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Direct numerical simulation of turbulent flows
in a wall-normal rotating channel
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Direct numerical simulation (DNS) is carried out to study turbulence characteristics in a wall-normal
rotating channel with the rotation number Nτ from 0 to 0.12 and the Reynolds number 194 based on
the friction velocity of the non-rotating case and the half-height of the channel. Based on the present
calculated results, two typical rotation regimes are identified. When in weak rotation regime with
0 < Nτ < 0.05, turbulence statistics correlated with the spanwise velocity fluctuation are enhanced
since the shear rate of the spanwise mean flow induced by the Coriolis force increases, but other
statistics are suppressed. When in strong rotation regime with Nτ > 0.05, all the turbulence statistics
decrease as the effect of the Coriolis force plays a dominant role. The budgets of transport equations
for the Reynolds stresses are calculated to reveal the effect of the Coriolis force on the dynamic
process of turbulent kinetic energy production, dissipation and redistribution. With the increase of
Nτ in weak rotation regime, the main mechanism for the generation of the streamwise turbulent
energy is gradually altered from the shear production effect related to the streamwise mean flow to
the energy redistribution due to the pressure strain correlation. Correspondingly, the generation of the
spanwise turbulent energy also changes from the energy redistribution effect to the shear production
of the spanwise mean flow. In strong rotation regime, the mean flow shear rate is found to be a key
factor to the turbulence production and dissipation. The redistribution between the streamwise and
spanwise components of turbulent kinetic energy due to the effect of the Coriolis force becomes weak.
A remarkable change of the direction of the near-wall vortical structures, nearly in alignment with the
absolute mean flow direction, is observed. An attempt to evaluate the mean spacing between the streaky
structures and the angle between the wall structures and streamwise direction has been examined
based on the two-point correlations of the velocity fluctuations to reveal the change of the near-wall
structures.

1. Introduction

Rotating turbulent flow widely exists in various industrial, geophysical and astrophysical
applications. In these flows, the rotation induces additional body forces, i.e. centrifugal and
Coriolis forces, acting on the turbulent flow, so that the momentum mechanism becomes more
complicated. Understanding the mechanism of turbulent flow in a rotating system is of great
importance in applications and fundamentals.

Turbulent channel flow subjected to the wall-normal rotation is a typical problem. Such a
flow is quite different from that in a widely studied spanwise rotating channel, which is char-
acterized by the augmentation and damping of turbulence in the pressure and suction sides,
respectively, and the identification of large-scale rotation-induced roll cells due to Taylor–
Görtler instability [1–5]. Since the mean vorticity component perpendicular to the rotating
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axis appears in the wall-normal rotating channel flow, turbulence is found to be more sensitive
to the wall-normal rotation, even though weak system rotation can induce a significant span-
wise mean velocity [6]. As a result, the absolute mean flow deviates from the initial streamwise
direction, which makes all the six components of the Reynolds stress tensor nonzero and redi-
rects the mean flow and the turbulence structures. According to the findings [7], the interaction
between the vorticity of coherent structures and the background vorticity due to the imposed
wall-normal rotation can significantly change the near-wall turbulence behaviour. Recently,
Wu and Kasagi [8] studied numerically the effect of the wall-normal rotation, combined with
the streamwise or spanwise rotation, on turbulence characteristics at low rotation number. Our
recent work also provided insight into the rotation effect on some salient features of swirling
and rotational flows [9, 10].

This problem is similar to the prototype of the atmospheric planetary boundary layer,
which depends on the Reynolds number based on the geostrophic wind speed aloft and the
Ekman layer e-folding depth and the rotation number based on the normal component of the
Earth’s angular velocity [11, 12]. According to the Taylor–Proudman theorem, turbulent flow
subjected to a strong rotation will undergo a transition towards two-dimensional turbulence and
eventually towards a re-laminarized flow, which was verified experimentally. In this situation,
the turbulence dissipation rate becomes very weak and contributes little to the budget of
turbulent kinetic energy [13]. The coherent structures are verified to be more sensitive to the
Coriolis force effect induced by the wall-normal rotation [7].

Here, direct numerical simulation (DNS) is employed to investigate the rotation effect on
the wall-normal rotating turbulent channel flows for the rotation number ranging from low to
high value, especially on the dynamic process of turbulent kinetic energy and the near-wall
coherent structures. Our goal in this study is to examine the turbulence statistics, budgets of
turbulent kinetic energy and flow structures.

