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Topological evolution of compressible turbulent boundary layers at Mach 2 is
investigated by means of statistical analysis of the invariants of the velocity gradient
tensor based on the direct numerical simulation database. The probability density
functions of the rate of change of the invariants exhibit the −3 power-law distribution
in the region of large Lagrangian derivative of the invariants in the inner and outer
layers. The topological evolution is studied by conditional mean trajectories for the
evolution of the invariants. The trajectories illustrate inward-spiralling orbits around
and converging to the origin of the space of invariants in the outer layer, while
they are repelled by the vicinity of the origin and converge towards a limit cycle
in the inner layer. The compressibility effect on the mean topological evolution is
studied in terms of the ‘incompressible’, compressed and expanding regions. It is
found that the mean evolution of flow topologies is altered by the compressibility.
The evolution equations of the invariants are derived and the relevant dynamics of the
mean topological evolution are analysed. The compressibility effect is mainly related
to the pressure effect. The mutual-interaction terms among the invariants are the root
of the clockwise spiral behaviour of the local flow topology in the space of invariants.
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1. Introduction
The velocity gradient tensor (VGT) describes a variety of geometrical and statistical

phenomena of small-scale motions of turbulence, such as the alignment of vorticity
with respect to the strain-rate eigenvectors, rates of deformation and the shape of
fluid material volumes, energy cascades and intermittency (Meneveau 2011). The study
of velocity gradient dynamics is crucial to the understanding of the kinematics and
dynamics of turbulent motions (Frisch 1995; Sagaut & Cambon 2008; Tsinober 2009).
Moreover, the dynamics can be used to model the subgrid-scale stress tensor (Cantwell
1992; Chertkov, Pumir & Shraiman 1999; van der Bos et al. 2002; Wang et al. 2006;
Li et al. 2009).

Based on the topological approach proposed by Chong, Perry & Cantwell (1990),
the invariants of VGT can be employed to classify the local topology of any point in
the flow in terms of critical point theory (Perry & Chong 1987). This topological
methodology was first applied to the study of compressible and incompressible
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turbulent mixing layers (Chen et al. 1990). Then, the investigations of the statistical
properties in the invariants space have been performed mainly based on numerical
simulations (e.g. Soria et al. 1994; Blackburn, Mansour & Cantwell 1996; Chong
et al. 1998; Wang & Lu 2012). Moreover, few experiments have been performed to
deal with the behaviours of the invariants of the VGT in incompressible turbulent
boundary layers (Andreopoulos & Honkan 2001; Elsinga & Marusic 2010). We should
indicate that the reason for the lack of experimental studies is because of the difficulty
associated with measuring the VGT with sufficient precision and spatial resolution.
Recently, the accuracy of tomographic particle image velocimetry for measurements of
the turbulent boundary layer has been investigated by Atkinson et al. (2011). As the
smallest resolvable structures estimated by the experiment are larger than the smallest
expected coherent structures, the spatial derivatives of the velocity field measured in
the turbulent boundary layer cannot be accurately obtained for the temporal evolution
of these quantities as considered in this study. Thus, the most accurate method, such as
direct numerical simulation (DNS), is the most reliable avenue to study the evolution
of the topology of the turbulent boundary layer.

The dynamical behaviour of the VGT is of fundamental importance in turbulent
flow. Thus, the Lagrangian evolution of the invariants of the VGT has been studied
using conditional mean trajectories (CMTs). Martı́n et al. (1998) and Ooi et al. (1999)
investigated the evolution of flow topology of incompressible homogeneous isotropic
turbulence using the CMTs in the plane of the second (Q) and third (R) invariants
(i.e. the Q–R plane), in which the fluid particles were observed to exhibit a clockwise
spiral with a stable focus at the origin. Chacin & Cantwell (2000) examined the
Lagrangian behaviour of the invariants for a low-Reynolds-number turbulent boundary
layer by keeping track of the evolution of these scalars in the Q–R plane. For most
regions of the boundary layer, the fluid particles were observed to move towards
the origin following asymptotes without the spiralling pattern, which was observed
in homogeneous isotropic turbulence. The only exception to this behaviour was in
the viscous sublayer, but the spiralling did not show asymptotic behaviour. The
CMTs for higher-Reynolds-number incompressible turbulent boundary layers have
been investigated (Bermejo-Moreno et al. 2010; Elsinga & Marusic 2010; Mizuno,
Atkinson & Soria 2011; Atkinson et al. 2012). The trajectories in the outer region
reveal inward-spiralling orbits around the origin and converging to the origin (Elsinga
& Marusic 2010). In the buffer layer, the trajectories are repelled by the vicinity
of the origin, and converge towards a limit cycle (Mizuno et al. 2011). The mean
Lagrangian evolution of a turbulent boundary layer at momentum-thickness Reynolds
number Reθ = 730–1954 has been investigated by Atkinson et al. (2012) using data
from a DNS performed by Wu & Moin (2010). They found that the CMTs for strong
gradients in the regions of the boundary layer pass around a focus at the origin and
asymptote towards the right-hand side of a saddle point located near the right-hand
side of the line dividing unstable focal and unstable nodal structures. Closer to the
origin with weaker gradients, the CMTs follow an almost periodic clockwise spiralling
evolution. In addition, Lüthi, Holzner & Tsinober (2009) expanded the Q–R plane to
three dimensions by the decomposition of R into its strain production and enstrophy
production terms and observed that the non-locality plays an important role in the
evolution of the velocity gradients.

As the structures of the invariants are associated with geometrical features of
small-scale motions, the modelling equations for representing the evolution of the
invariants have been developed in an attempt to simulate and study the characteristics
of coherent structures in turbulence. Restricted Euler (RE) dynamics has been obtained
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by neglecting viscous diffusion and the anisotropic effect of pressure, but involves
unphysical finite-time singularities (Vieillefosse 1982; Cantwell 1992). In order to
regularize the RE dynamics, a stochastic diffusion model with prescribed log-normal
dissipation was discussed by Girimaji & Pope (1990). Also a linear damping model for
the viscous term was proposed by Martin et al. (1997). The recent fluid deformation
approximation has been proposed by Chevillard & Meneveau (2006) and can be
considered as a simplified version of the tetrad model (Chertkov et al. 1999) with
elements of the Lagrangian linear diffusion model (Jeong & Girimaji 2003).

