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Insect wings usually are flexible and deform significantly under the combined inertial

and aerodynamic load. To study the effect of wing flexibility on both lift and thrust

production in forward flight, a two-dimensional numerical simulation is employed to

compute the fluid–structure interaction of an elastic wing section translating in an

inclined stroke plane while pitching around its leading ledge. The effects of the wing

stiffness, mass ratio, stroke plane angle, and flight speed are considered. The results

show that the passive pitching due to wing deformation can significantly increase

thrust while either maintaining lift at the same level or increasing it simultaneously.

Another important finding is that even though the wing structure and actuation

kinematics are symmetric, chordwise deformation of the wing shows a larger magni-

tude during upstroke than during downstroke. The asymmetry is more pronounced

when the wing has a low mass ratio so that the fluid-induced deformation is significant.

Such an aerodynamic cause may serve as an additional mechanism for the asymmetric

deformation pattern observed in real insects.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The membranous wings of flying insects usually possess significant structural flexibility and deform considerably
during flight (Combes and Daniel, 2003; Wootton, 1999). Such wing elasticity has recently become an important topic of
research in the area of the flapping-wing aerodynamics. Observations of the kinematics of insect wings have shown that
the deformation generally includes both chordwise and spanwise deflections (Ennos, 1988). In many studies, these two
types of deformation have been decoupled in the structural representation of the wing so that the model complexity can
be reduced and the aerodynamic effect of each type can be investigated separately.

Experiments on the wing flexibility have been carried out using heaving-only airfoils or membranous wings in
rotational motion (Heathcote et al., 2004, 2008; Mazaheri and Ebrahimi, 2010), and they have demonstrated that both
chordwise and spanwise deformations can have positive impact on the thrust performance of the wing. A recent
experiment (Ramananarivo et al., 2011) using a mechanical wing self-propelled in air showed that the flapping frequency
needs to be significantly lower than the natural frequency of the wing structure in order to achieve maximum thrust and
power efficiency.
ll rights reserved.

x: þ1 615 343 6687.

Luo).

www.elsevier.com/locate/jfs
www.elsevier.com/locate/jfs
dx.doi.org/10.1016/j.jfluidstructs.2012.07.006
dx.doi.org/10.1016/j.jfluidstructs.2012.07.006
dx.doi.org/10.1016/j.jfluidstructs.2012.07.006
mailto:haoxiang.luo@vanderbilt.edu
dx.doi.org/10.1016/j.jfluidstructs.2012.07.006


F.-B. Tian et al. / Journal of Fluids and Structures 36 (2013) 149–161150
On the computational side, several models of cruise flight have been developed to simulate the fluid–structure
interaction between an elastic wing and its surrounding air. In Zhu (2007) and Michelin and Llewellyn Smith (2009), an
oscillatory plate at low angles of attack was used to study thrust production of the wing. Inviscid flow was assumed in
their models, and the unsteady wake was accounted for by introducing discrete vortices coming off the trailing edge.
Zhang et al. (2010), Spagnolie et al. (2010), and Unger et al. (2012) performed two-dimensional (2D) simulations of the
viscous incompressible flow to study the passive pitching of elastically mounted panels or deformable airfoils. Full three-
dimensional (3D) studies were also carried out for flexible plunging airfoils to incorporate chordwise and spanwise
deformations (e.g., Chimakurthi et al., 2009). In these models, the wing moves in the transverse direction with respect
to the flow, and thrust production of the wing is the main focus of the study. In spite of specific wing models being
adopted, all these studies have shown that processing some level of structural flexibility may significantly enhance thrust
production.

For flapping wings, hovering motion is often used as the flight mode in a study of lift production. If the actuation
kinematics of the wing remains the same, then hovering flight can be viewed as the limiting case of forward flight where
the free stream velocity (or flight speed) is zero. Using a two-link model representing a chordwise section, Vanella et al.
(2009) found that the flexibility can enhance the wing performance by increasing the lift-to-drag and lift-to-power ratios,
and that the best performance is obtained when the flapping frequency is near one-third of the natural frequency of the
wing structure. With a similar model, Eldredge et al. (2010) investigated the effect of wing flexibility in a range of hovering
kinematic parameters. They found that a mildly flexible wing has robust and good performance for a wide range of phase
differences between pitching and heaving. Using a dimensionless mass ratio to characterize the relative importance of the
inertial force with respect to the aerodynamic force, Yin and Luo (2010) and Dai et al. (2012) performed respectively 2D
and 3D simulations to study the performance of a hovering wing at different load combinations. They showed that the
dynamic pitching of the wing chord depends largely on the mass ratio and when the aerodynamic torque is comparable to
the inertial torque in twisting the wing, the lift efficiency can be further improved significantly.

