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 CALCULATION OF THE TIMING OF VORTEX
 FORMATION FROM AN OSCILLATING CYLINDER

 X . -Y .  L U   AND  C .  D ALTON

 Department of Mechanical Engineering , Uni y  ersity of Houston
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 Vortex shedding from a transversely oscillating circular cylinder in a uniform flow is
 studied by numerical solutions of the two-dimensional unsteady Navier-Stokes equations
 with a primitive-variable formulation .  As the frequency of excitation of the cylinder is
 increased relative to the inherent vortex formation frequency ,  the initially formed
 concentration of vorticity moves closer to the cylinder until a limiting position is reached ;
 at this point ,  the vorticity concentration abruptly switches to the opposite side of the
 cylinder .  This process induces distinct changes of the topology of the corresponding
 streamline patterns .  In addition ,  the influence of this vorticity-switching on forces acting on
 the cylinder is also investigated .

 ÷   1996 Academic Press Limited

 1 .  INTRODUCTION

 A  RISER   ON   AN   OFFSHORE   PLATFORM  in deep water can be subjected to currents of
 dif ferent magnitudes and directions at various elevations .  Thus ,  a riser excited at one
 elevation due to vortex shedding oscillates at another elevation while exposed to the
 current at that elevation .  Numerous investigators have recognized that the frequency of
 this forced oscillation can have dramatic ef fects on the vortex-shedding frequency of
 the oscillating cylinder .  For example ,  a forced oscillation at or near the inherent
 vortex-shedding frequency ,  which is called the synchronization condition ,  produces a
 sharp change in the phase angle ,   f L  ,  between the unsteady lift coef ficient ,   C L  ,  and the
 cylinder displacement ,   y .  This change occurs at  f e  / f o  ,  1 ,  where  f e   is the excitation
 frequency and  f o   is the vortex-shedding frequency from the stationary cylinder .  In this
 range of  f e  / f o   values ,  the amplitude of  C L   reaches a peak value .  These variations in lift
 coef ficient amplitude and phase angle accompany a change in sign of the energy
 transfer between the cylinder and the fluid .

 These observations are well known and have been documented by many inves-
 tigators ,  a few of whom are Grif fin (1971 ,  1973) ,  Koopmann (1967) ,  Sarpkaya (1979) ,
 Ongoren & Rockwell (1988a ,  b) and Pantazopoulos (1994) .  A particular focus of these
 studies has been on the near wake with emphasis on excitation at or near the inherent
 vortex formation frequency ,  i . e .,  synchronization .  Williamson & Roshko (1988) found
 that there was an excitation frequency threshold at suf ficiently large oscillating
 amplitudes ,  beyond which the downstream vortex street experienced a basic change .
 Particle streaks provided a visualization of the flow and revealed the formation of
 vortex pairs during each half-cycle of the cylinder oscillation .

 In a recent particle-imaging study of the timing of vortex formation from a circular
 cylinder which is undergoing forced transverse oscillations in a uniform approach flow ,
 Gu  et al .  (1995) found some abrupt changes in flow topology .  As  f e  / f o   increased at a
 given amplitude and Reynolds number ,  the wake vorticity moved closer to the
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 cylinder ,  eventually reaching a limiting position .  This resulted in an abrupt switch of
 the vorticity concentration to the opposite side of the cylinder .  Gu  et al .  found this
 switching phenomenon occurred at both low and high (185 and 5  000) Reynolds
 numbers ,  even though the higher value of Reynolds number was large enough for
 Kelvin-Helmholtz instabilities to occur in the shear layers following separation .  Even
 though the switching process was similar at both Reynolds numbers in the Gu  et al .
 study ,  there was a dependence on  f e  / f o ;  the value of  f e  / f o   at which switching occurred
 did decrease with increasing Reynolds number .

 The objective of the present study is to examine computationally the phenomenon of
 vortex switching which Gu  et al .  studied via particle imaging .  We shall consider
 vorticity and stream-function distributions and examine the time-dependent drag and
 lift acting on the cylinder .