This paper is organized as follows. The mathematical formulation is described in section 2.
The numerical method and its validation are briefly given in section 3. In section 4, some
typical results including the turbulence statistics and structures are discussed. The budgets
of the Reynolds stress tensor are analysed to reveal the wall-normal rotation effect on the
dynamic processes of turbulent kinetic energy. Finally, concluding remarks are summarized
in section 5.

2. Mathematical formulation

2.1 Governing equations

The governing equations for the turbulent flow through a wall-normal rotating channel are
the incompressible Navier–Stokes equations. To normalize the equations, the friction velocity
uτ of the non-rotating channel flow is used as the velocity scale, and the half-height of the
channel h as the length scale. Then the non-dimensional equations are given as

∂ui

∂xi
= 0 (1)

∂ui

∂t
+ ∂ui u j

∂x j
= − ∂p

∂xi
+ δ1i + 1

Reτ

∂2ui

∂x j∂x j
− Nτ εi jk

� j

�
uk (2)

where p represents the effective pressure combined with the centrifugal force. The non-
dimensional parameters in this problem are the rotation number and the Reynolds number,



Direct numerical simulation of turbulent flows 3

Figure 1. Configuration of the wall-normal rotating channel flow.

which are defined as Nτ = 2�h/uτ and Reτ = uτ h/ν, respectively, with � being the angular
velocity of a rotating frame and ν the kinematic viscosity.

As shown in figure 1 for the sketch of the wall-normal rotating channel, the turbulent flow
between two parallel infinite walls is driven by a constant streamwise pressure gradient equal
to that of the non-rotating case. The no-slip boundary condition is set on the walls and periodic
boundary conditions are employed in the streamwise and spanwise directions.

2.2 Solutions of wall-normal rotating laminar channel flow

In the laminar flow through a wall-normal rotating channel, the streamwise and spanwise
velocity components, i.e. U and W , satisfy the equations deduced by Ekman [14] for wind-
driven laminar flow above a horizontal plane subjected to the Earth’s rotation, which can be
rewritten as

NτU = 1

Reτ

d2W

dy2
(3)

−Nτ W = 1 + 1

Reτ

d2U

dy2
. (4)

Once the no-slip condition is employed to the walls, the solution for equations (3) and (4) can
be obtained as

U (y) = − sh[k ′(y + 1)] sin[k ′(y − 1)] + sh[k ′(y − 1)] sin[k ′(y + 1)]

Nτ (ch2k ′ + cos 2k ′)
(5)

W (y) = ch[k ′(y + 1)] cos[k ′(y − 1)] + ch[k ′(y − 1)] cos[k ′(y + 1)]

Nτ (ch2k ′ + cos 2k ′)
− 1

Nτ

(6)

where k ′ = √
Reτ Nτ /2. Equations (5) and (6) indicate that both U and W vanish as the rotation

number approaches to infinity. It means that the fluid in the channel rotates like a rigid body in
this limit case. When the wall-normal rotation is weak, the streamwise velocity U is positive
over the channel, while it also changes its sign in the core region of the channel at certain
rotation number. The spanwise velocity W is always negative.

Figures 2(a) and (b) show the distributions of the streamwise and spanwise velocities
evaluated by use of (5) and (6) for the rotation number from 0 to 0.2 and the Reynolds number
Reτ = 194. It is observed that U is reduced significantly as the rotation number increases and
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Figure 2. Profiles of the velocity for the laminar flow through the wall-normal rotating channel:
(a) streamwise; (b) spanwise component.

even becomes a small negative value in the core region of the channel subjected to a strong
rotation (e.g. Nτ = 0.12, and 0.2). However, the Coriolis force enhances the spanwise velocity
W in the weak rotation case (e.g. Nτ = 0.01) and suppresses it remarkably at higher rotation
number. According to these features, the rotation number is chosen as from 0.01 to 0.12 in
this study to examine the effect of the Coriolis force on the turbulent flows.