Insects obviously need both lift and thrust during forward flight. The two force components can be simply achieved by
adjusting the angle between the forward direction and the stroke plane, i.e., the plane spanned by wing strokes. However,
the details of force production are more complicated than re-orientation of the force vector. The reason is that when the
stroke plane angle is less than 901 and the free stream velocity is non-zero, the flow becomes asymmetric between
upstroke and downstroke, which leads to the net lift and drag that cannot be calculated through trivial force re-
orientation. This argument is illustrated in Fig. 1, where it can be immediately seen that even if the wing kinematics is
symmetric in a rotated coordinate system, the resultant aerodynamic force during downstroke would be higher than that
during upstroke due to the presence of the free stream.

A direct consequence of the flow asymmetry is that the wing deformation may differ between the two half-strokes if
the aerodynamic torque around the torsional axis is large enough to twist the wing. In fact, insect wings typically exhibit
significant asymmetric deformation patterns, with the magnitude during upstroke greater than during downstroke
(Wootton, 1993). Such a feature is beneficial for the aerodynamics since it reduces the projected wing area and leads to
less negative lift during upstroke. Previously, this asymmetry has been mainly attributed to the directional bending
stiffness in the wing structure, e.g., one-way hinge (Wootton, 1981), or a pre-existing camber in the wing surface
(Wootton, 1993). So far it is still not clear whether the aerodynamic force plays a significant role in this problem.
As illustrated in Fig. 1, the aerodynamic force on the wing has a higher magnitude during downstroke. However,
instantaneous deformation of the wing chord depends on a combination of the asynchronous aerodynamic and inertial
forces, and its asymmetry is therefore not straightforward to predict.

In order to investigate the issues raised here, we propose to study the elastic wing section illustrated in Fig. 1 and
consider the stroke plane angle and free stream velocity two variable parameters in addition to the material properties of
the wing. While studying lift, thrust, power, and the effect of wing flexibility on these quantities, we will discuss the
possible asymmetry in the wing deformation.
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Fig. 1. A schematic illustration of the aerodynamic force on a wing chord in a free stream during downstroke and during upstroke, where b is the stroke

plane angle.



y

x

β

α (t) l

αpX (t) f

n

M
t

τ

q

dl

Fig. 2. (a) A schematic illustration of the forward flight model, where the wing section translates and pitches in a free stream. The active and passive

pitch angles are denoted by a and ap , respectively. (b) A wing segment illustrating the in-plane tension t, the transverse stress q, and the bending

moment M.

F.-B. Tian et al. / Journal of Fluids and Structures 36 (2013) 149–161 151
2. Problem formulation and numerical approach

We consider a wing section with chord length c as shown in Fig. 2. The velocity of the uniform free stream is U0.
The wing is assumed to be clamped at the leading edge, and the clamping device undergoes a combined translational and
rotational motion,

X0ðtÞ ¼
A0

2
cosð2pftÞ½cos b, sin b�,

aðtÞ ¼ am

2
sinð2pftþfÞ, ð1Þ

where X0 ¼ ½x0,y0� is the position of the leading edge, b is the stroke plane angle, a is the angle between the leading edge
and the line perpendicular to the stroke plane, A0 is the stroke distance of the leading edge, am is the amplitude of active
pitching, f is the flapping frequency, and f is the phase difference between the rotation and translation. Note that the
actuation kinematics as described in Eq. (1) is symmetric between the two half-cycles when viewed in the coordinate
system rotated by an angle b. Deviation of the leading edge from the stroke plane as illustrated in Fig. 1 has been
neglected.

The structural model of the wing is the same as that in Yin and Luo (2010). In this model, the wing is assumed to be
elastic and nearly inextensible, and its dynamics is governed by the following non-linear equation:

rs

d2X

dt2
¼
@

@l
ðttþqnÞþf, ð2Þ

where rs is the constant linear density of the wing, X¼ ½x,y� is a material point on the wing, l is the arc length from the
leading edge, t¼ @x=@l is the unit tangent vector pointing in the direction of increasing l, n is the unit normal vector, t is
the tension, q is the transverse stress, and f is the aerodynamic load distributed on the wing. These internal and external
loads on a segment of the wing are shown in Fig. 2(b). The tension is proportional to the tangential strain and is written as

t¼ ES
@X

@l0

����
�����1

� �
, ð3Þ

where ES is the stretching coefficient of the wing and is large for the nearly inextensible wing, and l0 is the arc length in the
unstretched state. The bending moment M in Fig. 2(b) is linearly related to the local curvature k by M¼ EBk, where EB is
the bending modulus and k¼�n � ð@2X=@l2

