbulence and found that
the joint p.d.f.s are similar for various turbulent flows, suggesting a certain universality
in the Q–R plane for small-scale motions of turbulence. The existence of the teardrop
shape of the joint p.d.f. was also confirmed experimentally in turbulent boundary
layers (e.g. Andreopoulos & Honkan 2001; Elsinga & Marusic 2010a). Recently,
Elsinga & Marusic (2010b) provided an explanation for the universal teardrop shape
in terms of an evaluation of the average flow pattern in the local coordinate system
defined by the eigenvectors of the strain-rate tensor. In addition, Lüthi, Holzner &
Tsinober (2009) expanded the Q–R plane to three dimensions by the decomposition
of R into its strain production and enstrophy production terms and observed that
non-locality plays an important role in the evolution of the velocity gradients.

The statistical properties of turbulence in the Q–R plane are investigated extensively.
Nomura & Post (1998) analysed the structure and dynamics of vorticity and strain rate
in incompressible homogeneous turbulence by examining the scatter plots of Q and R
at different times. Chacin & Cantwell (2000) studied the generation of Reynolds stress,
turbulent kinetic energy and dissipation in the Q–R plane. Diamessis & Nomura (2000)
and Nomura & Diamessis (2000) utilized conditional sampling on different regions in
the Q–R plane to analyse the interaction between strain and vorticity in homogeneous
sheared turbulence. Tsinober (2000) qualitatively summarized the local flow properties
in the Q–R plane and indicated that the enstrophy production is large in the stable
focus/stretching topology and the total dissipation production is large in the unstable
focus/compressing topology. Da Silva & Pereira (2008) and Khashehchi et al. (2010)
dealt with a detailed characterization of the dynamics, geometry and topology of the
flow across the turbulent/non-turbulent interface in jets. Gualtieri & Meneveau (2010)
studied the joint p.d.f.s of Q and R for isotropic turbulence subjected to a straining and
destraining cycle and revealed the features of non-equilibrium turbulence. Bijlard et al.
(2010) investigated the local flow topology in a particle-laden turbulent channel flow
and analysed the effects of the particles on the flow field.

Compared to the extensive research into flow topology in incompressible turbulent
flows described above, the relevant study of compressible turbulence is limited.
Maekawa, Hiyama & Matsuo (1999) dealt with the scatter plots of the tensorial
invariants for decaying isotropic compressible turbulence and observed that topologies
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of unstable node/saddle/saddle and stable focal/stretching in the Q–R plane prevail
over other topologies for P > 0 and P < 0. Pirozzoli & Grasso (2004) studied the
effect of the initial compressibility on the flow topology in the plane of the second
(Q∗) and third (R∗) invariants of the anisotropic part of the velocity gradient tensor for
compressible isotropic turbulence. Lee et al. (2009) found that the strain-rate statistics
strongly depend on the normalized dilatation for decaying compressible turbulence.
Suman & Girimaji (2010) investigated the local flow topology in compressible
isotropic turbulence and analysed the effects of compressibility on the topology.
Moreover, Suman & Girimaji (2009) developed a model for describing velocity
gradient dynamics of an isentropic compressible turbulence and confirmed that the
joint p.d.f.s of Q and R are closely associated with P. In addition, some investigations
into the coherent vortical structures in compressible turbulent boundary layers have
been carried out experimentally (e.g. Smith & Smits 1995; Ganapathisubramani,
Clemens & Dolling 2006; Elsinga et al. 2010) and numerically (e.g. Pirozzoli, Grasso
& Gatski 2004; Pirozzoli, Bernardini & Grasso 2008; Ringuette, Wu & Martin 2008;
Pirozzoli, Bernardini & Grasso 2010b; Wang & Lu 2011). To our knowledge, however,
the relevant study of the behaviour of flow topology in compressible turbulent
boundary layer has never been performed.

In this paper, the statistical properties of compressible turbulent boundary layers
are investigated by means of direct numerical simulation (DNS) at Mach number
Ma = 2.0 and Reynolds number Reθ = 1350 based on the momentum thickness. The
characteristics of the invariants of the velocity gradient tensor are analysed and the
flow topologies are studied. The purpose of this study is to achieve an improved
understanding of some of the fundamental topological phenomena in this flow.

This paper is organized as follows. The mathematical formulation, numerical method
and computational validation are presented in § 2. The tensorial invariants and local
flow topologies are briefly described in § 3. Detailed results are then given in § 4 and
concluding remarks in § 5.

2. Computational strategy
2.1. Mathematical formulation and numerical method

The statistical properties of compressible turbulent boundary layers are studied by
means of DNS. The three-dimensional compressible Navier–Stokes equations are
employed. To non-dimensionalize the equations, we use the free-stream variables
including the density ρ∞, temperature T∞, speed of sound a∞ and the boundary
layer thickness at the inlet δ0 as characteristic quantities.

The equations are numerically solved by a seventh-order weighted essentially non-
oscillatory scheme for the convective terms (Jiang & Shu 1996) and a sixth-order
central difference scheme for the viscous terms. The temporal integration is performed
using a fourth-order Runge–Kutta algorithm (Shu & Osher 1988). The relevant
numerical strategy has been verified to be reliable in the simulation of compressible
turbulent boundary layers (e.g. Pirozzoli et al. 2004, 2008).