3. Numerical method

To solve the incompressible Navier–Stokes equations (1) and (2), a fractional-step method
developed by Orlandi [15] is used. Spatial derivatives are discretized by a second-order central
difference. Time advancement is carried out by the semi-implicit scheme using the Crank–
Nicholson scheme for the viscous terms and the three-stage Runge–Kutta scheme for the
convective terms. The discretized formulation was described in detail by Orlandi [15]. This
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method simplifies the boundary condition of the non-solenoidal velocity field, while remains
the feature of the algorithm developed by Kim and Moin [16] and Rain and Moin [17], and
has the additional advantage that the minimum amount of computer run-time memory is
realized.

In the present study, the Reynolds number Reτ is chosen as 194, which is the same as that used
by Kristoffersen and Andersson [4] in their DNS of the spanwise rotating channel flow. The
mesh number is 193×161×129 with the corresponding computational domain 4πh×2h×2πh
in the streamwise, wall-normal and spanwise directions, respectively. According to Kim et al.
[18], this grid system is enough to resolve all essential scales of the low-Reynolds-number
turbulence and contains the largest scale structures in the channel. A stretching transformation
is employed to obtain fine grid resolution in the wall regions. The grid point next to the
wall is located at y+ = 0.3 approximately, while the largest spacing is about � y+ = 4.5
in the centre of the channel, where y+ is defined as y+ = (1 − |y/h|)Reτ . Uniform grids
are employed in the streamwise and spanwise directions with the grid spacing � x+ = 12.6
and � z+ = 9.5, respectively. To exhibit the computational domain size being large enough
in the wall-normal rotating turbulent channel flow, typical profiles of two-point correlations
of the velocity fluctuations at y+ = 5.4 are shown in figures 3(a)–(f). It is seen that these
correlations approach negligibly small values, indicating that the computational domain used
is large enough.

It is worthwhile to mention that the performance and reliability of the numerical method used
here have been verified extensively based on the DNS of rotating and non-rotating turbulent
pipe flows [19, 20]. It was ensured that the second- and higher-order turbulence statistics
compared well with available DNS results calculated by the spectral methods and experimental
data. Extensive studies have confirmed that the numerical approach with the second-order
accuracy schemes succeeded in predicting turbulence characteristics. Meanwhile, the relevant
code and method used have been verified in our previous work [21–24]. Thus, it is confirmed
that the numerical approach used here is reliable to predict turbulence characteristics in a
wall-normal rotating channel.

4. Results and discussion

4.1 Mean velocity

The profiles of the mean velocity in the streamwise and spanwise directions are shown in
figures 4(a) and (b), where yd denotes the distance from the wall, i.e. yd = 1 − |y|/h, and the
bracket 〈 〉 represents the average in time and in the horizontal plane. Figure 4 exhibits the
redirecting of the mean flow in the wall-normal rotating channel. As the rotation is imposed,
the streamwise mean velocity 〈u〉 decreases monotonically with the increase of Nτ , indicat-
ing the reduction of the wall shear rate related to the streamwise mean flow. The behaviour of
the streamwise mean velocity varying with Nτ is consistent with that predicted analytically in
figure 2(a), but the negative value of 〈u〉 disappears in the core region of the channel at high
rotation number, e.g. Nτ = 0.12, as predicted in the laminar flow case. As shown in figure 4(b),
the spanwise mean velocity 〈w〉 increases when Nτ varies from 0 to 0.08; however, when Nτ

increases further, e.g. Nτ = 0.1 and 0.12, the spanwise mean flow is suppressed obviously.
The behaviour of 〈u〉 and 〈w〉 varying with Nτ can be explained by the fact that the Coriolis
force, induced by the wall-normal rotation, is balanced not only by the viscous shear stress of
the mean flow but also by the Reynolds stress related to the velocity fluctuations in the rotating
turbulent channel flow. Differently, in the laminar flow case, it is only balanced by the mean
flow shear stress. Note that, as shown in figure 4(b), the wall shear rate of the spanwise mean
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flow at Nτ = 0.05 is somewhat larger than those for other cases, which is responsible for the
feature of turbulence statistics correlated with the spanwise velocity fluctuation and will be
discussed in the following.

The absolute mean flow direction is shown in figure 4(c), where the angle θ f is defined as
θ f = tan−1(|〈w〉/〈u〉|), i.e. the angle of the absolute mean flow with respect to the streamwise
direction. The angle increases when the rotation rate increases. The absolute mean flow deviates
from the streamwise direction with the acute angle θ f about 62◦ in the wall region and more
than 75◦ in the core region of the channel at Nτ = 0.12. It is noticed that the absolute mean
flow at Nτ = 0.05 is tilting to the spanwise direction with an angle θ f ≈ 45◦ in the core
region.