Þ (this is deduced from @t=@l¼�kn), and the transverse stress is then given by

q¼
@M

@l
¼
@ðEBkÞ
@l

: ð4Þ

The boundary conditions at l¼0, or the leading edge, include the specified position and orientation given by Eq. (1), i.e.,

X¼X0ðtÞ,
@X

@l
¼ ½sinðaþbÞ, �cosðaþbÞ�: ð5Þ

At the trailing edge, l¼c, both M and q vanish, which requires k¼ 0 and @k=@l¼ 0. Therefore, we have

@2X

@l2
¼ 0,

@3X

@l3
¼ 0: ð6Þ

The flow is governed by the viscous incompressible Navier–Stokes equation and the continuity equation,

@vi

@t
þ
@vjvi

@xj
¼�

1

rf

@p

@xi
þnf

@2vi

@x2
j

,

@vi

@xi
¼ 0, ð7Þ
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where vi is the velocity, rf and nf are the fluid density and viscosity, and p is the pressure. No-slip and no-penetration
conditions are specified at the surface of the wing. To parameterize the problem, we define the non-dimensional groups
that include the normalized wing stroke, Reynolds number, velocity ratio, mass ratio, and frequency ratio, given
respectively by

A0

c
, Re¼

Uc

nf
, Ur ¼

U0

U
, mn ¼

rs

rf c
, on ¼

of

on
¼

2pf

on
, ð8Þ

where U ¼ 2fA0 is the average translational velocity of the leading edge, of ¼ 2pf , and on ¼ k2
n=c2

ffiffiffiffiffiffiffiffiffiffiffiffi
EB=rs

p
with kn¼1.8751

is the frequency of the first natural vibration mode of the wing (Landau and Lifshitz, 1986). Physically, mn represents the
ratio between the inertial force of the wing and the aerodynamic pressure, and on represents the wing flexibility.

In the present work, we choose Re¼100, A0=c¼ 1:25, am ¼ p=4, and f¼ 0, which corresponds to a symmetrical pitching
motion (Wang et al., 2004). The velocity ratio is Ur¼0.4 or 0.8. These parameters describing the wing kinematics are
selected based on the previous work on insect flight (Maxworthy, 1981; Sun and Wu, 2003; Wang et al., 2004). Three mass
ratios are considered, mn ¼ 1, 2.5, and 5, which represent the light, medium, and heavy wing, respectively. These values are
based on estimate of the surface density of several insect wings (Dai et al., 2012; Yin and Luo, 2010). Although the specific
Reynolds numbers for those insects are very different, previous studies (Dai et al., 2012; Vanella et al., 2009) have shown
that the effect of wing flexibility is quite consistent for Reynolds numbers up to order of 1000. The frequency ratio on is
chosen to vary among 0.0, 0.1, 0.2, y, 0.8, where on ¼ 0:0 represents a rigid wing and on ¼ 0:8 means that the wing flaps
near the natural frequency and is most flexible. It should be noted that the resonant frequency of the system is not exactly
the same as the natural frequency of the wing due to the presence of the fluid, and the former frequency could be
somewhat lower because of the added-mass effect. Further increasing on to nearly one, i.e., flapping at the natural
frequency, would lead to exceedingly large deformation and adverse force production. More discussion regarding this
situation can be found in the previous works (Ramananarivo et al., 2011; Vanella et al., 2009; Yin and Luo, 2010).

The equations governing the system, Eqs. (2) and (7), are solved numerically in an implicitly coupled manner using an
in-house solver. Specifically, the incompressible flow is solved using a sharp-interface immersed-boundary method with a
special treatment to suppress the pressure oscillations associated with the moving boundaries (Luo et al., 2012). In this
method, a single-block Cartesian grid is used to discretize the Navier–Stokes equation on a rectangular domain, and a
standard central difference scheme is used to discretize all the spatial derivatives. Near the solid surface, the ghost nodes
and hybrid nodes are defined to facilitate the interpolation of the flow variables. The Crank–Nicolson scheme is used for
the temporal discretization, and a projection-correction approach is used to obtain the pressure and divergence-free
velocity field. The infinitely thin membranous wing is augmented with an artificial thickness that is about three times of
spacing of the Cartesian grid, and the thickness is automatically reduced as the grid is refined. The wing section is
discretized by a set of Lagrangian points distributed uniformly along the wing. A second-order finite-difference scheme is
used to calculate the curvature of the wing and to discretize the spatial derivatives in Eq. (2) as well as the associated
boundary conditions.