 2 .  GOVERNING EQUATIONS

 A reference frame fixed with the circular cylinder is used .  It is further supposed that
 the uniform translation and transverse oscillation of the cylinder start impulsively at the
 same instant ,  and the flow is two-dimensional throughout our investigation as observed
 in the experimental investigation of Gu  et al .  (1994) .  The incompressible Navier-Stokes
 equations with primitive variables are used for the calculation and are given in
 dimensionless form in polar coordinates ( r ,  θ  ) as follows :
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 where the cylinder radius ,   R ,  is used as the length scale ;   U  is the uniform approach
 velocity ;   R  / U  is the time scale ;  Re is the Reynolds number ,  Re  5  Ud  / …  ,  …   being the
 fluid kinematic viscosity ;   u  and  y    are the dimensionless radial and circumferential
 velocity components ,  respectively ;   p  is the dimensionless pressure ;  and the Laplace
 operator ,   =  2 ,  is

 =  2  5
 ­ 2

 ­ r 2  1
 1
 r

 ­

 ­ r
 1

 1
 r 2

 ­ 2

 ­ θ  2  .  (4)

 Here the dimensionless boundary conditions are

 u  5  0 ,  y  5  0 ,  (5)

 on the body surface ( r  5  1) ,  and ,  at the outer boundary ,
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 where  u 0  is the radial velocity normal to the outer boundary ,  and  y  T   is given as

 y  T  5
 d y e

 d t
 (8)

 and

 y e  5  A e  cos(2 π f e t ) ,  (9)

 with  A e   and  f e   as the oscillating amplitude and frequency ,  respectively .  In the
 circumferential direction ,  we use periodic boundary conditions .

 3 .  NUMERICAL METHOD

 We consider the Navier-Stokes equations written in vector form ,

 ­ V
 ­ t

 5  2 = p  1  L ( V )  1  N ( V ) ,  (10)

 where  V  is the velocity vector and  L ( V ) and  N ( V ) represent the viscous terms and
 convective terms ,  respectively ,  i . e .,

 L ( V )  5
 2

 Re
 = 2 V ,  (11)

 N ( V )  5  2 ( V  ?  = ) V .  (12)

 Using the fractional-step method of Kim & Moin (1985) for the incompressible
 Navier-Stokes equations ,  the semi-discrete form can be obtained by splitting equation
 (10) into two substeps as

 V ̂  2  V n

 D t
 5  N D ( V )  1  L D ( V ) ,  (13)

 V n 1 1  2  V ̂
 D t

 5  2 = p n 1 1 ,  (14)

 where  V ̂   is the intermediate velocity ,   L D ( V ) and  N D ( V ) respectively denote dif ference
 discretization forms for the terms of  L ( V ) and  N ( V ) .  In the splitting method ,  it is
 required that the velocity field  V n 1 1  satisfies the incompressibility constraint ,

 =  ?  V n 1 1  5  0 .  (15)

 Incorporating the requirement from equation (15) into (14) ,  we finally arrive at a
 separately solvable elliptic equation for the pressure in the form

 = 2 p n 1 1/2  5
 1
 D t

 =  ?  V ̂  .  (16)

 To solve the elliptic equation given in equation (16) ,  a pressure boundary condition
 must be implemented .  The pressure boundary condition may be taken as a key factor
 for solving the incompressible Navier-Stokes equations .  According to a study on the
 pressure boundary conditions (Gresho & Sani 1987) ,  the condition is given as
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 where  n r   indicates the unit vector in the radial direction .
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 Figure 1 .  Lift and drag coef ficients ,   C L   and  C D ,  for steady flow past cylinder at (a) Re  5  185 ,  (b) Re  5  500 ,
 (c) Re  5  1000 :  —— ,   C D ;  -  -  -  - , C L .  In (a) ,  the average value of  C D   is  C #  D  5  1 ? 31 and the Strouhal number is

 St  5  0 ? 195 ;  in (b) ,   C #  D  5  1 ? 22 ,  St  5  0 ? 222 ;  in (c) ,   C #  D  5  1 ? 21 , St  5  0 ? 224 .

 In this study ,  a staggered grid ,  which is uniformly spaced in the circumferential
 direction and is exponentially stretched in the radial direction ,  is employed for the
 discretization of the governing equations .  All the spatial derivatives are discretized
 using a second-order central dif ference scheme .  The time derivative in equation (13) is
 solved using a second-order Adams-Bashforth scheme .

