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Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method
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In this paper, a scheme for specifying contact angle and its hysteresis is incorporated into a multiphase lattice
Boltzmann method. The scheme is validated through investigations of the dynamic behaviors of a droplet sliding
along two kinds of walls: a smooth (ideal) wall and a rough or chemically inhomogeneous (nonideal) wall. For an
ideal wall, the wettability of solid substrates is able to be prescribed. For a nonideal wall, arbitrary contact angle
hysteresis can be obtained through adjusting advancing and receding angles. Significantly different phenomena
can be recovered for the two kinds of walls. For instance, a droplet on an inclined ideal wall under gravity
is impossible to stay stationary. However, the droplet on a nonideal wall may be pinned due to contact angle
hysteresis. The steady interface shapes of the droplet on an inclined nonideal wall under gravity or in a shear flow
quantitatively agree well with the previous numerical studies. Besides, the complex motion of a droplet creeping
like an inchworm could be simulated. The scheme is found suitable for the study of contact line problems with

and without contact angle hysteresis.
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I. INTRODUCTION

Droplets sliding on a solid wall is a common phenomenon
in nature and in engineering applications, such as drops of
dew rolling on leaves, crude oil attached to rocks, pesticide
spreading over plants, and so on. These fundamental problems
have been studied with different numerical methods [1-6]. For
instance, Dimitrakopoulos and Higdon studied displacement
of 2D or 3D fluid droplets on solid surfaces in different flows
[7-10] using the spectral boundary element method; Ding et al.
used diffuse interface method to study the dynamical behaviors
of a 3D droplet on a wall in shear flows [11]; Spelt used
a level-set approach for simulations of flows with multiple
moving contact lines with hysteresis [12]; Schleizer et al. used
boundary-integral method to investigate 2D droplet subject
to shear and pressure-driven flows [13]. Recently, lattice
Boltzmann method (LBM) has also been applied in these
research areas [14-19]. Compared to the above traditional
numerical methods based on discretizations of macroscopic
continuum equations, the LBM does not require solving
the Poisson equation. It is an explicit scheme and easy to
parallelize.

Since the 1980s, several multiphase LBMs have emerged
[20-27], such as the Shan-and-Chen-type model [22,23], the
color-gradient model [20,21], the free-energy model [24,26],
and the model proposed by He, Chen, and Zhang (He-Chen-
Zhang model) [25,27]. The color-gradient model was proposed
by Rothman and Keller [20], in which a recolor step is
implemented to separate fluids (distinguished by red and blue)
with different colors and the ratio of densities is limited to
unity. The Shan-and-Chen-type LB model, which introduced
potentials between particles to model fluid flows, may be the
simplest one [22,23]. The He-Chen-Zhang model is based
on the idea of the level-set method [25]. Later, Lee and Lin
further developed the above model and achieved high density
ratio through a stable discretization of the lattice Boltzmann
equation (Lee-Lin model) [27].
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Due to mesoscopic property, the above multiphase LBMs
have some advantages over conventional methods for mul-
tiphase flows [28-32]. Hence, they are also used to model
contact line dynamics [29-32]. With the Shan-Chen model,
Kang et al. studied 2D droplets sliding on smooth walls and
investigated effects of the wettability, Bond number, droplet
size, and density and viscosity ratios of two phases [14]. Zhang
et al. [16] and Fan et al. [33] studied the function between
the apparent contact angle and the velocity of displacement
in a channel with a mean-field free-energy model and the
Shan-Chen model, respectively.

For nonideal wall, Iwahara et al. used the two-dimensional
model of Inamuro et al. [26] to study droplets on homogeneous
and chemically heterogeneous surfaces [15]. Kim ef al.
also used the model of Inamuro et al. [26] to investigate
water droplet properties on rough surfaces with periodical
distributions of pillars [19]. Kusumaatmaja and Yeomans
studied the droplet deformation when it passes through an
array of hydrophilic strips of different widths [29]. They also
studied the dynamics of liquid drops on a superhydrophobic
surface patterned with sawtooth ridges or posts [32]. Pirat
et al. studied the droplet movement in a patterned surface
using the Shan-Chen model [31]. Varnik et al. investigated the
droplet movement when it passes through strips with different
wetting properties [30]. However, most of the above studies
intend to investigate hysteresis microscopically. Besides, in
the study of Pirat et al. [31], high resolution for complex solid
boundaries may require huge computational cost. Hence, their
applications are highly limited.