Compared with the research into flow topology in incompressible turbulent flows
described above, the relevant study of compressible turbulence is limited. Chen et al.
(1990) investigated the flow topology in the QS–QW plane for compressible mixing
layers. Then, Pirozzoli & Grasso (2004) studied the effect of the initial compressibility
of compressible isotropic turbulence on the flow topology in the plane of the second
(Q∗) and third (R∗) invariants of the anisotropic part of the VGT. Lee, Girimaji &
Kerimo (2009) indicated that the effects of the pressure Hessian in the equation of
the VGT require different modelling approaches for compressible turbulence. Suman
& Girimaji (2009, 2010) developed a homogenized Euler equation for describing
turbulent velocity gradient dynamics of an isentropic compressible calorically perfect
gas. Then they also analysed the influence of Mach number and dilatation rate on
the velocity gradient dynamics in decaying compressible isotropic turbulence (Suman
& Girimaji 2012). Recently, the invariants of the VGT are investigated statistically
for compressible turbulent boundary layer at Mach 2 (Wang & Lu 2012). The
compressibility effect on the statistical properties of the topologies has been analysed
in terms of the ‘incompressible’, compressed and expanding regions. To the best of
the authors’ knowledge, however, the relevant study of the topological evolution in
compressible turbulent boundary layer has never been performed.

In this paper, the statistical properties of the compressible turbulent boundary
layer are investigated based on the DNS database (Wang & Lu 2012). The local
flow topological evolution and the relevant Lagrangian models are analysed in
terms of the invariants of the VGT. The purpose of this study is to achieve an
improved understanding of some of the fundamental topological evolution behaviours
in compressible turbulent boundary layers.

This paper is organized as follows. The DNS database is briefly described in § 2.
Lagrangian equations for the invariants of the VGT are derived in § 3. Detailed results
are discussed in § 4 and concluding remarks are finally addressed in § 5.

2. DNS database
To study topological evolution in a compressible turbulent boundary layer, we have

used the DNS database obtained in our previous work (Wang & Lu 2012) for
the present study. The relevant parameters are briefly described as follows. Here,
we investigate a supersonic turbulent boundary layer with the free-stream Mach
number Ma = 2 and Reynolds number Reδ0 = 13 500 based on the free-stream
parameters and the boundary-layer thickness at the inlet (δ0). A fully developed
turbulence is considered with the momentum-thickness Reynolds number region of
Reθ = 1280–1550. The corresponding friction Reynolds number Reτ varies from 300 to
360.

The equations are numerically solved by a seventh-order weighted essentially non-
oscillatory scheme for the convective terms (Jiang & Shu 1996) and a sixth-order
central difference scheme for the viscous terms. The temporal integration is performed
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using a fourth-order Runge–Kutta algorithm (Shu & Osher 1988). The relevant
numerical strategy has been verified to be reliable in the simulation of compressible
turbulent boundary layers (e.g. Pirozzoli, Grasso & Gatski 2004; Pirozzoli, Bernardini
& Grasso 2008). Detailed descriptions of the initial and boundary conditions have
been given in our previous paper (Wang & Lu 2012). Essentially, we have carefully
examined the physical model and numerical approach and have verified that the
calculated results are reliable by comparing the calculated results with previous data
in terms of the mean velocity, Reynolds stress and root-mean-square (r.m.s.) vorticity
components (Wang & Lu 2012).

Based on the mean velocity profile along the wall-normal direction y (Wang &
Lu 2012), the boundary layer is then classified into four regions by means of
the standard terminology (Pope 2000): viscous sublayer (0 < y+ < 7), buffer layer
(7 < y+ < 40), logarithmic layer (40 < y+ < 140) and defect layer (y+ > 140), where
the superscript ‘+’ denotes the quantities in wall units defined in terms of the friction
velocity uτ = (τw/ρw)

1/2 and the viscous length scale δυ = νw/uτ evaluated at the wall.
Moreover, the viscous sublayer and buffer layer are usually referred to as the ‘inner
layer’ and the logarithmic layer and defect layer as the ‘outer layer’ (Pirozzoli et al.
2008). The statistical quantities are obtained in terms of 1000 flow field samples
over ∼5δ0/uτ separated by 0.1δ0/U∞ after the flow reaches a statistically steady state,
where U∞ is the free-stream speed.

In addition, to examine the influence of Mach number, a complemental case
for compressible turbulent boundary layer at Mach 4.9, which was numerically
investigated by Duan, Beekman & Martı́n (2011), is also considered in this study.
The DNS database of compressible turbulent boundary layers at Ma = 4.9 with the
momentum thickness Reynolds number Reθ = 6600–6800 and frictional Reynolds
number Reτ = 380–415 was obtained and analysed in our recent work (Chu 2013).
We have essentially identified that the statistical properties of local flow topological
evolution are qualitatively similar for both of the Mach numbers. Unless otherwise
stated, the results presented in the paper correspond to Ma= 2.

To clearly present the post-process, some symbols used in this paper are introduced
as follows. The Reynolds average of a variable f in time and in space along the
streamwise (x) and spanwise (z) directions is denoted by f̄ , and the corresponding
fluctuation is defined as f ′ = f − f̄ . The subscript ‘rms’ denotes the r.m.s. value of the
relevant quantity.

3. Lagrangian equations of the invariants
3.1. Definitions of the invariants

The eigenvalues Λi of the VGT A with components Aij = ∂ui/∂xj are obtained as
solutions of the characteristic equation

Λ3
i + PΛ2

i + QΛi + R= 0, (3.1)

where P, Q and R are the first, second and third invariants of A, defined by

P=−tr(A)=−Sii =−ϑ, (3.2a)

Q= 1
2([tr(A)]2 − tr(A2))= 1

2(P
2 − SijSji −WijWji), (3.2b)

R=−det(A)= 1
3(−P3 + 3PQ− SijSjkSki − 3WijWjkSki), (3.2c)
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Sector Acronym Description

S1 UFC Unstable focus compressing
S2 UN/S/S Unstable node/saddle/saddle
S3 SN/S/S Stable node/saddle/saddle
S4 SFS Stable focus stretching
S5 SFC Stable focus compressing
S6 SN/SN/SN Stable node/stable node/stable node
S7 UFS Unstable focus stretching
S8 UN/UN/UN Unstable node/unstable node/unstable node

TABLE 1. Summary of the acronyms of various flow topologies in the P–Q–R space.

where ϑ represents the dilatation, Sij = (Aij + Aji)/2 is the symmetric strain-rate tensor
S and Wij = (Aij − Aji)/2 is the skew-symmetric rotation-rate tensor W . The invariants
of S and W are then given by

PS = P=−Sii, QS = 1
2(P

2
S − SijSji), RS = 1

3(−P3
S + 3PSQS − SijSjkSki), (3.3)

PW = 0, QW =− 1
2 WijWji, RW = 0. (3.4)

Thus, we can obtain

Q= QS + QW, R= RS − 1
4ωiSijωj, (3.5)

where ωi is vorticity. Note that QW is positive definite and QS is negative definite. The
discriminant of A is given by

∆= 27
4 R2 + (

P3 − 9
2 PQ

)
R+ (

Q3 − 1
4 P2Q2

)
. (3.6)