In this study, initial and boundary conditions are presented as follows. The inflow
boundary condition for DNS of a turbulent boundary layer is treated using the
approach developed by Sandham, Yao & Lawal (2003) and subsequently extended
by Li & Coleman (2003) to supersonic flow. The approach has been extensively
tested in the literature (e.g. Li & Coleman 2003; Pirozzoli et al. 2008; Pirozzoli,
Bernardini & Grasso 2010a). The velocity profile is obtained from the formulation
prescribed by Guarini et al. (2000). The temperature profile is initialized using the
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Crocco–Busemann integral (White 1974). The velocity disturbances at the inlet are
determined and the random velocity fluctuations with a maximum amplitude 4 % of
the free-stream velocity are added to the velocity components based on previous
studies (Li & Coleman 2003; Pirozzoli et al. 2008, 2010b). A sponge layer is placed
before the outlet boundary where variables are extrapolated from the interior (Adams
1998). No-slip and adiabatic conditions are applied on the wall. In order to minimize
the reflection of small disturbances back into the computational domain, non-reflecting
boundary conditions are specified at the upper boundary. Periodic conditions are used
in the spanwise direction to exploit homogeneity. These mean inflow quantities are
imposed as initial conditions throughout the computational domain.

2.2. Computational overview and validation
We consider a supersonic turbulent boundary layer with the free-stream Mach number
Ma = 2 and Reynolds number Reδ0 = 13 500 based on the free-stream parameters and
the boundary layer thickness at the inlet (δ0). The selected computational parameters
are the same as those performed by Pirozzoli et al. (2008). The relevant data will thus
be employed to validate the present calculation.

The computational domain size and grid resolution have been carefully tested in
terms of our extensive grid sensitivity studies. The computational domain is finally
chosen as Lx × Ly × Lz = 30δ0 × 6δ0 × 3.7δ0 with the corresponding grid point
1819 × 331 × 225, where x, y and z represent the streamwise, wall-normal and
spanwise directions, respectively. The mesh is uniformly distributed in the streamwise
and spanwise directions, and the grid is stretched by a hyperbolic tangent mapping
function in the wall-normal direction. Wall units are defined in terms of the friction
velocity uτ = (τw/ρw)

1/2 and the viscous length scale δv = νw/uτ evaluated at the
wall. In terms of the wall units, the streamwise and spanwise grid spacings are
1x+ = 1z+ = 4.62, and the wall-normal grid spacing varies from 1y+ = 0.9 at the
wall to 1y+ = 4.1 at the boundary layer edge with more than 200 grid points within
the boundary layer. Moreover, to clearly present the postprocessing, some symbols
used in this paper are described as follows. The symbol 〈〉 means the average in
time and in space along the streamwise and spanwise directions. The instantaneous
flow field variables are decomposed using either a Reynolds decomposition f = f̄ + f ′,
where the overbar represents the average in time and in space along the spanwise
direction.

To justify the choice of the spanwise computational domain extent, the two-point
correlations of flow variables in the spanwise direction are examined using the
definition of Pirozzoli et al. (2004). Figure 1 shows typical two-point correlations
Rαα(rz) in the spanwise direction or z direction, where α represents the fluctuations of
any one of the velocity components ui (or u, v and w in the x, y and z directions). The
correlations decay rapidly, which means that the two-point correlations are sufficiently
decorrelated over the spanwise extent. Thus it ensures that the spanwise computational
domain is sufficiently wide not to inhibit the turbulence dynamics.

To validate the present simulation, we compare the calculated results with previous
data in terms of the mean velocity, Reynolds stress and root-mean-square (r.m.s.)
vorticity components. The distribution of the van Driest transformed mean streamwise
velocity is shown in figure 2(a). It is demonstrated that the result is in agreement
with the previous DNS data (Pirozzoli et al. 2008). Moreover, the linear scaling in the
viscous sublayer and the logarithmic scaling in the overlap region (Smits & Dussauge
2006) are also plotted, and the present result is consistent with them. Further, the
density-scaled Reynolds-stress components are shown in figure 2(b) and agree well
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FIGURE 1. Distributions of the two-point correlations of the velocity components in the
spanwise direction at (a) y+ = 4, and (b) y+ = 65.
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FIGURE 2. Comparisons of the calculated results with previous data. (a) The van Driest
transformed mean streamwise velocity Uvd =

∫ ū
0 (ρ̄/ρ̄w)

1/2 dū with linear scaling and
logarithmic scaling lines (Smits & Dussauge 2006). (b) The density-scaled Reynolds stress
components Rij = (ρ̄/ρ̄w)ũ′′i u′′j in inner scaling, where the tilde means f̃ = ρf /ρ̄ with a
decomposition f = f̃ + f ′′. (c) Rij in outer scaling with experimental data (Eléna & Lacharme

1988). (d) The r.m.s. vorticity components Ωi = (ω′i2
)

1/2
at x/δ0 = 25. Open symbols denote

the previous DNS data (Pirozzoli et al. 2008) and solid symbols denote experimental data at
Ma= 2.32 and Reθ = 4700 (Eléna & Lacharme 1988).

with the DNS data (Pirozzoli et al. 2008). To further assess the global behaviour of the
boundary layer, the Reynolds stresses of experimental data of a supersonic boundary
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layer (Eléna & Lacharme 1988) are also given in figure 2(c) to validate the quality of
the present simulation. In addition, the distributions of the r.m.s. vorticity components
are shown in figure 2(d). The spanwise vorticity fluctuation is obviously larger than
either the streamwise or the wall-normal fluctuation in the near-wall region, consistent
with the findings of Klewicki & Panton (1997). It is also seen that the calculated
results agree well with those obtained by Pirozzoli et al. (2008). Essentially, we have
carefully examined the physical model and numerical approach used in this study, and
have verified that the calculated results are reliable.