The fluid–structure coupling at each time step is done in an iterative manner. Within each iteration, Eqs. (2) and (7) are
solved successively, where the pressure and viscous stresses are updated by the flow solver and are then transferred to the
wing as the external load, and the displacement and velocity of the wing are updated by the structural solver and are then used
as the boundary conditions for the flow. Furthermore, inner iterations are used within each solver to update the solution
variables. To ensure convergence, the pressure load and wing velocity are multiplied by a relaxation factor smaller than one
before being transferred between the two solvers. The overall approach is similar to that in Fitzgerald et al. (2011).

The simulation setup is similar to that in Yin and Luo (2010). The computational domain has a size of 25c�20c.
We have done extensive tests to make sure that the domain is large enough to achieve satisfactory accuracy of the results.
A recent research on hovering flexible wings (Fitzgerald et al., 2011) also used a similar domain size. The entire domain
consists of a non-uniform Cartesian grid of 240�272 points. The mesh contains a horizontal band of width 3c and a
vertical band of width 4c in which the grid points are uniformly and densely distributed such that the grid spacing
Dx¼Dy¼ 0:025c. A total number of 100 nodes are used to discretize the wing section. The time step size is Dt¼ 0:0025T

where T is the period of a flapping cycle. In addition, a grid refinement study has been performed to make sure that the
simulation results are grid-independent.

3. Results and discussion

We will first consider two flight speeds, Ur¼0.4 and 0.8, and stoke plane angle at b¼ p=4, and we will discuss in detail
lift/thrust production and wing deformation. Once the underlying mechanism of fluid–structure interaction becomes clear,
we will then study the effect of the stroke plane angle systematically.

3.1. Effect of wing flexibility on the aerodynamic performance

Fig. 3(a,b) shows the thrust and lift coefficients, CT ¼ 2FT=ðrf U2cÞ and CL ¼ 2FL=ðrf U2cÞ, averaged over more than 20
flapping cycles for Ur¼0.4 and b¼ p=4. Here FT and FL are thrust and lift, respectively. The results are shown for the mass
ratio at mn ¼ 1, 2.5, 5 and frequency ratio on from 0 to 0.8. It can be seen that for all mass ratios, wing flexibility has a
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significant effect on the force production. Specifically, the thrust coefficient peaks at a certain frequency ratio that is
between on ¼ 0:5 and on ¼ 0:7, and the peak value is at least three times of that for the rigid wing. For the lift coefficient,
the moderate wing flexibility at on ¼ 0:3–0.4 leads to a 15–30% increase compared to the rigid wing. Therefore, the wing
flexibility in the current study could enhance both thrust and lift at the same time. Due to the presence of the free stream,
however, the benefits on lift and thrust are not equal even for b¼ 451.

As the wing becomes overly flexible at high frequency ratios, both thrust and lift start to drop sharply, and in particular,
the lift coefficient could become negative. Therefore, this result appears to be consistent with the previous study
(Ramananarivo et al., 2011) which suggests that flapping at the natural frequency of the wing may not be beneficial for
insects from an aerodynamics point of view.

Comparing the three mass ratios, we see that the wing inertia has a great influence on the thrust production. Fig. 3(a)
shows that at low frequency ratios, mn ¼ 1 has the highest thrust, while at high frequency ratios, mn ¼ 5 leads to the
greatest thrust. In addition, as mn is increased, the peak thrust becomes much higher, and the corresponding optimal on

also becomes larger. For mn ¼ 1, the optimal on is around 0.5, and for mn ¼ 2:5 and 5, this optimal value is near on ¼ 0:7.
The mass ratio effect on thrust reported here is consistent with that in hovering flight (Yin and Luo, 2010) where b¼ 0 and
Ur¼0. On the other hand, Fig. 3(b) shows that the effect of the mass ratio on lift is much less significant. All three mass
ratios exhibit a similar trend as on is raised.

To analyze power consumption of the wing, we calculate the net aerodynamic power according to P¼�
R L

0 f � v dl,
where f is the hydrodynamic traction on the wing and v is the local velocity of the wing. Note that the instantaneous
aerodynamic power could be negative since the fluid may do work to the wing temporarily. The power coefficient, CP, is
defined as the aerodynamic power P normalized by ð1=2Þrf U3c, and its time-averaged value is plotted in Fig. 3(c). It can be
seen that at relatively low flexibility, ono0:3, the power coefficients for all three mass ratios are very close to each other,
and in this region, the flexible wing leads to somewhat higher power requirement than the rigid wing. As the flexibility is
further increased to on40:3, the power requirement becomes drastically different for the three mass ratios. For mn ¼ 5,
the power coefficient rises quickly as on is increased; for mn ¼ 2:5, it first rises and then drops; and for mn ¼ 1, it displays
an overall decreasing trend. Thus, for the wings with high flexibility, a high mass ratio leads to significantly greater
aerodynamic power requirement than a low mass ratio.