Further, the flow topology of turbulent flow can be investigated in P–Q–R space using
critical point terminology (Perry & Chong 1987; Chong et al. 1990). The surface
∆ = 0 divides the space into two regions. In the region ∆ > 0, A has one real and
two complex-conjugate eigenvalues; in the region ∆ < 0, A has three real, distinct
eigenvalues. The surface ∆ = 0 can be split into two surfaces r1a and r1b, which
osculate to form a cusp and are expressed by

1
3 P(Q− 2

9 P2)− 2
27(−3Q+ P2)

3/2 − R= 0, (3.7a)

1
3 P(Q− 2

9 P2)+ 2
27(−3Q+ P2)

3/2 − R= 0. (3.7b)

In the region ∆ > 0, A has purely imaginary eigenvalues on the surface r2, which is
described by

PQ− R= 0. (3.8)

Moreover, the flow pattern is two-dimensional on the surface R = 0 (Chong et al.
1990). Thus, the surfaces r1a, r1b, r2 and R = 0 divide the P–Q–R space into different
regions, and each of these regions corresponds to a topology. It is convenient to
analyse the flow topology in the Q–R plane for a selected value of P (Suman
& Girimaji 2010; Wang & Lu 2012). For P = 0, four topologies are identified
as schematically exhibited in figure 1(a). For P > 0 and P < 0, the Q–R plane is
divided into six regions and the corresponding topologies are shown in figure 1(b,c),
respectively. Furthermore, the description of the topologies and the corresponding
acronym are given in table 1.
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FIGURE 1. The topological classification in the Q–R plane for (a) P= 0, (b) P> 0 and (c)
P< 0. The topologies and corresponding acronyms are listed in table 1.

3.2. Evolution equations of the invariants
The time evolution of A following fluid particles can be obtained by taking the
gradient of the Navier–Stokes equations (e.g. Cantwell 1992; Martı́n et al. 1998; Ooi
et al. 1999; Meneveau 2011). The resulting equation reads

DAij

Dt
+ AikAkj =−Hij − Bij + Vij, (3.9)

where D/Dt denotes the Lagrangian material derivative, Bij, Vij and Hij represent the
baroclinic tensor, viscous tensor and pressure Hessian tensor, respectively, and are
defined by

Hij = 1
ρ

∂2p

∂xi∂xj
, Bij = 1

ρ2

∂p

∂xi

∂ρ

∂xj
, Vij = ∂

∂xj

[
1
ρ

(
∂σ ik

∂xk

)]
, (3.10)

and σ ik is the viscous stress tensor.
Based on the definitions of P, Q and R as well as (3.9), the evolution equations for

P, Q and R are derived as

DP

Dt
= (P2 − 2Q)+ tr(H)+ tr(B)− tr(V)= PS+ PH + PB+ PV, (3.11)

DQ

Dt
= (PQ− 3R)+ (Ptr(H)+ S :H)+ (P tr(B)+ (S −W ) : B)
− (P tr(V)+ (S −W ) : V)= QS+ QH + QB+ QV, (3.12)

and
DR

Dt
= PR+ (

P(S :H)+ Q tr(H)+ (S2 +W 2) :H)+ (P(S −W ) : B+ Q tr(B)

+ (S −W )2 : B)− (P(S−W ) : V + Q tr(V)+ (S −W )2 : V)
= RS+ RH + RB+ RV. (3.13)

The meanings of the terms in (3.11)–(3.13) are described as follows: PS, QS and
RS are the mutual-interaction terms among the invariants; PH, QH and RH are the
contributions due to the pressure Hessian; PB, QB and RB account for the baroclinic
effect; PV , QV and RV are the viscous effect. Note that the non-local part of the
pressure, i.e. the trace of the pressure Hessian, is expressed by not only the local
velocity gradients as given for incompressible flow, but also the time rate of change of
dilatation in (3.11). The pressure Hessian is therefore considered as a whole.
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The transport equation for the enstrophy (QW = ωiωi/4) is given by

DQW

Dt
= 2(S :W 2)− (W : B)+W : V =WS+WB+WV. (3.14)

The rate of dissipation of mechanical energy per unit mass of fluid (Batchelor 1967)
can be represented as

Φ = 2ν
(
SijSij − 1

3 P2
)=−4ν

(
QS − 1

3 P2
)
. (3.15)

Therefore, the dissipation rate of mechanical energy is proportional to QS−P2/3, under
the assumption of weak variation of the viscosity coefficient. The transport equation of
QS is given by

DQS

Dt
= (

P(P2 − 2Q)+ S : S2 + S :W 2
)+ (P tr(H)+ S :H)

+ (P tr(B)+ S : B)− (P tr(V)+ S : V)
= SS+ SH + SB+ SV. (3.16)

The corresponding terms in (3.14) and (3.16) have the following meanings (Pirozzoli
& Grasso 2004): WS is the vortex stretching; SS is the term related to the velocity
gradient in which P(P2 − 2Q) is the direct effect of compressibility and S : S2 is the
self-amplification of the strain-rate tensor; SH is the action of the pressure Hessian
tensor which is the same as the term QH in (3.12); WB and SB are the baroclinic
effects; WV and SV account for the viscous actions.

The dynamics of the invariants can be also investigated in a Lagrangian frame of
reference moving with a fluid particle by means of their material derivatives (Elsinga
& Marusic 2010),

DIv

Dt
= ∂Iv

∂t
+ u

∂Iv

∂x
+ v ∂Iv

∂y
+ w

∂Iv

∂z
, (3.17)

where Iv represents the invariants P, Q and R, respectively. Note that all of the terms
on the right-hand side depend only on the velocity field. Therefore, (3.17) can be
evaluated directly for the data and used to validate the calculations of the evolution
(3.11)–(3.13). In the present study, the temporal derivative in (3.17) is approximated by
a fourth-order central difference scheme, and all spatial derivatives are discretized by a
sixth-order central difference scheme.

4. Results and discussion
The statistical properties of the mean velocity gradient and fluctuating velocity

gradient are first investigated. Figure 2 shows the mean value of velocity gradient
and the r.m.s. value of fluctuating velocity gradient. It is seen that the r.m.s. value
of fluctuating velocity gradient is significantly larger than the mean value of velocity
gradient within the boundary layer, except for ∂u/∂y. As shown in figure 2(b), the
value of ∂u/∂y is larger than that of (∂u/∂y)′rms in the viscous sublayer, decays rapidly
in the buffer layer and becomes smaller than (∂u/∂y)′rms in the outer layer. These
characters indicate that the fluctuation in velocity gradient is significant relative to
the mean flow in the outside region of the viscous sublayer. Similar to the previous
investigations (e.g. Elsinga & Marusic 2010; Atkinson et al. 2012), the total velocity
gradient including the mean and fluctuating velocity gradient can only describe the
local flow topology of fluid particles in compressible turbulent boundary layers. Thus,
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FIGURE 2. Distributions of the mean velocity gradient and the r.m.s. value of the fluctuating
velocity gradient along the wall-normal direction. Here, u, v and w represent the streamwise,
wall-normal and spanwise velocity components, respectively.

the flow topological evolution in the following analysis is based on the invariants of
total velocity gradient.