The present code is equipped with a multi-block domain decomposition feature to
facilitate parallel processing in a distributed computing environment. At the selected
flow condition, a fully developed turbulent state is reached from x/δ0 = 15. In order
to study the statistical properties of the turbulent boundary layer, we used 800 flow
samples (equal intervals in time) over approximately 40 non-dimensional time units
(δ0/a∞). The samples are collected in a small portion of the boundary layer where the
momentum thickness Reynolds number Reθ varies between 1340 and 1370. Because
of the small variation of Reθ , the growth of the boundary layer is negligible and all
statistical properties are regarded to be functions only of the wall-normal coordinate
(Elsinga & Marusic 2010a; Pirozzoli et al. 2010b). The frictional Reynolds number
is determined to be Reτ = 330. We do in fact recognize the slight differences in the
statistics in the streamwise direction due to the small variation of Reθ ; nevertheless,
we feel that the results obtained will be reliable and helpful in the analysis of the
statistical properties.

Based on the mean velocity profile in figure 2(a), the boundary layer is then
classified into four regions by means of the standard terminology: viscous sublayer
(0 < y+ < 7), buffer layer (7 < y+ < 40), logarithmic layer (40 < y+ < 140) and wake
region (140 < y+ < 300). The sublayer and buffer layer are usually referred to as the
‘inner layer’ and the logarithmic layer and wake region as the ‘outer layer’ (Pirozzoli
et al. 2008).

We have assessed the appropriateness of the spatial resolution used in this study and
have also observed that statistical quantities of the invariants of the velocity gradient
tensor vary sharply in the proximity of the wall. To obtain meaningful statistical
results, we have calculated the invariants using 800 flow samples. Based on numerical
examinations, we can trust the results in the proximity of the wall. The results will be
shown from y+ > 2.6, which corresponds to the fourth grid-node in the wall-normal
direction, or from y+ = 1 in the logarithmic scaling.

3. Invariants and local flow topology
3.1. Definitions of the invariants

The eigenvalues Λi of the velocity gradient tensor A with components Aij = ∂ui/∂xj are
obtained as solutions of the characteristic equation

Λ3
i + PΛ2

i + QΛi + R= 0, (3.1)

where P, Q and R are the first, second and third invariants of A, defined by

P=−tr(A)=−Sii =−θ, (3.2a)
Q= 1

2([tr(A)]2−tr(A2))= 1
2(P

2 − SijSji −WijWji), (3.2b)

R=−det(A)= 1
3(−P3 + 3PQ− SijSjkSki − 3WijWjkSki), (3.2c)
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(a) (b) (c)

FIGURE 3. The topological classification in the Q–R plane for (a) P= 0, (b) P> 0, and (c)
P< 0. The topologies and corresponding acronyms are listed in table 1.

where Sij = (Aij + Aji)/2 is the symmetric strain-rate tensor; Wij = (Aij − Aji)/2 is the
skew-symmetric rotation-rate tensor. The invariants of Sij and Wij are then given by

PS = P=−Sii, QS = 1
2(P

2
S − SijSji), RS = 1

3(−P3
S + 3PSQS − SijSjkSki), (3.3)

PW = 0, QW =− 1
2 WijWji, RW = 0. (3.4)

Thus, we can obtain

Q= QS + QW , R= RS −WijWjkSki = RS − 1
4ωiSijωj. (3.5)

Note that QW is positive definite and QS is negative definite.

3.2. Topology in P–Q–R space
The flow topology of turbulent flow can be analysed in P–Q–R space using critical
point terminology (Perry & Chong 1987; Chong et al. 1990). The surface 1 = 0
divides the space into two regions, where 1 is the discriminant of (3.1) and is defined
by

1= 27
4 R2 + (P3 − 9

2 PQ)R+ (Q3 − 1
4 P2Q2). (3.6)

In the region 1 > 0, A has one real and two complex-conjugate eigenvalues, while in
the region 1< 0, A has three real, distinct eigenvalues. The surface 1= 0 can be split
into two surfaces r1a and r1b, which osculate to form a cusp and are given by

1
3 P(Q− 2

9 P2)− 2
27 (−3Q+ P2)

3/2−R= 0, (3.7a)
1
3 P(Q− 2

9 P2)+ 2
27 (−3Q+ P2)

3/2−R= 0. (3.7b)

Further, in the region 1 > 0, A has purely imaginary eigenvalues on the surface r2,
which is described by

PQ− R= 0. (3.8)

Moreover, the flow pattern is two-dimensional on the surface R = 0 (Chong et al.
1990). Thus, the surfaces r1a, r1b, r2 and R = 0 divide P–Q–R space into different
regions, and each of these regions corresponds to a topology.