 T ABLE  1
 Experimental and calculated values for  C #  D   and  C L  rms  for

 the nonoscillating cylinder

 Experimental  Calculated

 Re  C #  D  C L  rms  St  C #  D  C L  rms  St

 185
 500

 1  000

 1 ? 28
 1 ? 18
 1 ? 15

 —
 0 ? 6
 —

 0 ? 19
 0 ? 21
 0 ? 22

 1 ? 31
 1 ? 22
 1 ? 21

 0 ? 422
 0 ? 67
 0 ? 78

 0 ? 195
 0 ? 222
 0 ? 224
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 Figure 2 .  Lift and drag coef ficients for dif ferent grid resolutions and time steps for Re  5  185 ,  nonoscillating

 case :  —— ,  256  3  128 ,   D t  5  0 ? 002 :   C #  D  5  1 ? 31 , C L  rms  5  0 ? 430 ,  St  5  0 ? 195 ;  -  -  -  - ,  512  3  256 ,   D t  5  0 ? 001 :
 C #  D  5  1 ? 30 , C L  rms  5  0 ? 422 ,  St  5  0 ? 192 .

 The computational loop to advance the solution from one time level to the next
 consists of the following three substeps .  First ,  the discretized equation (13) is advanced
 explicitly to obtain the new intermediate velocity using a second-order Adams-
 Bashforth scheme .  Then ,  using the intermediate velocity from equation (13) ,  the
 pressure Poisson equation (16) is solved for the new pressure field .  The last step is that
 equation (14) is solved for the new velocity .

2

1·5

1

0·5

0

–0·5

–1
100 120 140 160 180 200

t

CL(256     128, dt = 0·002)
CD(256     128, dt = 0·002)
CL(512     256, dt = 0·001)
CD(512     256, dt = 0·001)

C
L
,  

C
D

+
+
+
+

 Figure 3 .  Lift and drag coef ficients for dif ferent grid resolutions and time steps for Re  5  185 ,  cylinder
 oscillating with  f e / f o  5  0 ? 8 and  A e  5  0 ? 4 :  for (a) 256  3  128 ,   D t  5  0 ? 002 :   C #  D  5  1 ? 25 ;   C L  rms  5  0 ? 18 ;  for (b)

 512  3  256 ,   D t  5  0 ? 001 :   C #  D  5  1 ? 25 ;   C L  rms  5  0 ? 18 .
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 Figure 4 .  Pressure coef ficient for  f e / f o  5  0 ? 8 ,  0 ? 9 ,  1 ? 0 ,  1 ? 1 ,  1 ? 12 and 1 ? 2 at Re  5  185 ,   A e  5  0 ? 4 ( θ   is the angle
 measured clockwise from the stagnation point) .

2

1

0

–1

–2

C
L
, C

D

(a)

0 50 100 150 200
t

2

1

0

–1

–2

C
L
, C

D

(b)

2

1

0

–1

–2

C
L
, C

D

(c)

250 300

 Figure 5 .  Lift and drag coef ficients versus time for Re  5  185 ,   A e  5  0 ? 4 for (a)  f e / f o  5  0 ? 8 ,  (b)  f e / f o  5  0 ? 9 ,  (c)
 f e / f o  5  1 ? 0 ;  —— , C D ;  -  -  -  - , C L .
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 Figure 5 (cont . )  Lift and drag coef ficients versus time for Re  5  185 ,   A e  5  0 ? 4 for (d)  f e / f o  5  1 ? 10 ,  (e)
 f e / f o  5  1 ? 12 ,  (f)  f e / f o  5  1 ? 2 :  —— , C D ;  -  -  -  - , C L .