Figure 3. Two-point correlations along the homogeneous directions at y+ = 5.4: (a) R11 along the spanwise di-
rection (or spanwise); (b) R11, streamwise; (c) R22, spanwise; (d) R22, streamwise; (e) R33, spanwise; (f) R33,
streamwise. (Continued)



Direct numerical simulation of turbulent flows 7

4.2 Turbulence intensities

Turbulence intensities are shown in figures 5(a)–(c). As is well known, in pure shear channel
flow, only the streamwise mean velocity exists. The streamwise velocity fluctuation is mainly
generated by the shear process of the mean flow, while the mechanism to generate the span-
wise velocity fluctuation is the splattering effect induced by the high-speed streaky structures
rushing to the wall and the low-speed ones lifting away from the wall. Both the high- and
low-speed streaky structures are related to the shear process of the mean flow [25]. However, in

Figure 3. (Continued)
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Figure 3. (Continued)

the wall-normal rotating channel, since the Coriolis force induces the spanwise mean velocity
shown in figure 4(b), there exist both the streamwise and spanwise mean shear effects. Thus,
the production of the streamwise turbulence fluctuation u′ comes from two processes. One is
the shear process related to 〈u〉, which is the major source to generate u′ in the weak rotation
case, and the other the splattering effect associated with 〈w〉. So does the spanwise velocity
fluctuation w′, and the shear process of the spanwise mean flow will take a dominant respon-
sibility to generate w′ in the strong rotation case due to the presence of non-zero spanwise
mean velocity.
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Figure 4. Profiles of the mean velocities: (a) streamwise component; (b) spanwise component; (c) angle of the
absolute mean flow with respect to the streamwise direction.
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Figure 5. Profiles of turbulent intensities: (a) streamwise; (b) wall-normal; (c) spanwise component.
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Figure 5 shows the turbulent intensities for different rotation numbers. At low rotation
number, e.g. Nτ = 0.01 and 0.02, figure 5(a) exhibits a slight reduction of u′

rms in the wall
region, compared to that of the non-rotating case. The wall-normal turbulence intensity v′

rms
in figure 5(b) presents a similar trend to u′

rms. This behaviour at low rotation number is well
consistent with the findings [6, 8]. As Nτ increases further, the near-wall shear rate related
to 〈u〉 reduces significantly. Thus, a rapid drop of u′

rms is observed in figure 5(a). When
Nτ varies from 0 to 0.05, the spanwise velocity fluctuation w′

rms in figure 5(c) is enhanced
remarkably due to increasing spanwise mean shear rate, as shown in figure 4(b). The high
near-wall peak value of w′

rms at Nτ = 0.05, compared to other rotating cases, is attributed
to the strong shear rate of the spanwise mean flow, as mentioned above. When the rotation
rate becomes strong, the turbulence fluctuation generation is suppressed apparently by the
Coriolis force effect, which causes the reduction of all three turbulence intensities, as shown in
figure 5.

4.3 Reynolds stresses

The effect of the wall-normal rotation on the turbulent channel flow is obvious to change
the absolute mean flow direction, i.e. tilting to the spanwise direction shown in figure 4(c).
Thus, in the wall region, the elongated streaky structures generated by the shear process of
the absolute mean flow are expected to deviate from the streamwise direction and to form an
acute angle with respect to the negative z-direction. This suggests that, near the bottom wall
(y/h = −1), the high-speed (relative to the absolute mean flow) streaks, corresponding to the
sweep events [18, 26], are related to the fluid with velocity fluctuations u′ > 0, w′ < 0 and
v′ < 0 in the rotating cases, while the low-speed streaks responsible for the ejection events
correspond to u′ < 0, w′ > 0 and v′ > 0. Similar conclusion can be achieved for the elongated
streaks near the upper wall (y/h = 1). These relations between the velocity fluctuations are
helpful to determine the sign of the shear stress components in the wall regions.