It is convenient to investigate the flow topology in the Q–R plane for a selected
value of P (Suman & Girimaji 2010). Then, the surfaces r1a, r1b, r2 and R = 0 appear
simply as the corresponding curves, which divide the Q–R plane into various regions.
For P = 0, the curve r2 is coincident with the Q axis, and the curves r1a and r1b are
symmetric to each other with respect to the Q axis. Then four topologies are identified,
which are schematically exhibited in figure 3(a). For P 6= 0, as shown in figure 3(b,c),
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Sector Acronym Description

S1 UFC Unstable focus/compressing
S2 UN/S/S Unstable node/saddle/saddle
S3 SN/S/S Stable node/saddle/saddle
S4 SFS Stable focus/stretching
S5 SFC Stable focus/compressing
S6 SN/SN/SN Stable node/stable node/stable node
S7 UFS Unstable focus/stretching
S8 UN/UN/UN Unstable node/unstable node/unstable node

TABLE 1. Summary of the acronyms of various flow topologies in P–Q–R space.
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FIGURE 4. Transverse distributions of the mean invariants and the relevant quantity. The
shaded and white areas differentiate the viscous sublayer, buffer layer, logarithmic layer and
wake region.

r2 intersects with the curve r1b for P> 0 and with the curve r1a for P< 0 at Q= 0 and
R = 0. Consequently, the Q–R plane is divided into six regions for P > 0 and P < 0,
respectively. The topologies and corresponding acronyms are listed in table 1.

4. Results and discussion
4.1. Statistical properties of the invariants

4.1.1. Mean invariants
We first investigate the properties of some invariants in the viscous sublayer, buffer

layer, logarithmic layer and wake region of the boundary layer. Note that, to reveal
the effect of the mean shear on the statistical properties, the invariants are calculated
using the velocity gradient without subtracting the gradient of the mean velocity
components. The distributions of the mean invariants along the wall-normal direction
are shown in figure 4. It is seen from figure 4(a) that 〈QW 〉, which represents the
enstrophy physically, attains a large value in the sublayer and then decreases with the
increase in y+. 〈QS〉 measures the local dissipation per unit viscosity, and its change
is opposite to 〈QW 〉 with 〈Q〉 = 〈QW 〉 + 〈QS〉 approaching zero across the boundary
layer. Moreover, ωiSijωj represents the enstrophy production rate and RS the dissipation
production rate occurring in the dissipation evolution (Tsinober 2000; Chevillard et al.
2008). As shown in figure 4(b), 〈ωiSijωj〉/4 increases to a peak in the sublayer and
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then decreases with y+. 〈RS〉 exhibits an approximately similar profile with 〈ωiSijωj〉/4
and 〈R〉 = 〈RS〉 − 〈ωiSijωj〉/4 is nearly zero in the boundary layer.

From the distributions of the invariants in figure 4, it is observed that on average
the viscous sublayer is a relatively high-enstrophy, high-dissipation region with large
enstrophy production and large dissipation production. This statistical feature confirms
the finding that the high-strain/high-enstrophy regions are the most important ones for
the strain and vorticity production processes based on an experimental investigation
of Lagrangian correlations of small-scale turbulence (Guala et al. 2007). Further,
figure 4(b) shows that 〈ωiSijωj〉 is positive in the boundary layer, which is consistent
with the fact that enstrophy production (vortex stretching) prevails over enstrophy
destruction (vortex compression) (Taylor 1938). Moreover, the positive 〈RS〉 is related
to the self-amplification of velocity derivatives (Galanti & Tsinober 2000).

4.1.2. Joint p.d.f. of the invariants
The statistical characteristics of the invariants are further studied in terms of

their joint probability density function (p.d.f.). Owing to the complexity of three-
dimensional joint p.d.f.s in P–Q–R space, it is convenient to exhibit the flow topology
in the Q–R plane for selected values of P (Suman & Girimaji 2009, 2010). Here, we
choose three typical values of P, i.e. −3, 0 and 3, to analyse the joint p.d.f.s in the
Q–R plane as shown in figure 5, where the invariants P, Q and R are normalized
by 〈QW 〉1/2, 〈QW 〉 and 〈QW 〉3/2, respectively (Ooi et al. 1999). It is seen that the
contours of the joint p.d.f.s for P = 0 exhibit self-similar teardrop shapes around the
origin, which have widely been observed for turbulent flows numerically (Soria et al.
1994; Blackburn et al. 1996; Chong et al. 1998; Ooi et al. 1999; Pirozzoli & Grasso
2004; Suman & Girimaji 2010) and experimentally (Gulitski et al. 2007; Tsinober
2009; Elsinga & Marusic 2010a). In the viscous sublayer, where the mean shear is
high, the shapes of the contours are very similar to the stratified homogeneous sheared
turbulence with high shear (Diamessis & Nomura 2000; Nomura & Diamessis 2000).

Further, the contours of the joint p.d.f.s for P = 3 also illustrate the self-similar
shapes in figure 5. Compared with the p.d.f.s for P = 0, it is observed that the shapes
become more symmetric; more points tend to be stable topologies (S3, S4 and S5)
while fewer points tend to be unstable topologies (S1 and S2). It means that the locally
compressed region is favourable to the stable topologies. On the contrary, the contours
of the joint p.d.f.s for P = −3 exhibit more skewed shapes with respect to those
for P = 0, indicating that the locally expanding region is favourable to the unstable
topologies.