Recently, Colosqui et al. [28] also investigated the contact
angle hysteresis using a LBM. Their simulation presents a
thin surface film, within which a disjoining pressure acts. By
modifying the form of the disjoining pressure, one can vary
the static and dynamic hysteresis on surfaces that exhibit the
same equilibrium contact angle [28]. However, in their study,
the description is mesoscopic. How to connect the hysteresis
parameters in the model with the macroscopic hysteresis
window (advancing and receding angles) is unknown.

Here, we focus on the macroscopic characteristic of
hysteresis, which is described by advancing and receding
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angles directly no matter what causes the hysteresis. The
advancing and receding angles could be specified in our
scheme arbitrarily. For wettability of solids, usually the
surface-energy approach is used to obtain contact angle,
which is determined by Young’s equation [5,34,35]. However,
it has been shown that a slope of the interface resulted
from the surface-energy approach is not in accord with the
prescribed contact angle [36]. Recently, Ding et al. proposed
a formulation that is derived from the geometry of interphase
around the triple line and the geometrical formulation indeed
resulted in the prescribed contact angle [36].

In this paper, we incorporate the scheme proposed by Ding
et al. into the He-Chen-Zhang model [25] and Lee-Lin model
[27]. In our scheme, the desired contact angle can be easily
obtained for ideal surfaces and contact angle hysteresis effect
can be realized for nonideal surfaces. The numerical method
will be described in detail in Sec. II.

II. MATHEMATICAL FORMULATION
AND NUMERICAL METHODS

A. Lattice Boltzmann method for two-phase flows

The multiphase LBM used here was proposed by He et al.,
in which an index function is used to track interfaces between
liquid and gas [25]. In the model, molecular interaction is
incorporated to simulate interfacial dynamics. Two distribution
functions, f; and g;, are introduced, which are able to recover
the Cahn-Hilliard equation (evolution of the index function)
and Navier-Stokes equations, respectively.
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For the 3D simulations, the D3Q15 velocity model [37] is
used because it requires less memory. In the above equations,
¢ = §x /4t is the lattice speed, where dx is the lattice unit (l.u.)
and 87 is the time step (t.8.). ¢, = ¢/+/3 is the sound speed.
T is a nondimensional relaxation time, which is related to
the kinematic viscosity by v = ¢2(t — 0.5)8t. F; = kpVV?p
denotes surface tension, where p is the density of the fluid and
k controls the strength of surface tension. G is the body force.

The equilibrium distribution functions f;'* and g;* can be
computed as,
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where ¢ and p are index function and pressure, respectively.
The weighting factors are given by w; =4/9( =0), w; =
1/9(G =1,2,3,4),andw; = 1/36(i =5,6,7,8).

In Eq. (2), I';(u) and ¥ (p) are defined as
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In this model, the Carnahan-Starling equation of state is
incorporated, i.e.,

L+bp/d+ o/’ = bp/4°
(1= bp/4) P

where RT = cf. In our simulations, a and b are settobe 12RT
and 4, respectively.
The macroscopic variables can be obtained by
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Once the index function ¢(x,?) is known, we can easily
obtain the density (p), kinematic viscosity(v) of fluids, and
relaxation factor 7, according to the following formulations:
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where o; and p, denote the densities of liquid and gas,
respectively; v; and v, denote the kinematic viscosities of
liquid and gas, respectively; 7; and 7, denote the nondimen-
sional relaxation times of liquid and gas, respectively. @max
and ¢, are the maximal and the minimum values of the
index function. In the He-Chen-Zhang model, we choose
Pmax = 0.251, @Ppin = 0.024, o, = 0.251, p, = 0.024 in the
simulations [38], so the density ratio is about 10.46.

The model developed by Lee and Lin [27] is also used to
simulate multiphase flows. The model is almost identical as
the He-Chen-Zhang model except the directional derivatives
are introduced and the collision step is split into two substeps:
prestream and poststream collisions.