In figure 6, the shear stress components 〈u′v′〉 and 〈u′w′〉 are found to be negative in
the bottom wall region, while 〈v′w′〉 is found to be positive, in consistent with the above
description. 〈u′v′〉 is mainly connected with the change of 〈u〉 and subsequently decreases
with the increase of Nτ . The weak wall-normal rotation (e.g. Nτ = 0.01 and 0.02) results
in slight alteration of 〈u′v′〉. As Nτ increases further to 0.1 and 0.12, 〈u′v′〉 becomes nearly
zero over the channel, indicating a poor correlation between the streamwise and wall-normal
velocity fluctuations subjected to a strong rotation. The distributions of 〈u′v′〉 and 〈v′w′〉 also
exhibit a linear region in the core region of the channel in the rotating cases. This behaviour of
〈u′v′〉 and 〈v′w′〉 should be ascribed to the co-existence of the streamwise and spanwise mean
flows in the rotating cases. 〈v′w′〉, which is connected with the change of 〈w〉, is enhanced
as Nτ varies from 0 to 0.05 and suppressed as Nτ varies from 0.05 to 0.12. As shown in
figure 6(c) for the profiles of 〈u′w′〉, similar trend versus Nτ is observed. These near-wall
alterations of 〈v′w′〉 and 〈u′w′〉 are attributed to the shear rate of the spanwise mean flow,
which contributes directly to the production rate of both the shear stress components, as
predicted by the transport equation of the Reynolds stress tensor. The profiles of 〈v′w′〉 and
〈u′w′〉 show clearly a dependence on the spanwise mean flow shear rate in figures 6(b) and
(c); they are strengthened for Nτ from 0 to 0.05 and weakened for Nτ from 0.05 to 0.12.

4.4 Vorticity fluctuations

The spanwise mean flow induced by the Coriolis force in the wall-normal rotating channel
gives rise to the non-zero streamwise mean vorticity 〈ω1〉. Thus, it must also contribute to
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Figure 6. Distributions of the shear stress components: (a) 〈u′v′〉; (b) 〈v′w′〉; (c) 〈u′w′〉.
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Figure 7. Profiles of the root-mean-square (rms) value of vorticity: (a) streamwise; (b) wall-normal; (c) spanwise
component.
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changing the near-wall vorticity fluctuations. The root-mean-square (rms) values of the vor-
ticity fluctuations are depicted in figures 7(a)–(c). The definition of the streamwise vorticity
fluctuation, i.e. ω′

1 = ∂w′/∂y − ∂v′/∂z, indicates that ω′
1 is mainly dominated by the wall-

normal gradient of the spanwise velocity fluctuation w′. As exhibited in figure 7(a), ω′
1 rms is

enhanced greatly for Nτ from 0 to 0.05 and suppressed for Nτ from 0.05 to 0.12.
According to the assumption of the Rankine vortex model proposed by Kim et al. [18], the

disappearance of the local maximum and minimum of ω′
1 rms is ascribed to the modification

of the size of quasi-streamwise vortical structures in the wall region of the rotating channel.
Considering the definition of the wall-normal component of the vorticity fluctuation, ω′

2 =
∂u′/∂z − ∂w′/∂x , the trend of ω′

2 rms should be attributed to the intensity of high- and low-
speed streaky structures, linked to u′ and w′, and to the separation along the streamwise and
spanwise directions between the near-wall streaks. In the weak rotation cases (i.e. Nτ = 0.01
and 0.02), ω′

2 rms decreases slightly in the wall region due to a weak reduction of u′
rms and

a significant increase of the streamwise separation of the near-wall streaks, which will be
discussed in the following. When Nτ increases further, the profiles of ω′

2 rms drop remarkably,
in particular at Nτ = 0.1 and 0.12, consistent with the totally suppressed u′

rms and w′
rms.

Correspondingly, ω′
3 rms is related to the variation of u′

rms based on the definition of ω′
3 rms.

Thus, as shown in figure 7(c), ω′
3 rms demonstrates a reasonable trend versus Nτ ; it decreases

subsequently as the rotation rate becomes stronger. In the strong rotation case (e.g. Nτ = 0.1
and 0.12), local minimum and maximum of ω′

3 rms are observed in the wall region, similar
to the distribution of ω′

1 rms in the non-rotating case. This fact implies the presence of quasi-
spanwise vortical structures near the wall, since the spanwise mean flow induced by the strong
rotation prevails over the streamwise one.

4.5 Turbulence budgets

The Reynolds stress budgets are helpful in understanding the rotation effect on dynamical
characteristics of turbulence based on the production rate, redistribution and dissipation rate
of turbulent kinetic energy. Here, our aim is to examine the influence of the wall-normal
rotation on the turbulence budgets, in particular in the wall region.