The turbulent flow behaviour is analysed based on the local flow topology in the
Q–R plane. As Q = QW + QS and R = RS − ωiSijωj/4, we can understand that Q
represents the competition between enstrophy and dissipation, and R the competition
between enstrophy production and dissipation production. The enstrophy production
in S4:SFS is usually positive and large (Tsinober 2000). The more symmetric shapes
of the joint p.d.f.s for P = 3 reflect that the enstrophy production is less prevalent
in locally compressed regions, and the more skewed shapes of the joint p.d.f.s for
P = −3 indicate that the enstrophy production is more prevalent in locally expanding
flows. These statistical features can be explained by means of the enstrophy transport
equation (Kida & Orszag 1990). As the mean flow is compressed (i.e. 〈θ〉 < 0, where
θ = ∂ui/∂xi), the dilatation term −〈θωiωi〉/2 acts to enhance the enstrophy. In a
statistical steady state, the enstrophy production term 〈ωiSijωj〉 must be decreased to
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FIGURE 5. Joint p.d.f.s of Q and R on a logarithmic scale in the viscous sublayer (a–c),
buffer layer (d–f ), logarithmic layer (g–i) and wake region (j–l). (a,d,g,j) P = 0, (b,e,h,k)
P = 3, and (c,f,i,l) P = −3. The outer contour level is −3 and the inner contour level is 0.
The separation between successive contour levels is 0.5. The same contour levels are used in
figures for the joint p.d.f.s.

maintain the enstrophy in equilibrium (Guala et al. 2007). On the other hand, as the
mean flow is expanding (〈θ〉 > 0), the enstrophy production term 〈ωiSijωj〉 must be
increased to maintain the enstrophy in equilibrium.
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FIGURE 6. Occurrence probabilities of the various topologies in the boundary layer: (a)
constructed from the whole region, (b) constructed from the region |P| < 0.001, (c)
constructed from the region P> 0, (d) constructed from the region P< 0.

4.2. Flow topology and the relevant feature

In order to quantitatively characterize the statistical properties in P–Q–R space, the
occurrence probabilities of the flow topologies (S1–S8) are studied. As the mesh
is uniformly distributed in the streamwise and spanwise directions, the occurrence
probability is equivalent to the volume fraction. To clarify the compressibility effect,
the occurrence probabilities are analysed for the P > 0 (or compressed) and P < 0
(or expanding) regions, respectively. For comparison, the relative volume fractions of
the flow topologies in the ‘incompressible’ region with P around zero are discussed.
Moreover, the geometric characteristics of the focal topologies are further investigated.

4.2.1. Occurrence probability of the topology
The occurrence probabilities of the various topologies are shown in figure 6(a). It

is seen that the probabilities change markedly along y+ in the inner layer where the
mean shear is high, and attain nearly constant values in the outer layer where the
mean shear becomes low. The most probable topology is S1:UFC in the inner layer
and is S2:UN/S/S in the outer layer. Furthermore, S4:SFS is the second most probable
topology in the boundary layer. Compared with the compressible additional topologies,
S7:UFS is more likely to occur than S5:SFC, and the occurrence probabilities of
S6:SN/SN/SN and S8:UN/UN/UN are nearly zero due to the weak compressibility.
Moreover, it is observed from figure 6(a) that the unstable topologies (S1, S2 and S7)
prevail over the stable topologies (S3, S4 and S5). This statistical property can also be
elucidated from figure 7(a). It is seen that the mean flow tends to be expanding, while
expansion means outward flow and is defined to as unstable.
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FIGURE 7. (a) Transverse distributions of the volume fraction of P> 0 and P< 0.
(b) Probability density function of the dilatation at four wall-normal locations.

The occurrence probabilities of the topologies in the ‘incompressible’ region are
obtained using conditional statistics upon zero dilatation or |P| < ε, where ε is a
threshold value. To obtain meaningful results in the ‘incompressible’ region, we have
chosen ε = 0.001 based on our examinations. It must be understood that, even though
the selection of ε may be somewhat arbitrary, the relative statistical results for |P|< ε
are nearly unchanged as long as the sample number is sufficiently large. As shown in
figure 6(b), S4 is most likely to occur and S1 is the second most probable topology.
In the outer layer, the probabilities are nearly unchanged along y+ and are consistent
with those for incompressible turbulence (Buxton & Ganapathisubramani 2010) and for
compressible isotropic turbulence conditional upon zero dilatation (Suman & Girimaji
2010). The probabilities also reveal that focal topologies (S1 and S4) prevail over
non-focal topologies (Pirozzoli & Grasso 2004).

From figure 6(a,b), we can see that compressibility obviously influences the flow
topology, even though the turbulent Mach number is less than 0.3 and some flow
statistical quantities are similar to the incompressible cases (e.g. Spina, Smits &
Robinson 1994; Pirozzoli et al. 2008; Ringuette et al. 2008; Duan, Beekman & Martin
2011). The most probable topology changes from S4 for incompressible flow to S1 in
the inner layer and to S2 in the outer layer for compressible flow. Thus, the effect of
compressibility restrains the occurrence of S4 and results in more unstable flow.