4.1. Probability density functions of the rate of change of invariants
To investigate the statistical properties of local topological evolution, the p.d.f.s of the
rate of change of the invariants are shown in figure 3. Here the Lagrangian material
derivatives are normalized by the quantities related to 〈QW〉, where 〈 〉 means the
average in time and in space along the streamwise and spanwise directions, and the
time t is normalized by 〈QW〉−1/2. Moreover, Suman & Girimaji (2009) have employed
local quantities related to A2 (=AijAij) to normalize the invariants and the time. As
we need to study the transformation from the invariants space into the physical space
below, the average quantities related to 〈QW〉 are thus used in this study, following
Martı́n et al. (1998). It is seen from figure 3 that the profiles exhibit nearly symmetric
behaviour in the inner and outer layers, consistent with the previous findings (Elsinga
& Marusic 2010). Moreover, after calculating the skewness factor for the invariants
at different wall-normal locations, it is identified that the skewness factors are always
less than 0.1, indicating that the skewness is very weak (e.g. Kim, Moin & Moser
1987). The occurrence possibilities of the increase of the invariants are in balance with
those of the decrease of the invariants to maintain the equilibrium state. Furthermore,
as the high-order spatial derivatives appear in the evolution equations (3.11)–(3.13),
the relevant simulations are thus examined by comparison with the results obtained
directly by the Lagrangian derivative (3.17). As shown in figure 3, it is reasonably
obtained that the results calculated by both approaches agree well with each other.

To reveal the statistical properties of the evolution of the invariants, the p.d.f.s of the
rate of change of the invariants are plotted in figure 4. The field of velocity derivatives
is more sensitive to the non-Gaussian nature of turbulence or more generally to its
structure, and hence reflects more of its physics (Tsinober 2000). From figure 4, it is
interesting to note that the tails of the profiles exhibit approximately −3 power-law
change. This property indicates that the large rate of change of the invariant becomes
much more probable than the prediction in terms of a Gaussian distribution. Then,
according to this property, the p.d.f. (χ) can be approximated as p.d.f.(χ) ∼ |χ |−3

for large |χ |, where χ represents the rate of change of the invariants. Usually, the
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FIGURE 3. Probability density functions of (a) DP/Dt, (b) DQ/Dt and (c) DR/Dt at y+ = 4
(full line, circles), y+ = 25 (dashed line, up triangles), y+ = 100 (dash-dotted line, down
triangles) and y = 0.6δ (dash-dot-dot line, squares), corresponding to the viscous sublayer,
buffer layer, logarithmic layer and defect layer, respectively. The symbols represent the results
obtained by (3.11)–(3.13) and the lines by (3.17).
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DR/Dt at y+ = 4, 25, 100 and y = 0.6δ with the data taken from the regions with positive
material derivatives of invariants.

stochastic term is specified to be Gaussian for modelling the Lagrangian dynamics of
the VGT (Meneveau 2011). Therefore, this p.d.f. behaviour can be useful to assess
the stochastic term’s character and to improve the relevant modelling of turbulence
(Girimaji & Pope 1990; Chertkov et al. 1999; Chevillard & Meneveau 2006).

Furthermore, it is identified from figure 3 that the p.d.f.s of the rate of change of
the invariants in the logarithmic layer are consistent with those in the defect layer,
indicating the similar local topological evolutions in the logarithmic layer and defect
layer. In the following analysis, we will mainly discuss the results of the logarithmic
layer in the outer layer. Moreover, the rate of change of the invariants in the viscous
sublayer becomes obviously weak with respect to the other regions, indicating that
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FIGURE 5. The convergence of the statistics of Pt/〈QW〉, Qt/〈QW〉3/2 and Rt/〈QW〉2 for (a)
the buffer layer and (b) the logarithmic layer at point (0.0, 1.5, −0.5) in the P–Q–R space.
Bin 1: 0.004 × 0.1 × 0.01 (solid line); bin 2: 0.004 × 0.05 × 0.02 (dashed line); bin 3:
0.002× 0.1× 0.02 (dash-dot-dot line).

the local flow topologies are clustered near the origin in the normalized P–Q–R space.
This leads to a lack of enough samples for dealing with the topological evolution of
the viscous sublayer. Thus, the results of the buffer layer are mainly discussed in the
inner layer.

4.2. Conditional mean trajectory
The Lagrangian evolution of the invariants of the VGT is studied in terms of CMTs by
integrating from the conditional mean rate of change of invariants (Martı́n et al. 1998;
Ooi et al. 1999). These trajectories can be used to reveal the physical mechanisms
of the mean Lagrangian evolution of local flow topologies, and are therefore of
significance in understanding and modelling the dynamics of structures in turbulent
flow. The averaging procedure is similar to the treatment in an incompressible
turbulent flow (Ooi et al. 1999) and is described by

Pt(R0,Q0,P0)=
〈

DP

Dt

∣∣∣∣− 1
2

6
P− P0

1P
,

Q− Q0

1Q
,

R− R0

1R
<

1
2

〉
, (4.1a)

Qt(R0,Q0,P0)=
〈

DQ

Dt

∣∣∣∣− 1
2

6
P− P0

1P
,

Q− Q0

1Q
,

R− R0

1R
<

1
2

〉
, (4.1b)

Rt(R0,Q0,P0)=
〈

DR

Dt

∣∣∣∣− 1
2

6
P− P0

1P
,

Q− Q0

1Q
,

R− R0

1R
<

1
2

〉
, (4.1c)

where P0, Q0 and R0 are the bin centres, respectively, and 1P, 1Q and 1R denote
the corresponding bin sizes over which the material derivatives are averaged. The
expression (4.1) gives the conditional mean rate of change of the invariants at each
point in the P–Q–R space, denoting a conditional mean vector field (Pt,Qt,Rt). The
vector field is then used to obtain the CMT, which represents the mean path followed
by a point in the P–Q–R space as it evolves temporally.