Fig. 3(d) shows the amount of wing deformation as measured by the amplitude of the passive rotation angle, ap, which
is defined as the angle between the undeformed chord and the line connecting the leading and trailing edges (see Fig. 2).
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The amplitude of this angle is obtained by dividing the difference between the maximum and minimum values of ap by a
factor of 2. As expected, Fig. 3(d) shows that the amount of wing deformation increases as the frequency ratio is raised.
At on ¼ 0:8, the nodal displacement of the trailing edge reaches 0.6c, which justifies the need for the current non-linear
model of the wing. Another observation is that at each frequency ratio, the amount of wing deformation is comparable for
the three mass ratios. This feature allows us to focus on the effect of the dynamic wing deformation rather than the
magnitude of deformation when comparing different mass ratios.

To show power efficiency of the wing, we present the thrust-to-power ratio, CT=CP , and the lift-to-power ratio, CL=CP , in
Fig. 3(e,f), respectively. Overall, the flexible wing may show significantly higher power efficiency compared to the rigid
wing. For thrust efficiency, the optimal frequency ratio appears to be around on ¼ 0:6, even though this value is not well
defined for mn ¼ 2:5 or 5. The peak thrust efficiency may be four times of the efficiency of the rigid wing. For lift efficiency,
the wing flexibility at ono0:3 also leads to some advantage over the rigid wing, although the power saving is less than
10% and is much less greater than the saving for the thrust. Comparing the mass ratios, we note that mn ¼ 1 in general
leads to a greater thrust efficiency than mn ¼ 2:5 and 5 when ono0:7. However, for lift efficiency, mn ¼ 1 does not have
particular advantage over the other two mass ratios unless for high wing flexibility, on40:5.

Another series of simulations are performed for a higher flight speed, Ur¼0.8, while the stroke plane angle remains at
b¼ 451. Thrust, lift, and their efficiency coefficients are plotted in Fig. 4. Compared to the corresponding results in Fig. 3 for
Ur¼0.4, the thrust coefficient for Ur¼0.8 has become significantly lower, while the lift coefficient has increased greatly.
Both results are intuitive if the wing is viewed as a fixed airfoil. Another observation from Fig. 4 is that the overall effect of
the wing flexibility on thrust/lift production and power efficiency is consistent with what is seen in Fig. 3. Furthermore, the
optimal frequency ratios for thrust and thrust efficiency are now between on ¼ 0:6 and 0.7, both becoming higher as Ur is
increased. On the other hand, the optimal frequency ratio for lift is changed only slightly and is now between on ¼ 0:2 and
0.4. Comparing different mass ratios at Ur¼0.8, we notice that the lowest mass ratio, mn ¼ 1, does not have clear advantage
over the other two mass ratios in terms of power efficiency because this case has a higher thrust-to-power ratio but a
lower lift-to-power ratio when on is less than 0.4. This result is different from that in the hovering flight, where a low mass
ratio would lead to significantly less power consumption (Dai et al., 2012; Yin and Luo, 2010).
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3.2. Instantaneous forces and deformation pattern

To show the relationship between the wing deformation and force production, we need to look into the thrust/lift
histories and the instantaneous motion of the wing. For this purpose, we choose two cases where b¼ 451, Ur¼0.4,
on ¼ 0:6, and mn ¼ 1 or 5. The histories of the thrust, lift, and power coefficients are plotted in Fig. 5, and the corresponding
deformation patterns are shown in Fig. 6. The wing displacement in these two cases is fairly large, which makes its effect
easy to see.