The non-dimensional budgets of Reynolds stresses for the incompressible flow are given as

∂〈u′
i u

′
j 〉

∂t
+ 〈uk〉

∂〈u′
i u

′
j 〉

∂xk
= Pi j + Ti j + Di j + �i j + πi j + εi j + Ni j . (7)

The terms on the right-hand side of equation (7) are described as follows:

Pi j = −
[
〈u′

i u
′
k〉

∂〈u j 〉
∂xk

+ 〈u′
j u

′
k〉

∂〈ui 〉
∂xk

]
production rate (PR)

Ti j = −∂〈u′
i u

′
j u

′
k〉

∂xk
turbulent diffusion (TD)

Di j = − 1

Reτ

∂2〈u′
i u

′
j 〉

∂xk∂xk
viscous diffusion (VD)

�i j = −
[
∂〈p′u′

i 〉
∂x j

+ ∂〈p′u′
j 〉

∂xi

]
pressure-velocity diffusion (PV)

πi j =
〈

p′
(

∂u′
i

∂x j
+ ∂u′

j

∂xi

)〉
pressure strain correlation (PS)
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εi j = − 2

Reτ

〈
∂u′

i

∂xk

∂u′
j

∂xk

〉
dissipation rate (DS)

Ni j = −Nτ�l(εilk〈u′
ku′

j 〉 + ε jlk〈u′
ku′

i 〉)/� Coriolis force velocity correlation (CO)

where repeated indices represent the summation over 1, 2, 3, corresponding to the streamwise,
wall-normal and spanwise directions, respectively. Here, we mainly concern the budgets of
〈u′u′〉 and 〈w′w′〉 to investigate the effect of the wall-normal rotation on the dynamic processes
of turbulence energy. The term �i j in the budgets of 〈u′u′〉 and 〈w′w′〉 vanishes, since we
have assumed that the flow is homogeneous in the streamwise and spanwise directions. The
budget terms for Nτ = 0, 0.05 and 0.12 are exhibited. All the budget terms are re-scaled by
u4

τ /ν, as suggested by Mansour et al. [27].
The budget terms of 〈u′u′〉 at Nτ = 0, 0.05 and 0.12 are shown in figures 8(a)–(c), re-

spectively. An overview in figure 8 is the remarkable reduction of all the budget terms in the
rotating cases, indicating the decrease of the streamwise turbulence fluctuation. The positive
production rate P11, as shown in figures 9(a) and (b), plays a major role for the generation of
the streamwise velocity fluctuation by the shear process of the streamwise mean flow [26] and
contributes greatly to the 〈u′u′〉 budget in the region y+ ≈ 10 at Nτ = 0 and 0.05. The pressure
strain correlation π11, responding to the energy redistribution [28], is negative in figure 8(a);
it represents that π11 drains energy from the streamwise velocity fluctuation to the other two
components in the non-rotating case. However, at Nτ = 0.12 in figure 9(c), it is noted that the
production rate P11 is overridden by the positive π11. This feature indicates that increasing
the wall-normal rotation alters the mechanism of the generation of the streamwise turbulent
energy, which is shear production due to the streamwise mean flow in the non-rotating case.
However, the energy redistibution is closely related to the pressure strain correlation in the
strong rotation case.

The levelling off of P11 in the rotating cases, as shown in figure 9(a), is formed by the
decrease of the streamwise mean shear rate ∂〈u〉/∂y and the Reynolds stress 〈u′v′〉, as men-
tioned above. In the near wall region, the balance of the 〈u′u′〉 budget is mainly due to the
interaction between D11 and ε‘11. Both the terms behave in a similar manner to P11 when
Nτ increases, as shown in figures 9(b) and (c). Special attention is paid to the Coriolis
force velocity correlation term, since it accounts for the energy redistribution between the
streamwise and spanwise turbulence fluctuations. The negative value of N11 in figure 9(d)
suggests that this term drains turbulent kinetic energy from the streamwise to spanwise
fluctuation, even though it contributes somewhat small in the 〈u′u′〉 budget, as shown in
figures 8(a)–(c).