B. Contact angle and its hysteresis

For an equilibrium contact angle on an ideal solid wall,
the interfacial tensions are in balance at the contact point of
three phases. The interfacial tensions and the contact angle
satisfy Young’s equation. In traditional numerical methods, the
surface-energy formulation is usually used for implementation
of wetting condition [34,35,39]. However, the scheme of using
geometric formulation has advantages over the surface-energy
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X
FIG. 1. Schematic of contact angle in 3D situations.

formulation [36]. Therefore, the geometric formulation is
adopted in this paper. The formulation is [36]

i1 =iz + tan<% - 9) |Giv12 — di-12ls (14)
where the first and second subscripts denote the coordinates
along and normal to the solid boundary, respectively. 6 is the
desired contact angle. In order to calculate the terms of Vi (¢)
and Vyr(p), alayer of ghost cells adjacent to the solid boundary
is necessary. The values of ¢; o, defined on the ghost cells, are
given by ¢; 0 = ¢ 1.

For 3D simulations, the extension of Eq. (14) is straight-
forward. Schematic of the 3D situation is shown in Fig. 1,
in which the x-y plane is supposed to be a wall and “A”
is a point in the contact line. The gradient of ¢ at point A
is —n = %,%,i—f) for the cases of a droplet inside gas.
A tangent plane “S” on the droplet surface, which passes
through point A, is also illustrated. The plane is supposed
to be perpendicular to the vector n. As illustrated in Fig. 1,
the contact angle between the wall and the interface, i.e., 6

satisfies tan(5 — 6) = OB = /1/(‘345)2 + (a¢)2 where the

overline means the length of the hne This equation would lead
to the following discrete form,

T
@i i1 =i i3 +tan<3 —9>€, (15)
where

&= \/(¢i+l,j,2 —¢i—1,j2)? + (@i jr12— Gij—12)>  (16)

In the above way, we can achieve any wettability between
fluids and solids through inputting a specified contact angle
(0° <6 <180° into Eq. (14) and Eq. (15) for 2D and
3D cases, respectively. It is noted that Eqgs. (14) and (15)
are applied only at the contact point and the contact line,
respectively.

On the other hand, in many natural and industry systems, the
solid walls are usually rough and chemically inhomogeneous
[40]. So, we further extend the above geometric formulation to
the no-ideal surfaces. In other words, contact angle hysteresis
is taken into consideration. Due to hysteresis, the contact line
remains pinned when the local contact angle 6 is within a
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hysteresis window [6,9],
Or < 0 < 0,4, (17)

where 6z and 64 denote the receding angle and advancing
angle, respectively. But if 6 is not inside the hysteresis window,
the contact line is allowed to move [41]. When 6 is greater
than 6,4, the contact line moves forward; when 6 is less than
Or, the contact line moves backward. To realize this effect, at
each time step of computation, we should first obtain the local
apparent contact angle at the contact points. Then, comparisons
of 6 with Oz and 64 are required. If 6 < Ok, 6 in Eq. (14)
should be replaced by 6g; if 6 > 64, 6 in Eq. (14) should be
replaced by 6,; else, 6 in Eq. (14) remains unchanged [6,12,
41]. Here we can see that the hysteresis effect is prescribed by
two parameters: advancing angle and receding angle, which
depend on the properties of fluids and solids [40]. This simple
implementation can realize contact angle hysteresis effect, no
matter if the hysteresis is caused by roughness or chemical
inhomogeneities.

III. RESULTS AND DISCUSSION

A. Droplet on a solid wall with prescribed wettability

First, droplet contacts with an ideal wall for six different
angles are simulated. As shown in Fig. 2 (@« = 0°, g = 0), the
top and bottom boundaries are solid walls and simple bounce-
back is applied. Periodic boundary conditions are applied to
the left and right boundaries. Hereafter, the same boundary
conditions are adopted in all cases unless otherwise specified.
In these simulations, a semicircular droplet was initialized in a
computational domain 201 x 101. The angle 6 was specified in
Eq. (14). After an evolution process, the droplet would reach an
equilibrium state. Figure 3 shows the six different equilibrium
contact angles achieved. The specified 6 is also illustrated in
the bottom of each subfigure. We find the final contact angle
obtained is highly consistent with the specified one. The final
contact angle is measured through a geometric formula [14].
In the geometric formula, if one knows the chord length “L”
and the distance from the chord to the peak of the arc “h”,
then the contact angle 6 can be calculated through tan(f) =
hL/ [(%)2 — h?]. In the six cases, the maximum discrepancy
between the measured and the specified contact angles is less
than 1°. It demonstrates the scheme is very accurate for the
treatment of wettability on an ideal wall.