In Fig. 5, the half-cycles representing downstroke have been shaded to better identify the phases of a stroke. As a
reference, data for the corresponding rigid wing is also plotted. From Fig. 5(a,b), it can be seen that for both rigid and
flexible wings, the downstroke stage in general produces lift, and the upstroke produces thrust, which is expected for
insect flight (Wang, 2005). Significant differences can be observed between the flexible and rigid wings and also between
the high and low mass ratios. Fig. 5(a) shows that for the rigid wing, most of the thrust is produced prior to mid-upstroke,
while for the flexible wings, thrust is mainly produced after mid-upstroke and even during the early stage of pronation.
Examining the wing deformations shown in Fig. 6(a,b), we observe that during the early stage of upstroke, the flexible
wings have a reduced frontal area due to the bending deformation. After mid-upstroke the wings recover from their
deformation, and the elastic recoil assists the wings with the thrust production. Another observation is that the wing with
a high mass ratio, mn ¼ 5, produces the highest peak thrust among the three cases, which is consistent with the averaged
thrust in Fig. 3(a). For the low mass ratio, mn ¼ 1, the recoiling motion of the wing is slowed down by the fluid force during
the wing deceleration in late upstroke, and thus its thrust has a lower amplitude compared to mn ¼ 5. On the other hand, a
significant portion of negative thrust is produced for mn ¼ 5 during downstroke. This force is apparently caused by the
inertia-induced wing deformation toward the end of downstroke.
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The lift production in Fig. 5(b) shows that peak lift is generated around mid-downstroke for the rigid and mn ¼ 5 cases,
but it can be somewhat delayed for mn ¼ 1. Note that cycle-to-cycle variations can be observed for all three cases, and they
are more pronounced for the two flexible wings. Like thrust production, the wing with mn ¼ 5 has the highest force
oscillations among the three cases, and a significant portion of negative lift is created toward the end of upstroke when
wing is pitching upward due to its own inertia. For mn ¼ 1, the negative lift is much less, and it is produced at a later time
after the pronation when the wing starts a downstroke. In the present model, the wing forms a reverse camber from
pronation to mid-downstroke as seen in Fig. 6(a,b), which is not beneficial lift production. As discussed in Dai et al. (2012),
this issue can be alleviated by introducing a pre-existing camber into the model to counteract this downside effect.

Power output here is realized by the wing doing work to the surrounding fluid through the lift and thrust forces.
Therefore, both downstroke and upstroke would require a significant portion of power, which is seen from the history of
the power coefficient in Fig. 5(c). Comparing the three cases, we notice that the case with mn ¼ 5 has the most power
requirement for both downstroke and upstroke and the other two cases have comparable levels of power.

The high power consumption in the case of mn ¼ 5 can be understood from the thrust and lift characteristics of the
wing. During downstroke, the wing does work to the fluid through the positive lift and also through the negative thrust
after the mid-stroke when the wing, driven the inertia-induced deformation, moves against the free stream. During
upstroke, the wing does work through the positive thrust and also through the negative lift, again due to the inertial
deformation, near the end of the half-stroke. A similar effect of the mass ratio on power consumption has been discussed
for hovering flight previously in Yin and Luo (2010).

Fig. 6(c) shows the instantaneous passive pitch angle, ap, for mn ¼ 1, 5, and 1 at on ¼ 0:6. Note that mn ¼1

corresponds to the in-vacuum situation where no fluid force is involved. The active pitch angle, a, is also plotted in Fig. 6 as
a reference of the phase. It can be seen that there is a consistent phase lag in the passive pitching as the mass ratio is
reduced from mn ¼1 to 1. With respect to the active pitch angle, the high-mass-ratio case with mn ¼ 5 shows an advanced
effective pitching motion, while the low-mass-ratio case with mn ¼ 1 shows a delayed effective pitching motion.
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In addition, for mn ¼ 1, the passive pitching during the downstroke is significantly prolonged due to the effect of the fluid-
induced deformation. These effects of the mass ratio are consistent with the report in Dai et al. (2012) for hovering flight.
As in Dai et al. (2012), the instantaneous pitch angle and pitching rate of the wing are closely related to the thrust/lift
characteristics described earlier, and the interaction can be explained by combining the effects of the aerodynamic,
inertial, and elastic forces.

An important focus of the present work is the asymmetry in the wing deformation between the two half-strokes. Such
an asymmetry can be seen in Fig. 6(c) for mn ¼ 1, where the maximum passive pitch angle is close to 301 during
downstroke but is near 481 during upstroke. For mn ¼ 5, the asymmetry is less pronounced, and the reason is that the
inertial effect dominating the deformation in this case is symmetric, and the asymmetric aerodynamic effect plays only a
minor role.

We further use the cases in Fig. 3 and plot the maximum magnitude of the passive pitch angle during downstroke
separately from that during upstroke. The result is shown in Fig. 7(a) for mn ¼ 1 and 5. It can be seen that for all the
frequency ratios, the deformation during upstroke is consistently higher than that during downstroke. Furthermore, as the
wing becomes more flexible, the asymmetry becomes greater. Beyond on ¼ 0:5, the asymmetry appears to be relatively
constant, where for mn ¼ 1, the difference in the passive pitch angle is 15–181 between the two half-strokes.