The bin size is related to the computational resolution of the conditional mean
vector quantities. To verify the statistical convergence of the conditional mean vector
field, three typical different bins have been examined. The evolutions of Pt, Qt

and Rt at point (0.0, 1.5, −0.5) versus the number of samples per bin in the
P–Q–R space are shown in figure 5(a,b) for the buffer layer and logarithmic layer,
respectively. It is identified that the statistical convergence is ensured as the number is
approximately over 1000 samples per bin in the buffer layer and over 3000 samples in
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FIGURE 6. The CMTs and isosurfaces of J for (a) the logarithmic layer and (b) the buffer
layer. The black lines represent the CMTs spiralling inward and the red lines the CMT
spiralling outward. The blue, green and yellow isosurfaces denote J = 10−3, 10−2 and 10−1,
respectively.

the logarithmic layer. In the present study, we have used more than 6000 samples per
bin to perform the statistical analysis.

Figure 6 shows the CMTs and isosurfaces of the joint p.d.f.s of the invariants in the
normalized P–Q–R space. The joint p.d.f., normalized by its maximum value in the
P–Q–R space, is represented by J for convenience. It is needed to indicate that the
point (0.0, 1.5, −0.5) used in figure 5 lays out of the region (J > 10−3) illustrated in
figure 6. It means that the sample number per bin for the region in figure 6 is larger
than the sample number at the point. As a consequence, the statistical convergence
is ensured for the entire P–Q–R space. It is seen that the trajectories near the origin
for a weak gradient in the P–Q–R space are well resolved. In the logarithmic layer,
the trajectory orbits around the origin and spirals inward, marked by the black line
in figure 6(a), consistent with the finding of Elsinga & Marusic (2010) in the Q–R
plane for an incompressible boundary layer. In the buffer layer, it is interesting to note
that a limit cycle behaviour is illustrated for 10−2 < J < 10−1 in figure 6(b). This
feature confirms the result of Mizuno et al. (2011) for incompressible turbulent flow.
The trajectory (coloured by black) outside the limit cycle spirals inward along the
trajectory, while the trajectory (coloured by red) inside the limit cycle spirals outward
along the trajectory. Moreover, the relevant evidence that the CMTs are representative
of Lagrangian trajectories in the Q–R plane has also been provided by Chong et al.
(1998) for wall-bounded incompressible turbulent flow, and flow topology can be
directly inferred by the local values of the invariants on the trajectory (Chong
et al. 1990). So, it is revealed that on average the local topology of fluid particles
will change from unstable node/saddle/saddle (UN/S/S) to stable node/saddle/saddle
(SN/S/S), to stable focus stretching (SFS), to stable focus compressing (SFC), to
unstable focus compressing (UFC) and to UN/S/S.

To analyse the mean evolution time scales of flow topology, the values of P, Q
and R along the trajectories for the logarithmic and buffer layers are plotted versus
integration time in figure 7. Moreover, to assess the effect of bin size on the resolution
of the CMT, the CMTs are calculated by means of bins 1–3. It is seen from figure 7
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FIGURE 7. Time evolution of P, Q and R along the CMTs for (a) the logarithmic layer and
(b) the buffer layer. The parameters of bins 1–3 are given in the caption of figure 5.

that all trajectories almost collapse, indicating that the bins used can reliably obtain
the converged results. In the logarithmic layer, each invariant in figure 7(a) decreases
with time along the trajectories and approaches zero finally. The period of each orbit is
identified to be nearly constant as 11.3〈QW〉−1/2, corresponding to 8.8δ/U∞ in terms of
the outer time scale. In the buffer layer, each invariant in figure 7(b) decreases along
the inward-spiralling trajectory or increases along the outward-spiralling trajectory,
and ultimately converges towards the limit cycle as illustrated in figure 6(b). The
period of the limit cycle is 16.4〈QW〉−1/2, corresponding to 83νw/u2

τ in terms of
the inner time scale and to 6.0δ/U∞ in terms of the outer time scale. The periods
are regarded as a characteristic time for the life cycle of large-scale structures in
the outer and inner layers (Elsinga & Marusic 2010; Atkinson et al. 2012). In
the outer layer, the period of the orbit is related to the very large-scale coherent
structures as discussed in incompressible turbulent boundary layers (Elsinga & Marusic
2010; Atkinson et al. 2012). The mean convective velocity in the outer layer of the
supersonic turbulent boundary layer is obtained as ∼0.9U∞ (Smits et al. 1989). Then,
the wavelength based on the orbit period 8.8δ/U∞ in the outer layer is determined
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FIGURE 8. (a) Distribution of turbulence Mach number along the wall-normal direction and
(b) p.d.f. of the dilatation at four wall-normal locations.

as 7.92δ, which also corresponds to the scale of very large-scale coherent structures
in the outer layer obtained by Ganapathisubramani, Clemens & Dolling (2006). They
have experimentally investigated the very large-scale coherent structures for a turbulent
boundary layer at Mach 2 and identified that the very large-scale coherent structures
have the scale ∼8δ in the outer layer based on a low-pass-filtered velocity field.

The mean percentage of the orbit period spent in each topology is calculated by
the phase average of time spent in the topology along the trajectories illustrated in
figure 7. The percentage of time spent as SFS is 38 % in the buffer layer and 25 %
in the logarithmic layer, whereas UFC occupies approximately 25 % in both regions.
The percentage of time spent as UN/S/S increases from 32 % in the buffer layer to
42 % in the logarithmic layer, and prevails over SN/S/S which occupies 4 % in the
buffer layer and 7 % in the logarithmic layer. Therefore, the fluid particles in the buffer
layer spend a greater percentage of time as focal structures with a bias towards SFS.
In the logarithmic layer the time spent as focal structures is almost equal to that
as non-focal structures, which is similar to homogeneous isotropic turbulence (Martı́n
et al. 1998). Moreover, the time spent in the other topologies is less than 1 % because
the trajectories are integrated from weak gradient regions.

From the preceding analysis, the mean topological evolution can be viewed as
the ensemble average of topological evolutions of individual particle with the same
initially selected values of the invariants. It is demonstrated that all possible topologies
can develop from the points on the trajectories (Elsinga & Marusic 2010). Most
particles in the flow are therefore clustered near the origin of the space of invariants
whether the flow topology evolves towards the origin in the logarithmic layer or the
limit cycle in the buffer layer on average.

4.3. Dynamics of mean topological evolution
To investigate the compressibility effect on the mean topological evolution, we first
analyse the compressibility across the boundary layer in terms of the turbulence Mach
number Mt and the p.d.f. of dilatation. Figure 8(a) shows the distribution of Mt along
the wall-normal direction. It is identified that the peak value of Mt is 0.235. We
should indicate that the turbulence Mach number of supersonic turbulent boundary
layers is generally less than 0.4 even for compressible boundary layer at Mach 8
(e.g. Duan et al. 2011). Comparatively, the turbulence Mach number of isotropic
compressible turbulence has been considered usually by Mt ∼ 1, see for example
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the recent work on isotropic compressible turbulence investigated by Wang et al.
(2012) for Mt = 1–1.03. The influence of compressibility on dynamics and structures
is extremely weak in isotropic compressible turbulence for Mt < 0.2 (Pirozzoli &
Grasso 2004). However, the compressibility effects of the turbulent boundary layer
for Mt ∼ 0.2 become important and, for example, have been investigated recently
by Wang & Lu (2012). Further, the p.d.f.s of the dilatation (ϑ = −P) are examined
and exhibited in figure 8(b). It is seen that the profiles are more skewed to the P < 0
domain.