Obvious difference is exhibited in figures 10(a)–(c), by comparing the budget terms of
〈w′w′〉 in the non-rotaing case to those at Nτ = 0.05 and 0.12. In pure shear channel flow
(i.e. Nτ = 0), since the production rate P33 is absent, the positive π33 acts as a source term to
generate the spanwise velocity fluctuation over the channel by the energy redistrition process
[25, 27]. In the region very close to the wall, D33 and ε33 are responsible for the balance of the
〈w′w′〉 budget. However, as the channel rotates, due to the presence of the spanwise mean flow,
the 〈w′w′〉 budget terms behave as those in 〈u′u′〉 in figure 8(a), in particular at Nτ = 0.12.

By comparing figures 10(a)–(c), the mechanism for the generation of the spanwise velocity
fluctuation is found to be the shear production associated with P33 for the strong rotation
case other than the energy redistribution due to π33 for the non-rotating case. In figure 10(c),
the negative π33 at Nτ = 0.12 implies the dynamic process to drain kinetic energy from the
spanwise turbulence fluctuation.

Figures 11(a)–(c) show the dependence of P33, D33 and ε33 on the spanwise mean shear
rate. They are strengthened for Nτ from 0 to 0.05 and suppressed for Nτ from 0.05 to 0.12.
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Figure 8. Distributions of the budget terms in the transport equation of 〈u′u′〉: (a) Nτ = 0; (b) Nτ = 0.05; (c) Nτ =
0.12.
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These three terms are the vital contributions to the 〈w′w′〉 budgets in the strong rotation case.
The pressure strain correlation (π33) presents a different trend from those of P33, D33 and
ε33 observed in figure 11(d), representing a gradual reduction for Nτ from 0 to 0.05. If the
wall-normal rotation is weak (i.e. Nτ < 0.05), π33 remains nearly postive over the channel,
redistributing turbulent kinetic energy to the spanwise turbulence fluctuation. However, differ-
ent situation appears as Nτ increases further; π33 changes to be negative sujected to a strong
rotation. Thus turbulent kinetic energy is redistributed to the streamwise and wall-normal
turbulence fluctuation by π33.

Figure 9. Budget terms in the transport equation of 〈u′u′〉: (a) production rate (PR); (b) dissipation rate (DS);
(c) viscous diffusion (VD); (d) Coriolis force term (CO). (Continued)
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Figure 9. (Continued)

4.6 Flow structures

As shown in figures 12(a) and (b) for the contours of the streamwise velocity fluctuation u′,
the reduction of u′ at Nτ = 0.05 is observed, since dense elongated streaky structures in the
contour plots of u′ appear in the non-rotating channel wall region. The inclined direction
of the near-wall structures is clearly exhibited. The corresponding structures based on the
wall-normal fluctuation v′ and the spanwise fluctuation w′ are also examined. The behaviour
exhibited in the flow structures is well consistent with the turbulence intensities shown in
figures 4(a)–(c).

The contours of the velocity fluctuations also demonstrate the alteration of the streamwise
and spanwise separations between the wall streaky structures, compared to the non-rotating
case. In pure shear channel flow, the streaky structures are exactly aligned with the streamwise
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Figure 10. Distributions of the budget terms in the transport equation of 〈w′w′〉: (a) Nτ = 0; (b) Nτ = 0.05;
(c) Nτ = 0.12.
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direction, arranged in the spanwise direction. This fact accounts for the distributions of the
two-point correlations of the velocity fluctuations, i.e. Ruu , Rvv and Rww, gradually falling
off to zero along the streamwise direction but exhibiting a distinct minimum along the span-
wise direction, as shown in figures 3(a)–(f). In the rotating cases, the streaky structures are
nearly aligned with the absolute mean flow, which results in finite streamwise separation
between the wall streaks, as shown in figure 12. Consequently, distinct minima occur not
only in the distributions of Ruu , Rvv and Rww along the spanwise direction but also in those
along the streamwise direction, as shown in figures 3(a)–(f). In figures 3(a)–(f), the spanwise
separations at which the minima of Ruu , Rvv and Rww occur increase monotonically with
the increase of Nτ , indicating the subsequent increase of the spanwise spacing between the
streak structures. It is interesting to note that the streamwise separations corresponding to the

Figure 11. Budget terms in the transport equation of 〈w′w′〉: (a) production rate (PR); (b) dissipation rate (DS);
(c) pressure strain correlation (PS); (d) viscous diffusion (VD). (Continued)
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Figure 11. (Continued)

minima of Ruu , Rvv and Rww also show a dependence on the spanwise mean shear rate; they
decrease when Nτ varies from 0 to 0.05 and increase when Nτ increases further, as shown in
figures 3(a)–(f).