As illustrated in figures 3 and 5, the topological features of compressible turbulence
depend on the first invariant P. To distinguish the effect of P> 0 (or θ < 0) and P< 0
(or θ > 0), we consider the occurrence probabilities of the topologies constructed
from the regions P > 0 (compressed) and P < 0 (expanding), respectively. For P > 0,
figure 6(c) shows that S4 remains the most probable topology in the boundary layer,
and S1 becomes less frequent compared with the ‘incompressible’ region. Analogously,
figure 6(d) shows the occurrence probabilities for P < 0. Compared with the results
for P > 0, the probability of S4 is decreased significantly and the probability of S2
is increased. Moreover, S1 prevails over the other topologies in the inner layer and
S2 over the other ones in the outer layer. It is also seen that the unstable topologies
(S1, S2 and S7) are more likely to occur than the stable topologies (S3, S4 and S5)
for P < 0. In addition, for both P > 0 and P < 0, the occurrence probabilities of S6
and S8 nearly vanish. Therefore, the locally compressed region tends to restrain the
occurrence of S1:UFC (unstable focus/compressing) and the locally expanding region
to restrain the occurrence of S4:SFS (stable focus/stretching).
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To compare with the compressed and expanding effects, figure 7(a) shows the
transverse distributions of the volume fraction for the regions P > 0 and P < 0. It
is seen that the compressed and expanding regions are approximately equivalent for
y+ > 40, while the expansion is more frequent than the compression around y+ = 10.
This statistical feature is related to the density variation close to the wall. Moreover,
the occurrence probabilities of the various topologies in figure 6(a) can be obtained
by combining the results of P > 0 and P < 0. Consequently, the probabilities in the
inner layer in figure 6(a) are similar to those in figure 6(d). The p.d.f.s of P are
further examined and exhibited in figure 7(b). It is seen that the tail at y+ = 10 is more
skewed to the P < 0 domain, consistent with the behaviour of the volume fraction in
figure 7(a).

4.2.2. Geometric characteristics of the focal topologies
The topological classification in the plane of invariants provides additional geometric

information on the vortical structures. Using critical point theory, Chong et al. (1990)
defined a vortex core to be the region where 1> 0. Consequently, the focal topologies
(i.e. S1, S4, S5 and S7) correspond to various vortical structures, and are described
as follows: S1:UFC corresponds to a vortex undergoing radial expansion and axial
compression, S4:SFS a vortex undergoing radial contraction and axial stretching,
S5:SFC a vortex contracting in both radial and axial directions, and S7:UFS a vortex
expanding in both radial and axial directions (Suman & Girimaji 2010).

From the preceding analysis of the results in figure 6, it is clear that the vortical
structures are most likely to undergo radial expansion and axial compression in the
inner layer and to undergo radial contraction and axial stretching in the outer layer.
Moreover, the incompressible region is most likely occupied by the vortical structures
subjected to radial contraction and axial stretching. In the locally compressed region,
the occurrence probability of radial expanding and axial compressed vortical structures
is decreased significantly. In the locally expanding region, the occurrence probability
of radial contracting and axial stretching vortical structures is decreased considerably,
and therefore the vortical structures in the outer layer are more likely to undergo
expansion in both radial and axial directions.

Further, we use the Q criterion (Hunt, Wray & Moin 1988) to identify the vortical
structures. Figure 8(a) shows the instantaneous iso-surface of Q for the regions with
focal topologies in the outer layer. It is seen that the S4:SFS regions are compact
and occupy most of the focal volume, consistent with the occurrence probabilities in
figure 6(a). To clearly exhibit the relevant vortical structures, as shown in figure 8(b),
the S4:SFS and S7:UFS regions resemble tube-like structures and are in general
elongated. The S7:UFS structures are mainly observed in the regions where the
S4:SFS structure bends or in the regions where two S4:SFS structures join. It
means that the compressibility obviously influences the geometric characteristics of the
vortical structures, even though the compressible turbulent boundary layers apparently
exhibit vortical structures similar to those of the incompressible case (e.g. Smith &
Smits 1995; Ganapathisubramani et al. 2006; Ringuette et al. 2008; Pirozzoli et al.
2008; Elsinga & Marusic 2010a). Moreover, as shown in figure 8(c), the S1:UFC
and S5:SFC regions resemble blob-like structures and are stretched into ramp-shaped
structures by the mean shear and small-scale turbulent motions (Girimaji & Pope 1990;
Yang & Pullin 2011). Thus we can understand why the stretching focal regions tend
to form tube-like structures and the compressed focal regions tend to form blob-like
structures.
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FIGURE 8. Iso-surface of Q = 10 used to visualize focal structures in the outer layer. In
(a), the red iso-surface represents flow regions with S1:UFC topology, the yellow iso-surface
S4:SFS topology, the blue iso-surface S5:SFC topology, and the green iso-surface S7:UFS
topology. For a clear illustration, the S4:SFS and S7:UFS structures are redrawn in (b), and
the S1:UFC and S5:SFC structures in (c).

4.3. Invariants of the topology

We further study the conditional average invariants of the various topologies. To
distinguish the effects of compressibility, the conditional statistical results are
constructed from the regions P > 0 and P < 0, respectively. For comparison, the
invariants in the ‘incompressible’ region determined by the approach in § 4.2.1 are also
analysed. All the conditional average invariants are normalized by the corresponding
mean values in figure 4. As the occurrence probabilities of S6 and S8 are small, we
only consider the topologies S1, S2, S3, S4, S5 and S7. Moreover, recall that 〈RS〉 = 0
and 〈ωiSijωj〉 = 0 at the wall, and 〈QW 〉 and 〈QS〉 approach zero in the wake region.
Thus, the characteristics of the invariants are mainly investigated in 0< y+ < 100.