Owing to the complexity of the 3D CMTs in the normalized P–Q–R space, it is
convenient to exhibit the mean topological evolution in the Q–R plane for selected
values of P (Suman & Girimaji 2009, 2010; Wang & Lu 2012). To clarify the
compressibility effect, the mean topological evolution is analysed for the P > 0 (or
compressed) and P < 0 (or expanding) regions, respectively. For comparison, the
statistical quantities in the ‘incompressible’ region with P around zero are discussed.
Based on the p.d.f.s of the dilatation in figure 8(b), we choose three typical values of
P〈QW〉−1/2 as −0.1, 0 and 0.1 to classify the corresponding regions.

The evolution of local flow topology in the ‘incompressible’ region is obtained
using conditional statistics upon zero dilatation or |P〈QW〉−1/2| < ε, where ε is a
threshold value. To obtain the meaningful results in the ‘incompressible’ region, we
have chosen ε as 0.001 which corresponds to the half-bin size of 1P as shown
in figures 5 and 7 for the convergent examinations. The conditional mean terms in
(3.11)–(3.13) in the buffer layer are then obtained and shown in figure 9 by use of
their vectors and contours for demonstration. From figure 9(a), the local topology
of fluid particles changes around the origin in a clockwise direction from SFS to
UFC, UN/S/S and SN/S/S topology in the Q–R plane, consistent with the topology
evolution of incompressible turbulent flows (Chong et al. 1998; Martı́n et al. 1998;
Ooi et al. 1999; Elsinga & Marusic 2010; Bermejo-Moreno et al. 2010; Atkinson
et al. 2012). The magnitude of the mean rate of change of the Q and R (proportional
to the vector length) increases with increasing distance from the origin. However,
along the R > 0 part of the null discriminant curve (i.e. ∆ = 0) the vector magnitude
remains relatively small. These results are consistent with the trends observed from the
analysis of incompressible isotropic turbulence (Martı́n et al. 1998; Ooi et al. 1999)
and incompressible turbulent boundary layers (Elsinga & Marusic 2010).

As Q = QW + QS and R = RS − ωiSijωj/4, we can understand that Q represents
the competition between enstrophy and dissipation, and R the competition between
enstrophy production and dissipation production (Chevillard et al. 2008; Wang & Lu
2012), where the enstrophy production is associated with the enstrophy amplification
due to vortex stretching. The dynamics of Q and R related to the mutual-interaction
terms among the invariants are shown in figure 9(b). The Q tends to be increased
in the enstrophy production dominated region (i.e. R < 0) and to be decreased in the
dissipation-production-dominated region (i.e. R > 0). Such properties are attributed to
the vortex stretching and the self-amplification of the strain-rate tensor in (3.14) and
(3.16). The amplification of |Q| in the enstrophy- and enstrophy-production-dominated
region (i.e. Q > 0 and R < 0) and the dissipation- and dissipation-production-
dominated region (i.e. Q < 0 and R > 0) can lead to the finite-time singularity of
RE dynamics. By comparing with figure 9(a,b), it is deduced that the clockwise spiral
behaviour of the local flow topology in the Q–R plane mainly originates from the
mutual interaction of the invariants. Moreover, the rate of change of RS due to the
mutual interaction is completely balanced by that of wiSijwj in the ‘incompressible’
region as represented in (3.13).
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FIGURE 9. Conditional mean terms in (3.11)–(3.13) in the buffer layer by use of the vectors
and contours for demonstration in the P = 0 plane: (a) the total Rt–Qt (vectors) and Pt
(contours); (b) the mutual-interaction terms 〈RS〉–〈QS〉 (vectors) and 〈PS〉 (contours); (c) The
pressure Hessian terms 〈RH〉–〈QH〉 (vectors) and 〈PH〉 (contours); (d) the viscous terms
〈RV〉–〈QV〉 (vectors) and 〈PV〉 (contours). The data with J < 10−4 is not shown. The length
of the arrow drawn in each figure represents the reference scale in the Q-direction of the
vectors. Here Pt, PS, PH and PV are normalized by 〈QW〉, Qt, QS, QH and QV are normalized
by 〈QW〉3/2 and Rt, RS, RH and RV are normalized by 〈QW〉2.

The dynamics related to the pressure Hessian is shown in figure 9(c) and trajectories
will move away from an asymptote. The asymptote approaches a straight line with a
slope −5 in the normalized Q–R plane, consistent with the shape of the probability
distribution for Q and R. The enstrophy production is therefore dominated on the
left-hand side of the asymptote and the dissipation production on the right-hand side.
On average, the enstrophy production rate tends to be increased in the enstrophy
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production region and the dissipation production rate tends to be increased in the
dissipation production region. These features reveal that the pressure terms lead to the
amplification of |R|. Moreover, because the density and pressure gradients are strongly
constrained to be almost parallel to each other in this flow, the baroclinic effect (not
shown here) becomes very weak.

The dynamics determined by 〈QV〉 and 〈RV〉 are shown in figure 9(d), indicating
that the viscous effect tends to attract trajectories to the origin. It is consistent with
the findings in isotropic turbulence (Chevillard et al. 2008) and wall-bounded turbulent
flows (Mizuno et al. 2011). Fluid particles move towards the origin in the Q–R plane
in an incompressible turbulent boundary layer with Reθ = 300 (Chacin & Cantwell
2000). This property is associated with the fact that the Reynolds number is so
low that trajectories are handled by the viscous effect. Moreover, Ooi et al. (1999)
have analysed the combined pressure and viscous effects for incompressible isotropic
turbulence in terms of the evolution equations of the invariants and indicated the
influence of viscous dissipation in the topological evolution.

It is seen from the contours of Pt in figure 9(a) that on average the fluid particles
tend to be compressed in the enstrophy dominated region (i.e. Q > 0) and to be
expanding in the dissipation dominated region (i.e. Q < 0), which is attributed to the
pressure effect shown in figure 9(c). However, the mutual interaction produces an
opposite effect on the rate of change of the dilatation. Comparing with figure 9(b,c), it
is found that the effect of the pressure Hessian tensor PH is balanced primarily by the
contribution of Q, with PS + PH = 0 for incompressible and inviscid flows. Moreover,
the contribution of the viscous term PV is the smallest one as exhibited in figure 9(d).