To confirm that the observed asymmetry is due to the presence of the free stream, we have set Ur¼0 in the simulation,
and the result shows that the deformation pattern becomes mostly symmetric for both mn ¼ 1 and 5. It should be pointed
out that a small amount of asymmetry persists even for zero free stream velocity due to the intrinsic behavior of the flow,
which has been discussed previously (Godoy Diana et al., 2009). In order to understand the asymmetry shown in Fig. 7(a),
we plot in Fig. 7(b) the passive pitch angle along with the torque around the leading edge produced by the aerodynamic
force for b¼ 451, Ur¼0.4, mn ¼ 1, and on ¼ 0:6. The corresponding wing deformation for this case has been shown in
Fig. 6(a). In Fig. 7(b), the aerodynamic torque in both half-cycles peaks after mid-stroke when the wing starts to perform
the pitching rotation. Furthermore, the magnitude of the downstroke peak is significantly higher than that of the upstroke
peak, which is understandable since the wing translates and rotates against the free stream after the mid-downstroke. As a
result, the elastic recovery of the wing is delayed prior to supination. This delay is reflected in Fig. 7(b), where the passive
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pitch angle exhibits a second maximum. After supination, the wing performs upstroke and travels along the free stream at
the stroke plane angle. At this moment, the elastic energy is being quickly released. Meanwhile, the leading edge is
accelerating for its upstroke. The combined effect leaves the trailing edge much behind the leading edge, and thus the wing
forms a greater amount of deformation during upstroke. Therefore, in the present case the asymmetric aerodynamic
torque modulates the timing of storage and release of the elastic energy in the wing, which has caused the passive pitch
angle in the simulations to be different between the two half-strokes.
3.3. Effect of the stroke plane angle

To systematically investigate the effect of the stroke plane angle, we vary b from 0 to 901 and examine both force
production and the wing deformation. Fig. 8 shows the thrust/lift coefficients and also power efficiency for on ¼ 0:3,
Ur¼0.8, mn ¼ 1 and 5. The rigid wing is included for comparison. In Fig. 8(a), we see that thrust increases monotonically as
b is raised, which indicates that the force produced by the wing that is perpendicular to the stroke plane is being directed
more horizontally. On the other hand, when b is raised up to a certain degree, the wing during downstroke operates at a
favorable angle of attack with respect to the free stream, which is beneficial for lift production. This effect is shown in
Fig. 8(b), where CL generally increases before b reaches 451.

The efficiency coefficients for thrust and lift exhibit similar trends as for their respective forces. Comparing the three
cases shown in Fig. 8, we see that mn ¼ 1 consistently leads to the highest thrust and thrust efficiency, and the rigid case
has the lowest thrust. For the lift, the situation is more dependent on the stroke plane angle. For b between 601 and 751,
the rigid case leads to higher lift and a greater lift-to-power ratio than the two flexible cases.

The corresponding asymmetry in the wing deformation is shown in Fig. 9. It can be seen that for most values of b.
The wing deformation during upstroke is greater than during downstroke, and the asymmetry is more pronounced for
mn ¼ 1 than for mn ¼ 5. At b¼ 0, the wing is subject to higher drag when moving against the flow (downstroke) than
moving along with the flow (upstroke), so the asymmetry is reversed. We also point out that the wing deformation is not
exactly symmetric in the present simulation even when b¼ 901, and a small amount of net lift could be produced, as seen
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in Fig. 8(b). This non-intuitive result is referred to symmetry breaking of flapping wings and has been studied previously
using a rigid foil model that performs symmetrical pitching in a free stream (Godoy Diana et al., 2009).

3.4. Vortical flow structures

Fig. 10 shows the vorticity contours of the flow in a flapping cycle for the rigid case and a flexible case with mn ¼ 1 and
on ¼ 0:3. In both cases, b¼ 451 and Ur¼0.4. From Fig. 3, thrust is significantly higher in the flexible case, but the lift forces
are comparable in the two cases. Overall, the wake consists of a train of vortex pairs shed from the wing. The vortices are
convected by the free stream and are meanwhile directed downward, which is consistent with the lift and thrust
production of the present wing (Dong et al., 2006). Note that if the free stream is absent, the vortices would be convected
roughly in the direction perpendicular to the stroke plane, as in the previous studies of hovering flight (Eldredge, 2007; Yin
and Luo, 2010). In the current case, the free stream has caused a significant deflection of the wake. The presence of the free
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stream also affects formation of the leading-edge vortex by changing the direction of the fluid velocity relative to the wing
and reducing the effective angle of attack. Therefore, the leading-edge vortex growth, especially during upstroke, is not as
dramatic as that seen in the absence of the free stream. Nevertheless, the main vortex events observed here also appear in
hovering flight and have been discussed previously (Eldredge et al., 2010; Vanella et al., 2009), for example, re-
encountering of the leading-edge vortex by the wing after reversal, merging of the leading-edge vortex into the wake, and
pinching off of the trailing-edge vortex.