According to Kim et al. [18], the mean spacing between the streaky structures is defined
as twice the spanwise separation corresponding to the minimum Ruu in the non-rotating
channel flow. The definition also provides an estimate of the mean spacing between the streaky
structures in the wall-normal rotating cases. As illustrated in figure 13, if the spanwise and
streamwise separations corresponding to the minima of Ruu along the spanwise and streamwise
directions are denoted as λ+

z and λ+
x , respectively, then the mean spacing λ+ can be obtained

by

λ+ = 2λ+
z λ+

x

/√
λ+ 2

z + λ+ 2
x . (8)
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Figure 12. Contours of the instantaneous streamwise velocity fluctuation in the (x , z) plane at y+ = 5.4: (a) Nτ = 0;
(b) Nτ = 0.05. Here, the increment of contours is 0.05.

Figure 13. Sketch of the near-wall streaky structures in the wall-normal rotating channel.
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Table 1. Mean spacing between the wall structures and the inclined angles of the streaky structures and the
absolute mean flow.

Nτ 0 0.01 0.02 0.05 0.08 0.1 0.12

λ+
z 53.33 61.01 67.01 85.26 148.83 205.80 275.29

λ+
x — 428.31 215.06 103.87 111.28 120.89 138.18

λ+ 106.66 120.80 127.95 131.80 178.24 208.47 246.99
θλ 0◦ 8.10◦ 17.31◦ 39.38◦ 53.21◦ 59.57◦ 63.35◦
θ f 0◦ 8.95◦ 17.61◦ 40.87◦ 55.03◦ 60.32◦ 64.27◦

It is found that the mean spacing between the streaky structures near the wall exhibits slight
augment in the weak rotation case, but increases considerably as the rotation rate becomes
stronger, as listed in table 1. The mean angle between the streaky structures and the streamwise
direction can be evaluated by

θλ = tan−1(λ+
z /λ+

x ). (9)

Table 1 also lists the corresponding angle θλ. Compared to the angle obtained by the mean
flow (θ f ) at the same (x, z) plane, it is identified that the streaky structures are basically in
alignment with the absolute mean flow although some discrepancy between θλ and θ f appears.

5. Concluding remarks

Fully developed turbulent flow in a wall-normal rotating channel is investigated by means
of DNS. When the channel flow is subjected to the wall-normal rotation, the influence of
the Coriolis force is examined for the rotation number ranging from weak (e.g. Nτ = 0.01)
to strong rotation (e.g. Nτ = 0.12). Turbulence statistical quantities are found to suffer two
rotation regimes as Nτ increases from 0 to 0.12. When Nτ increases from 0 to 0.05, the tur-
bulence statistics correlated with the spanwise velocity fluctuation are strengthened due to
increasing shear rate of the spanwise mean flow, but other statistics decrease subsequently.
While Nτ > 0.05, all the turbulence statistics diminish significantly due to the Coriolis force
effect. The dependence on the spanwise mean shear rate, increasing for Nτ from 0 to 0.05 and
then decreasing for Nτ from 0.05 to 0.12, is observed in statistical quantities correlated with
the spanwise velocity fluctuation. The budgets of 〈u′u′〉 and 〈w′w′〉 exhibit the alteration of the
dominant mechanisms to generate the streamwise and spanwise turbulence fluctuations with
the increase of Nτ . For the streamwise velocity fluctuation, the dominant mechanism changes
from shear production linked to the streamwise mean flow to the energy redistribution due to
the pressure strain correlation; for the spanwise one, however, it alters from the energy redis-
tribution to the shear production due to the rotation-induced spanwise mean flow. The energy
redistribution due to the Coriolis force contributes somewhat little to the generation of the
turbulent fluctuations. The near-wall streaky structures, redirected by the Coriolis force effect,
are proved to be in alignment with the absolute mean flow in the rotating cases. The redirection
of the turbulence structures is responsible for the distributions of two-point correlations of the
velocity fluctuations and results in the increase of the mean spacing (λ+) between the high-
and low-speed elongated streaks. The evaluation of λ+ reflects an appreciable increase of the
separation between the streaky structures when the wall-normal rotation rate increases.
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