Figure 10 exhibits the corresponding conditional mean terms in (3.11)–(3.13) in the
‘incompressible’ region for the logarithmic layer. Compared with the counterpart for
the buffer layer as discussed above, it is identified that the dynamics characters in
the logarithmic layer becomes stronger with respect to the buffer layer, which is also
observed from figure 3. In particular, as shown in figures 9(c) and 10(c), the slope
of the asymptote changes from −5 to −3.6 in the normalized Q–R plane due to the
change of mean shear. This behaviour is associated with the change of probability
distribution for Q and R, which appears to be more elongated in the buffer layer than
in the logarithmic layer.

The mean topological evolution of fluid particles in the locally compressed and
expanding regions is obtained using conditional statistics for P〈QW〉−1/2 = 0.1 and
−0.1, and is illustrated in figures 11 and 12 for the buffer layer, respectively. As
shown in figures 11(a) and 12(a), Q tends to be decreased and R tends to be increased
in the locally compressed region, and Q tends to be increased and R tends to be
decreased in the locally expanding region. These behaviours are consistent with the
findings that the enstrophy production tends to be decreased in the locally compressed
region and to be increased in the locally expanding region (Wang & Lu 2012). The
magnitude of the mean rate of change of the Q and R increases with the decrease in Q
or ∆.

The local topological evolution in the Q–R plane is considered. On average, the
local topology of fluid particles in the locally compressed region changes from SFS to
SFC to UFC to UN/S/S or from SFS to SN/S/S to UN/S/S. While the local topology
of fluid particles in the locally expanding region changes from UN/S/S to SFS and
unstable focus stretching (UFS) through SN/S/S and UFC, respectively. Moreover, the
Lagrangian evolution of P in the compressed and expanding regions are similar to
that in the ‘incompressible’ region. Therefore, the topological evolution in the P–Q–R
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FIGURE 10. Conditional mean terms in (3.11)–(3.13) in the logarithmic layer by use of the
vectors and contours for demonstration in the P= 0 plane. For other details see figure 9.

space can in general be described as follows. On average, fluid particles move spirally
from Q > 0 and R < 0 to Q < 0 and R > 0 in the region of P > 0, from P > 0 to
P< 0 in the region of Q< 0, from Q< 0 and R> 0 to Q> 0 and R< 0 in the region
of P < 0. Correspondingly, the local topology of fluid particles near the limit cycle in
the buffer layer will change from UN/S/S to SN/S/S to SFS in the locally expanding
region, while from SFS to SFC to UFC to UN/S/S in the locally compressed region.

Comparing with the results shown in figures 9(b), 11(b) and 12(b), it is found that
the compressibility effect on the contribution of the mutual interaction to topological
evolution is relatively weak. However, it is clearly seen from (3.11)–(3.13) that P2, PQ
and PR are involved into the mutual-interaction terms PS, QS and RS, respectively, for
compressible flows. Therefore, compared with the ‘incompressible’ region, these terms
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FIGURE 11. Conditional mean terms in (3.11)–(3.13) in the buffer layer by use of the vectors
and contours for demonstration in the P〈QW〉−1/2 = 0.1 plane. For other details see figure 9.

tend to amplify the magnitude of the rate of change of the invariants in the locally
compressed region and to reduce the magnitude in the locally expanding region.

To quantitatively demonstrate the effect of Mach number on the mutual-interaction
terms, we typically consider the term PR in the evolution equation (3.13) of the third
invariant R. The contribution of PR to the rate of change of DR/Dt in compressible
turbulent boundary layers at Ma = 2 and 4.9 is shown in figure 13. Noted that
the opposite tendencies in the locally compressed (P > 0) and expanding (P < 0)
regions occur for DR/Dt, as shown in figures 11(a) and 12(a). Therefore, the rate of
change of R is analysed statistically in two different regions, i.e. locally compressed
and expanding regions. Moreover, it is deduced from the definition of the term PR
that the values of PR in the enstrophy-production-dominated (R < 0) and dissipation-
production-dominated (R > 0) regions mainly cancel each other in locally compressed
or expanding regions. To reveal the contribution of PR to the rate of change of R
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FIGURE 12. Conditional mean terms in (3.11)–(3.13) in the buffer layer by use of the
vectors and contours for demonstration in the P〈QW〉−1/2 = −0.1 plane. For other details
see figure 11.

in the invariants space for the two Mach numbers, the term PR is analysed in four
regions shown in figure 13. It is seen that the contributions of PR to the rate of change
of R in compressible turbulent boundary layers at Ma = 2 and 4.9 are qualitatively
similar, but with different values.

As shown in figure 13(a), the mean value of DR/Dt in the locally compressed
region is positive due to the fact that the term PR in the region of P > 0 and R > 0
is positive definite, which is consistent with the results of figure 11(a). Therefore,
the term PR in the region of P > 0 and R > 0 makes a positive contribution to the
magnitude of 〈DR/Dt|P > 0〉, and the term in the region of P > 0 and R < 0 makes a
negative contribution. In contrast, the mean values of DR/Dt in the locally expanding
region is negative as shown in figure 12(a). The term PR in the region of P < 0 and
R > 0 makes a positive contribution to the magnitude of 〈DR/Dt|P < 0〉, and the term
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FIGURE 13. Distributions of conditional average PR in the regions of (a) P> 0 and (b)
P< 0 in compressible turbulent boundary layers at Ma= 2 and 4.9.

in the region of P > 0 and R < 0 makes a negative contribution shown in figure 13(b).
Furthermore, the contribution rate of PR to the rate of change of R is about 4 %
at Ma = 2. With the increase of Mach number, the occurrence probabilities of fluid
particles in the strongly expanding and compressed regions increases (Lagha et al.
2011) and the contribution rate of PR increases to about 15 % at Ma= 4.9.