4.3.1. QS and QW

Figure 9 shows the conditional average dissipation of the topologies constructed
from different regions relevant to the compressibility. From figure 9(a), for the
whole region consisting of the ‘incompressible’, compressed and expanding regions,
the dissipation of the unstable node/saddle/saddle (S2) topology is the largest one,
indicating that the dissipation is closely related to the unstable strain-dominated region.
Moreover, S1, S4 and S7 are responsible for a major proportion of dissipation, while
S5 only accounts for a small proportion of dissipation. Thus, both the focal and
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FIGURE 9. Conditional average dissipation of the various topologies in the boundary layer:
(a) constructed from the whole region, (b) constructed from the region |P| < 0.001, (c)
constructed from the region P> 0, and (d) constructed from the region P< 0.

non-focal topologies play an important role in the dissipation in compressible turbulent
boundary layers, consistent with compressible isotropic turbulence (Pirozzoli & Grasso
2004). As shown in figure 9(b) for the ‘incompressible’ region, S2 remains the most
important topology for the dissipation. Compared with the results in figure 9(a,b),
the dissipation of S1 and S4 increases slightly and the dissipation of S3 decreases.
Further, as exhibited in figure 9(c,d) for the compressed and expanding regions, the
dissipation of S2 remains higher than that of the other topologies. The dissipation of
S1 is increased in the locally compressed region and the dissipation of S4 is increased
in the locally expanding region. Moreover, the change of the dissipation versus y+ also
reflects the influence of the mean shear on the statistical properties of the topologies.

The conditional average enstrophy of the various topologies is shown in figure 10.
From figure 10(a), the enstrophy of S7 is the highest one for the whole region.
Moreover, the enstrophy of S4 and S5 is also high and the enstrophy of S1 is
moderate, while the enstrophy of S2 and S3 is low. Thus, we obtain that the enstrophy
mainly comes from the focal topologies (S1, S4, S5 and S7). For the ‘incompressible’
region, figure 10(b) shows that S4 is responsible for the largest proportion of the
enstrophy, which is obviously different from that in figure 10(a). For the compressed
and expanding regions, figure 10(c,d) indicates that the enstrophy of S1 is decreased in
the locally compressed region and the enstrophy of S4 is significantly decreased in the
locally expanding region. Physically, the enstrophy reflects the rotation strength of the
fluid element. As the mean shear is high in the near-wall region, the rotation energy
mostly originates from the high mean shear, and therefore the values of the conditional
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FIGURE 10. Conditional average enstrophy of the various topologies in the boundary layer.
For other details see figure 9.

average enstrophy for all topologies are reasonably close to 1 in figure 10. This is also
the reason why 〈Qs〉f is close to 1 for all the topologies in figure 9.

4.3.2. RS and ωiSijωj

The conditional average productions of enstrophy and dissipation are further
investigated. Figure 11 shows the conditional average dissipation production rates
of the various topologies. It is seen that S2 is the most important topology for the
dissipation production for all the regions. As shown in figure 11(a), the dissipation
production rates of the non-focal topologies (S2 and S3) are larger than those of
the focal topologies (S1, S4, S5 and S7) in the inner layer, and the dissipation
production rates of S1, S4 and S7 are similar to each other in the outer layer. It is
also noticed that the average dissipation production of S5 is negative in the inner layer
and approaches zero in the outer layer. Thus, we learn that the focal topologies is
not as important for the strain production as the non-focal topologies. Compared with
figure 11(b–d), the compressed region tends to increase the dissipation production of
S1, and the expanding region tends to increase the dissipation production of S4 in the
inner layer.

Figure 12 shows the conditional average enstrophy production rates of the various
topologies. The enstrophy production in figure 12(a) mainly comes from S2 in the
inner layer and from S7 in the outer layer. In addition, S4 also contributes a major
proportion of the enstrophy production and S1 accounts for a small proportion of
the enstrophy production in the outer layer. Furthermore, the enstrophy production
of S5 is negative in the boundary layer, indicating that vortex compressing prevails
over vortex stretching. As shown in figure 12(b) for the ‘incompressible’ region,
S2 remains the most important topology for the enstrophy production in the inner
layer and S4 is responsible for a large proportion of the enstrophy production in the
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FIGURE 13. Probability density function of the cosine of the alignment angle between ω
and e1 in the (a) viscous sublayer, (b) buffer layer, (c) logarithmic layer, and (d) wake
region. The solid lines represent the p.d.f.s constructed from the enstrophy-producing region
(ωiSijωj > 0) and the dashed lines the p.d.f.s constructed from the enstrophy-destroying region
(ωiSijωj < 0).

outer layer. The values of the conditional average enstrophy production rates in the
outer layer agree quantitatively with the results in incompressible isotropic turbulence
(Buxton & Ganapathisubramani 2010). To gain insight into the compressibility effect
on the enstrophy production, the enstrophy production rates for the compressed and
expanding regions are shown in figure 12(c,d). It is observed that the compressed
region tends to increase the enstrophy production of S1 and the expanding region
tends to increase the enstrophy production of S4 in the inner layer.