Comparing the rigid and the flexible cases in Fig. 10, we notice that the leading-edge vortex is weakened in the flexible
case, especially during downstroke. This result can be explained by the reduced angle of attack of the wing due to
deformation. In the study of hovering flight by Vanella et al. (2009), the wing flexibility does not have obvious influence on
the leading-edge vortex. This discrepancy is likely caused by the choices of the wing model. In Vanella et al. (2009), a two-
link model is used, and the leading half of the wing has exactly the same kinematics as the rigid wing. In the current model,
the wing deformation is continuous along the chord, which helps to reduce the flow separation near the leading edge.
We point out that the translation distance of the wing in the present study is relatively small (here A0=c¼ 1:25 and is close to
that of the dragonfly at the mid-span). As a result, the growth of the leading-edge vortex is not as dramatic as that seen in Yin
and Luo (2010), where A0=c¼ 2:5 is used. Nevertheless, the overall effect of the wing flexibility on the leading-edge vortex is
similar in these two works. Larger values of A0=c could lead to detachment of the leading-edge vortex in 2D simulations
(Eldredge et al., 2010), but for real insects this vortex could be stabilized by the spanwise flow (Ellington et al., 1996).

Fig. 10 shows that the wing flexibility also has a significant influence on the vortices shed from the trailing edge.
For example, the vortices are clearly stronger in the flexible case than in the rigid case since the motion of the trailing edge
is increased due to the wing deformation. This result is consistent with that in the model of Vanella et al. (2009).
Consistent with the force production and the deformation pattern, the vortices in the flow also exhibit an asymmetric
behavior between the two half-cycles. For example, the growth of the leading-edge vortex is much suppressed during the
downstroke-supination period compared to the upstroke-pronation period. In addition, the positive vortex formed during
downstroke is stronger than the negative vortex formed during upstroke. Therefore, the vortex pair of unequal strength in
the wake rotate counterclockwise while they are traveling downstream.

4. Conclusions

The two-dimensional fluid–structure interaction of an elastic wing section in the forward flight mode has been
computationally investigated in order to understand the effect of wing flexibility on thrust, lift, and power efficiency of the
wing. In the model, the leading edge of the wing translates at an angle, i.e., the stroke plane angle, with respect to the free
stream, while performing a prescribed pitching motion around itself. The normalized material properties of the wing
include the mass ratio and frequency ratio, which represent the wing inertia and bending stiffness, respectively. Note that
although the current model incorporates the chordwise deformation only, the passive pitching caused by the wing bending
can still represent pitching of a chord section in a wing with spanwise twist.

By systematically varying the frequency ratio, we found that the dynamic pitching of the wing can greatly increase the
thrust and thrust-to-power ratio while maintaining or simultaneously increasing the lift and lift-to-power ratio. In addition,
such benefits are relatively consistent for different flight speeds and mass ratios. A high mass ratio leads to greater lift and
thrust when the deformation is large, but on the other hand it requires more power input than a low mass ratio due to the
negative forces produced by the inertial oscillation of the wing. This result is consistent with the finding in the previous studies
by Luo and coworkers for hovering flight (Dai et al., 2012; Yin and Luo, 2010). Furthermore, in the hovering case, a low mass
ratio typically leads to better lift efficiency (Yin and Luo, 2010). Due to re-orientation of the stroke plane in the current study,
this advantage of the low mass ratio is translated to the thrust efficiency. On the other hand, the current study shows that the
low mass ratio does not necessarily have advantage over the high mass ratio for the lift efficiency. The reason is that during
downstroke, the fluid-induced deformation at the low mass ratio reduces the effective wing area as well as the lift force.

The optimal frequency ratio of the wing for force production is in general between 0.3 and 0.6 in the present study, which
suggests that the flapping frequency should be much lower than the natural frequency for the wing to explore the advantages
of the passive deformation. This finding is consistent with the previous numerical studies of hovering flight (Yin and Luo, 2010)
and is also supported by a recent experimental study based on a self-propelled wing model (Ramananarivo et al., 2011).

Finally, the presence of the free stream causes significant force asymmetry between downstroke and upstroke since
the drag forces produced by the two half-cycles do not cancel each other. Although it is higher during downstroke,
the aerodynamic torque modulates the timing and rate of the elastic energy released during supination. Consequently, the
wing deformation becomes asymmetric and is greater during upstroke than during downstroke. Such asymmetry persists
for a wide range of stroke plane angles and wing rigidity. Consistent with the observed wing deformation pattern of real
insects, the result reported in the current study provides a possible additional mechanism for the phenomenon in nature.
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