The behaviours related to the pressure Hessian in the locally compressed and
expanding regions are shown in figures 11(c) and 12(c), respectively. The pressure
Hessian terms have a dominant influence on the topological evolution with respect
to the other terms. The opposite tendencies in the locally compressed and expanding
regions occur for the topological evolution. It is deduced that the pressure effect
tends to strengthen the dissipation in the locally compressed region and to reduce
the dissipation in the locally expanding region. Unlike the behaviour in the
‘incompressible’ region, the pressure effect on the flow topological evolution in the
locally compressed and expanding regions is mainly dependent of P and almost
independent of Q and R. These behaviours imply the complexity of modelling the
pressure Hessian for compressible turbulence. Moreover, to investigate the difference
between 〈QW〉 and A2 normalization in locally expanding and compressed regions,
figure 14 shows the joint p.d.f. of P and the pressure Hessian term QH based on
the two normalizations in the buffer layer. Similar to the results obtained by 〈QW〉
normalization, the term QH/A3 tends to be positive in the expanding region and
to be negative in the compressed region. This behaviour is also clearly presented
by the average of QH/A3 conditioned on P/A and is consistent with the results of
figures 11(c) and 12(c). Therefore, the relevant results on compressibility effects in
terms of the 〈QW〉 normalization is qualitatively similar to those in terms of the A2

normalization.
To investigate the pressure effect on ωiSijωj which is referred to as vortex stretching

(Tsinober 2009), figure 15(a) shows the wall-normal distribution of the volume
fraction of the enstrophy production region (ωiSijωj > 0) and the enstrophy destruction
region (ωiSijωj < 0), where the enstrophy destruction is associated with the enstrophy
decay due to vortex contraction. It confirms the fact that enstrophy production prevails
over enstrophy destruction (Taylor 1938). The volume fraction of the vortex stretching
region is almost equal to that of the vortex contraction region in the viscous sublayer,
increases gradually in the buffer layer, levels off at around 3/4 in the logarithmic
layer and decreases in the defect layer. The Lagrangian evolution equation of ωiSijωj
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and (b) −ωiHijωj along the wall-normal direction.

is given by

D(ωiSijωj)

Dt
=−4

(
P2QW + 2QSQW − 2P(S :W 2)− S2 :W 2

)− ωiHijωj

+ 4
(
P(W : B)− QW tr(B)+ (2S ·W −W 2) : B)

− 4
(
P(W : V)− QW tr(V)+ (2S ·W −W 2) : V)

. (4.2)

The pressure effect on the evolution of ωiSijωj is measured by −ωiHijωj, which
has been discussed in incompressible flows (Ooi et al. 1999; Tsinober 2009). It is
seen from (3.14) and (3.16) that, unlike the dissipation, the enstrophy is not directly
associated with the pressure. The pressure affects the enstrophy by means of ωiSijωj as
given in (3.14) and (4.2). Figure 15(b) shows the wall-normal distribution of ωiHijωj

for the enstrophy production and destruction regions. The pressure contribution to the
rate of change of ωiSijωj in the enstrophy production region attains a large value
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in the viscous sublayer and then decreases with the increase in y+ as well as is
opposite to the contribution in the enstrophy destruction region. It is thus obtained that
the pressure effect plays a role in enhancing the contraction of vortex in the vortex-
contraction region and in strengthening the stretching of vortex in the vortex-stretching
region.

Furthermore, comparing figures 11(d) and 12(d) with 9(d), it is observed that the
contribution to the topological evolution in the locally compressed and expanding
regions due to viscous effect is similar to that in the ‘incompressible’ region. A linear
approximation model V = −αA was proposed by Martin et al. (1997), where α is the
inverse of a characteristic diffusion time scale. Then, the viscous terms in (3.11)–(3.13)
are derived as

PV =−αP, QV =−2αQ, RV =−3αR. (4.3)

To deal with this model, the correlations between the invariants and their rates
due to the viscous effect are examined using the linear regression analysis method.
Figure 16(a) shows the distributions of linear correlation coefficients along the
wall-normal direction with nearly constant values of 0.6 for P and 0.8 for Q
and R in the outside region of the viscous sublayer, indicating that there exist
significant linear correlations between the invariants and the corresponding viscous
rates. It is also suggested that the linear damping model is statistically reasonable for
modelling the viscous effect of the VGT only in the outside region of the viscous
sublayer, which confirms the finding of Chacin & Cantwell (2000). The regression
coefficients, representing the inverse of characteristic diffusion time scale, are shown in
figure 16(b). The discrepancies among them are attributed to the shortcomings of the
linear model as indicated by Martin et al. (1997). The regression coefficients increase
from approximately 0.15–0.35 in the buffer layer and level off in the logarithmic
layer and defect layer. The viscous terms attract trajectories to the origin as shown in
figures 9–12. Therefore, fluid particles in the logarithmic layer are more likely to move
towards the origin in the normalized P–Q–R space. This is responsible for the different
behaviours of the topologies of CMTs in the buffer layer and logarithmic layer as
shown in figure 6.

5. Concluding remarks
The statistics and dynamics of the local topological evolution of compressible

turbulent boundary layers at Mach 2 have been studied in terms of the detailed
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analysis of the invariants of the VGT. The main conclusions are briefly summarized
as follows.

The p.d.f.s of the rate of change of the invariants exhibit a decrease with the
−3 power law in the inner and outer layers. It is helpful to assess and improve
the stochastic term in turbulence models. The mean Lagrangian evolution of the
invariants of the VGT is derived using CMTs by integrating from conditional mean
rate of change of invariants. The trajectories reveal inward-spiralling orbits around and
converging to the origin of the P–Q–R space in the logarithmic layer, while they are
repelled by the vicinity of the origin and converge towards the limit cycle in the buffer
layer. On average, the local topology of fluid particles will change from topology
UN/S/S to SN/S/S, to SFS, to SFC, to UFC, and to UN/S/S. The difference in the
mean topological evolution between the logarithmic and buffer layers is attributed to
the viscous effect.

The compressibility effect on the mean topological evolution is investigated for
the ‘incompressible’, compressed and expanding regions. It is found that the mean
evolution of flow topologies is altered by the compressibility. The mean evolution of
the Q and R in the ‘incompressible’ region is consistent with that in incompressible
turbulent flows. On average fluid particles tend to be compressed in the enstrophy-
dominated region and to be expanding in the dissipation-dominated region due to the
pressure effect. In the locally compressed region Q tends to be decreased and R tends
to be increased, and in the locally expanding region Q tends to be increased and R
tends to be decreased. Therefore, the fluid particles move spirally from Q > 0 and
R< 0 to Q< 0 and R> 0 in the region of P> 0, from P> 0 to P< 0 in the region of
Q< 0, from Q< 0 and R> 0 to Q> 0 and R< 0 in the region of P< 0.

The dynamics of topological evolution is investigated based on the analysis of the
mutual-interaction terms, pressure Hessian term, baroclinic effect and viscous action.
The mutual interaction involves the vortex stretching and self-amplification of the
strain-rate tensor and is the root of the clockwise spiral behaviour of the local flow
topology in the Q–R plane. The baroclinic effect is weak because the density and
pressure gradients are strongly constrained to be almost parallel to each other in this
flow. It is revealed that the compressibility effect is mainly related to the pressure
Hessian term. The viscous terms lead to the decrease of the invariants due to viscous
dissipation. This is why the trajectory always spirals inward in the P–Q–R space for
strong gradient region where viscous dissipation is dominant. Moreover, significant
challenges still remain to develop models for the pressure Hessian term due to its
importance and complexity, especially for compressible turbulent flows.
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