From figures 11 and 12, it is also obtained that the dissipation production is mainly
related to the strain-dominated region (S2) in the inner and outer layers, while the
enstrophy production is related to S2 in the inner layer and to S7 in the outer layer.
These statistical properties further confirm the findings reported by Tsinober (2000):
the enstrophy production requires strain and its interaction with vorticity, but the
dissipation production is in some sense less dependent on vorticity, even though it is
impossible without vorticity.

Furthermore, the enstrophy production is also related to the alignments between
the vorticity vector (ω) and the eigenvectors ei, which are shown in figures 13–15,
respectively. In the inner layer, ω is preferentially perpendicular to the most extensive
strain-rate eigenvector e1 and the compressive strain-rate eigenvector e3, and aligns
with the intermediate strain-rate eigenvector e2 for the enstrophy production (ωiSijωj >

0) and the enstrophy destruction (ωiSijωj < 0). In the outer layer, the alignment p.d.f.s
exhibit the difference for ωiSijωj > 0 and ωiSijωj < 0. From figure 13(c,d), a slight
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FIGURE 14. Probability density function of the cosine of the alignment angle between ω and
e2 in the (a) viscous sublayer, (b) buffer layer, (c) logarithmic layer, and (d) wake region. For
other details see figure 13.

tendency for ω to align with e1 is observed for ωiSijωj > 0, and the perpendicular
tendency between ω and e1 is obtained for ωiSijωj < 0, essentially consistent with
the previous finding (Buxton & Ganapathisubramani 2010). From figure 14(c,d), ω
tends to align with e2 for ωiSijωj > 0 and ωiSijωj < 0. The tendency for ω to align
with e2 is exaggerated in the enstrophy-producing region as opposed to the enstrophy-
destroying region. Further, from figure 15(c,d), ω tends to be perpendicular to e3 for
the enstrophy production and prefers to be inclined at an angle of approximately 45◦

with respect to e3 (the maximum of the p.d.f. occurring at |ω · e3|/|ω| ≈ 0.7) for
the enstrophy destruction due to the effect of the mean shear. Moreover, we have
observed that the predominant enstrophy production region occurs around 3/4 of the
fluid flow domain in the wake region, which is essentially similar to around 2/3 for
incompressible turbulence (Tsinober 2009). Thus, it is plausible that the perpendicular
tendency between ω and e3 is still predominant in the wake region.

Physically, the enstrophy production is essentially a nonlinear process of the
interaction between strain and vorticity (Tsinober 2009). In the inner layer, the
enstrophy production is strongly depressed in regions dominated by enstrophy as
compared to those dominated by strain (Tsinober, Ortenberg & Shtillman 1999).
Consequently, the conditional average enstrophy production rate of S2 is high in
figure 12. In the outer layer, as the mean shear is low, the statistical properties
are similar to the quasi-isotropic turbulence (Galanti & Tsinober 2000). The largest
contribution to the enstrophy production originates from the regions in which
the vorticity vector is aligned to a predominantly stretching eigenvector (Tsinober,
Shtilman & Vaisburd 1997; Tsinober 1998; Buxton & Ganapathisubramani 2010).
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5. Concluding remarks
The flow topologies and statistical properties of compressible turbulent boundary

layers at Mach 2 are studied in terms of the detailed analysis of the invariants of the
velocity gradient tensor. The main conclusions are briefly summarized as follows.

The statistical characteristics of the invariants in the viscous sublayer, buffer layer,
logarithmic layer and wake region of the boundary layer are analysed. It is revealed
that the viscous sublayer is a relatively high-enstrophy, high-dissipation region, and the
largest enstrophy production and largest dissipation production occur at approximately
y+ = 4. For a given value of the first invariant, the joint p.d.f.s of the second and third
invariants exhibit self-similar shapes in the boundary layer. Moreover, it is found that
the enstrophy production for the positive dilatation is usually larger than that for the
negative dilatation.

The occurrence probabilities of the various topologies are analysed for the
‘incompressible’, compressed and expanding regions, respectively. We find that the
compressible turbulent boundary layer is probably dominated by the vortical structures
undergoing radial expansion and axial compression in the inner layer and the unstable
strain-dominated structures in the outer layer. The locally compressed region tends
to be more stable and the locally expanding region tends to be more dissipative.
Further, it is revealed that the compressibility is mainly related to the radial expansion
and axial compression, as well as the radial contracting and axial stretching vortical
structures.

Based on the analysis of geometric characteristics of the focal topologies, it is
observed that the stretching focal regions tend to form tube-like structures and the
compressing focal regions tend to form blob-like structures. It is also found that the
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most probable vortical structures in the outer layer undergo radial contraction and
axial stretching for the whole region, and undergo expansion in both radial and axial
directions for the locally expanding region.

The conditional average dissipation, enstrophy, dissipation production and enstrophy
production of the various topologies are also investigated. It is found that the
dissipation and dissipation production mainly originate from UN/S/S topology. The
enstrophy relies mainly on UFS topology, and the enstrophy production depends
on UN/S/S topology in the inner layer and on UFS topology in the outer layer.
Compared with the ‘incompressible’ region, in the locally compressed region, the
average enstrophy of UFC is decreased, while the average dissipation, dissipation
production and enstrophy production of UFC are increased. In the locally expanding
region, the average enstrophy of SFS is decreased, while the average dissipation,
dissipation production and enstrophy production of SFS are increased.
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