 4 .  FORCE DETERMINATION

 The fluid force on the cylinder can be decomposed into two parts :  the contributions
 due to pressure and shear stress .  The drag coef ficient ,   C D  ,  and the transverse force
 coef ficient ,   C T  ,  are ,  respectively ,

 C D  5  2 E 2 π

 0
 S p  cos  θ  1

 2
 Re

 v z  sin  θ D  d θ  (18)

 and

 C T  5  2 E 2 π

 0
 S p  sin  θ  2

 2
 Re

 v z  cos  θ D  d θ  ,  (19)

 where  p  and  v z   represent the dimensionless forms of pressure and axial vorticity on the
 cylinder surface ,  respectively .  The transverse force includes the ef fects of the inertia
 force which is taken into account by correcting  C T   by

 C T  5  C Lfb  1  ( π D  / 2 U 2 )
 d 2 y e

 d t 2  ,  (20)



 X . -Y .  LU AND C .  DALTON 534

fe/fo =1·1 

fe/fo =0·9 fe/fo =1·12

fe/fo =1·0 fe/fo =1·2

fe/fo =0·8

 Figure 6 .  Instantaneous vorticity contours  A e  5  0 ? 4 ,  Re  5  185 ,  and  f e / f o   as shown .  In all frames ,  the
 location of the cylinder is at its extreme upper position positive values (dashed line) ;  negative values (solid

 line) .

 where  C Lfb   is the (fixed-body) lift coef ficient for the case of the coordinate system fixed
 to the oscillating cylinder .  The inertia coef ficient for this case has a value of unity .  This
 technique for finding the fixed-body lift coef ficient is routine and has been used
 recently by Meneghini & Bearman (1995) .  The drag coef ficient is not af fected by the
 inertia of the transverse oscillation .

 5 .  RESULTS

 We have performed calculations for four dif ferent cases :  (i) Re  5  185 ,   A e  5  0 ? 4 ,
 0 ? 8  #  f e  / f o  #  1 ? 2 ;   (ii) Re  5  185 ,   A e  5  1 ? 0 ,  1 ? 0  #  f e  / f o  #  1 ? 15 ;  (iii) Re  5  500 ,   A e  5  0 ? 4 ,
 0 ? 8  #  f e  / f o  #  1 ? 2 ;   (iv) Re  5  1  000 ,   A e  5  0 ? 4 ,  0 ? 9  #  f e  / f o  #  1 ? 05 .  The terms  A e   and  f e   were
 defined after equation (9) while  f o   represents the vortex-shedding frequency for the
 cylinder at rest .  As stated earlier ,  these calculations are two-dimensional based on the
 observations of Gu  et al .  (1994) that the near wake structure was essentially
 two-dimensional due to the forced oscillations at Reynolds numbers of 185 and 5  000 .

 First ,  to demonstrate the capability of the code ,  we examine the results for a
 nonoscillating cylinder at Re  5  185 ,  500 and 1  000 .  Figure 1 shows the drag and lift
 coef ficients for these three cases .  The calculated results are compared in Table 1 to
 values obtained from experimental studies .  The agreement is quite good .

 To demonstrate convergence of the solution ,  we show the results of a calculation at
 Re  5  185 for two dif ferent grid ( r ,  θ  )-systems :  256  3  128 with  D t  5  0 ? 002 and 512  3  256
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 Figure 7 .  Instantaneous streamlines  A e  5  0 ? 4 ,  Re  5  185 ,  and  f e / f o   as shown .  In all frames ,  the location of
 the cylinder is at its extreme upper position—s-saddle point .

 with  D t  5  0 ? 001 .  The results of the calculation are shown in Figure 2 where the drag
 coef ficients of the two dif ferent grid systems are virtually the same .  The lift coef ficients
 are equal in magnitude and frequency ,   f o  ,  but are essentially 180 8  out of phase .  This
 out-of-phase result is not of concern because the solution was not perturbed to
 generate the asymmetry which leads to vortex shedding .  The solution was allowed to
 develop its own asymmetry ;  this technique leads to an initial shedding in which the
 onset is grid-size dependent .  Thus ,  it is not unexpected to have a phase dif ference in
 vortex shedding (or lift coef ficient) for two dif ferent grids producing the same
 converged result .  It is also due to this phase dif ference that convergence of the solution
 is not demonstrated on the circumferential distributions of either pressure or vorticity
 for the nonoscillating cylinder case .

 Convergence is also demonstrated for one oscillating cylinder case :  Re  5  185 ,
 f e  / f o  5  0 ? 8 ,  and  A e  5  0 ? 4 .  Figure 3 shows the comparison for the same two mesh systems
 as for the nonoscillating cylinder shown in Figure 2 .  The drag and lift coef ficients
 shown in Figure 3 for both grids are virtually the same and ,  unlike the nonoscillating
 cylinder case ,  are in phase ,  i . e .,  with the same  f o .  The in-phase behavior is due to the
 influence of the cylinder oscillation in initiating vortex shedding .

 Thus ,  on the basis of the equality of values of  C D  , C L  ,  and  f o   for the two dif ferent
 cases ,  we proceed with the 256  3  128 grid which also produces converged solutions at
 Re  5  500 and 1  000 but which are not shown here .  Further documentation on
 validation ,  convergence ,  and stability is found in Zhang (1995) .
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 Figure 8 .  (a) time-average value of drag coef ficient versus  f e / f o ;  (b) r . m . s .  value of lift coef ficient versus

 f e / f o ;   (c) base pressure versus  f e / f o .

 First we consider the case of Re  5  185 and  A e  5  0 ? 4 for a range of values of  f e  / f o
 between 0 ? 8 and 1 ? 2 .  The pressure coef ficient distributions are shown in Figure 4 .  The
 shift in location of the stagnation point is due to the increase in the cylinder oscillatory
 velocity as  f e  / f o   increases .  The combination of the oscillatory velocity with the uniform
 approach velocity causes the shift .  The energy due to the oscillating cylinder at the
 higher values of  f e  / f o   also causes the pressure coef ficient to increase slightly over the
 normal value of unity (for the nonoscillatory case) .

 Figure 5 shows the drag and lift coef ficients over the range of values of  f e  / f o
 considered .  Note that drag and lift behaviors are fairly regular ,  once vortex shedding is
 established ,  through  f e  / f o  5  1 ? 0 .  for values of  f e  / f o   greater than 1 ? 0 ,  from 1 ? 12 to 1 ? 2 ,
 both the drag and lift exhibit the regular signs of the influence of a higher harmonic .
 Figure 6 shows the instantaneous vorticity contours when the oscillating cylinder is at
 the extreme upper position for the same set of parameters as those in Figure 5 .  Note
 the elongated vortex attached to the upper side of the cylinder ;  its length is decreasing
 as  f e  / f o   increases (i . e .,  as  f e   increases) to 1 ? 1 .  As the cylinder moves up ,  there is vorticity
 formed on the cylinder base .  This opposite-sign base vorticity interacts with the
 vorticity in the upper shear layer to diminish the vorticity available for roll-up in the
 wake .  For  f e  / f o   of 1 ? 12 and 1 ? 2 ,  the upper vortex has been diminished in strength to the
 extent that the lower vortex has become the dominant vortex and the upper vortex has
 rolled up tightly behind the cylinder .  Notice the contrast in size between the lower
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 Figure 9 .  Instantaneous streamlines (left column) and vorticity contours (right column) ;   A e  5  1 ? 0 ,
 Re  5  185 ,  and  f e / f o   as shown .  In all frames ,  the location of the cylinder is at its extreme upper position .

 (smaller) vortex at  f e  / f o  5  0 ? 8 and the upper (smaller) vortex at  f e  / f 0  5  1 ? 2 .  As  f e

 increases ,  the oscillatory velocity increases and the amount of negative base vorticity
 generated is increased ,  contributing to diminish the strength and length of the upper
 vortex .

 The vorticity contours discussed in Figure 6 are viewed from the standpoint of
 instantaneous streamlines in Figure 7 .  The tightening of the lower streamlines is
 evidence of the ef fect of the base vorticity generated by the upward motion of the
 oscillating cylinder .  The switching of sides of the larger vortex is clearly seen for the
 cases of  f e  / f o  5  1 ? 12 and 1 ? 2 ;  the presence of saddle points in the flow is indicated in
 these two cases .

 Information about the force coef ficients at Re  5  185 and  A e  5  0 ? 4 is presented in
 Figure 8 .  The time-average drag coef ficient is shown in Figure 8(a) as a function of
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 Figure 10(a) .  Instantaneous streamlines (left column) and vorticity contours (right column) ;   A e  5  0 ? 4 ,
 Re  5  500 ,  and  f e / f o   as shown .  In all frames ,  the location of the cylinder is at its extreme upper position .

 f e  / f o   and is seen to peak at  f e  / f o  5  1 ? 0 ,  as expected ,  and then decrease as  f e  / f o   increases .
 The same behavior is noted for the r . m . s .  value of the lift coef ficient .  The base pressure
 variation is seen to drop sharply as  f e  / f o   goes from 1 ? 1 to 1 ? 12 where the vortex
 switching occurs .

 The ef fect of increasing the amplitude of the oscillation is seen in Figure 9 for
 Re  5  185 .  The instantaneous streamlines are seen on the left and the instantaneous
 vorticity contours on the right .  The greater amplitude means that the maximum
 oscillatory velocity is greater which leads to the generation of a larger (negative) base
 vorticity as the cylinder moves upward .  If we compare the vorticity-contour sequence
 in Figure 9 with the sequence for the four highest values of  f e  / f o   in Figure 6 ,  the ef fect
 of increasing  A e   (or the maximum velocity) is evident .  The downsweep of the upper
 vortex is greater and the switching of the larger vortex from the upper side to the lower
 side occurs at a slightly smaller value (  f e  / f o  5  1 ? 1) than for the case of  A e  5  0 ? 4 .

 We next increased the Reynolds number to 500 with  A e  5  0 ? 4 ,  keeping the flow as
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 Figure 10(b) .  Instantaneous streamlines (left column) and vorticity contours (right column) ;   A e  5  0 ? 4 ,
 Re  5  500 ,  and  f e / f o   as shown .  In all frames ,  the location of the cylinder is at its extreme upper position .

 viscosity-dominated and two-dimensional .  The instantaneous streamlines and vorticity
 contours for this case are shown in Figure 10 .  Switching of the larger vortex to the
 lower side of the cylinder in this case occurs between values of  f e  / f o   of 1 ? 0 to 1 ? 05 ,
 which is slightly less than the Re  5  185 result .

 The ef fect of increasing the Reynolds number to 1  000 while keeping the flow as
 viscosity-dominated and two-dimensional is shown in Figure 11 .  The switching in this
 case actually occurs for  f e  / f o  ,  1 ,  i . e .,  between 0 ? 95 and 1 ? 0 .  At  f e  / f o  5  1 ? 0 ,  the lower
 vortex is the larger vortex and the upper vortex remains tight against the cylinder for
 f e  / f o  5  1 ? 05 ,  the highest value for which we made calculations at this Reynolds number .
 The plots of instantaneous streamlines show the various saddle points that are present
 in this flow .  Comparing Figures 9 and 10 shows that the wake vortices are tighter
 behind the cylinder for the higher value of Re while the switching occurs at a lower
 value of  f e  / f o .

 The influence of Reynolds number on switch frequency is shown in Figure 12 for
 A e  5  0 ? 4 .  There is a consistent decrease in  f e  / f o   value as Re increases .  Even though the
 flow at the higher value of Re has a reasonably developed turbulent wake which is not
 properly represented in these calculations ,  we expect that the trend shown here is
 correct although the complete flow field is not depicted accurately .
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 Figure 11 .  Instantaneous streamlines (left column) and vorticity contours (right column) ;   A e  5  0 ? 4 ,
 Re  5  1  000 ,  and various  f e / f o .  In all frames ,  the location of the cylinder is at its extreme upper position .
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 Figure 12 .  Switch frequency versus Re at  A e  5  0 ? 4 .



 VORTEX FORMATION FROM OSCILLATING CYLINDER  541

 6 .  CONCLUSIONS

 These calculations support the contention of Gu  et al .  (1994) that the mechanism of
 vortex switching from one side of the cylinder to the other is the development to a high
 degree of concentration of vorticity in the wake of the approach flow to the cylinder .
 This concentration of vorticity involves the entire near wake and results in a tighter
 vortex structure as the  f e  / f o   ratio increases .  The ef fect of increasing the amplitude of
 oscillation at Re  5  185 is shown to lower the value of  f e  / f o   at which vortex switching
 occurs .  Similarly ,  increasing the Reynolds number to 500 and then to 1  000 at a given
 amplitude has the same ef fect ;  the value of  f e  / f o   at which switching occurs is decreased .
 A sharp change in base pressure is also noted as switching occurs at Re  5  185 .
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