FIG. 2. Schematic of a droplet on an inclined wall.
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0=30° 0=45°
0=60° 0=90°
0=120° 0=150°

FIG. 3. Different contact angles are achieved by putting different
specified 6 into Eq. (14).

An evolution process from the initial semicircular droplet
to an equilibrium state is illustrated in the following in detail.
The simulation result obtained by the He-Chen-Zhang model
is compared with that obtained by the Shan-Chen model [22].
For comparison, anondimensional parameter Oh is introduced,

i
VoHo'

where H is the width of channel and o is surface tension. In the
He-Chen-Zhang simulation, the surface tension is controlled
by the parameter «. Usually, o is proportional to x. The
relationship between o and « is determined by numerical
simulations of a droplet immersed in another fluid. Through
measuring the pressure difference (Ap) between outside and
inside the droplet at the equilibrium state, o is determined
by o = ApR, where R is the radius of the droplet. Through
several tests and linear fit, we get o = 0.01098«.

The computational domain is 601 x 201 in both the Shan-
Chen and the He-Chen-Zhang simulations. In the Shan-Chen
model, the Carnahan-Starling equation of state is used with
T =0.3102,a = 4,b = 4. The corresponding densities of
liquid and gas are p; = 0.296 and p, = 0.0283, respectively.
The corresponding surface tension is o = 0.01344, which
is measured through Laplace law. The other settings are
7 =1, =1, p, =0.18. p, represents the density of solid
wall, and different contact angles can be obtained by adjusting
its value [42]. Here, with p, = 0.18, the corresponding
equilibrium contact angle is 48° and we also set 8 = 48° in
the He-Chen-Zhang simulation. The left and right columns
in Fig. 4 are the simulation results from the He-Chen-Zhang
model and the Shan-Chen model, respectively. The time is
normalized by /o R3/o. From Fig. 4, we can see that the
interface profiles at time + = 0.015, 0.045, 0.09 obtained from
the two simulations agree well with each other. Hence, we
can see that the geometric formulation is also appropriate to
simulate dynamic contact line problems. To further validate
this point, another moving contact line problem is investigated
and compared with result of the finite element method (FEM).

In the following part, the dynamical behavior of a droplet
slipping on a neutrally wetting solid wall (6 = 90°) under
gravity is simulated (refer to Fig. 2 with @ = 90°). In this flow,

Oh =

(18)
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=0.045 /\
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FIG. 4. Comparison of interface profiles of an initially semicir-
cular droplet spreading towards the equilibrium state. The left and
right columns are results of simulation using the He-Chen-Zhang
model and the Shan-Chen model, respectively. In both simulations,
oi/pg = 10.46, u; /i, = 10.46, and Oh = 0.0553.

two important nondimensional numbers are Bond number (Bo)
and Reynolds number (Re), which are defined as,

H2
Bo= 287 (19)
o
HgH
Re = V&1 (20)
Vi

where g is the applied gravity, /g H is chosen as the charac-
teristic velocity. In the simulation, Bo = 16.459, Re = 27.885,
wi/mg = 10.46. The computational domain is 601 x 201,
R/H = 0.25. The evolutions of the droplet obtained from the
LB model and FEM are compared in Fig. 5. Both the positions
and shapes of the droplet obtained from the LBM agree very
well with those of the FEM. Obviously, the scheme for wetting
condition without hysteresis can achieve reliable result.

Furthermore, to validate our scheme for 3D cases, an
initially hemispherical droplet under gravity spreading on
a heterogeneous surface is simulated. The computational
domain is 201 x 201 x 101. The droplet is set at the center of
the wall and has radius of 40 L.u. The wall is supposed to be
hydrophilic, except for the intersecting hydrophobic strips. In
the strip areas, the contact angle is settobe 6 = 100°, and in the
other area, & = 45°. The nondimensional parameters are Bo =
45.719, Re = 30. Our simulation is almost identical to that in
Ref. [43], except the density ratio. Figure 6 shows the evolution
of the droplet at different times. We can see that the height of
the droplet decreases and the contact area increases on the
whole due to the gravity. The droplet experiences a process
of spreading symmetrically into four hydrophilic sections but
in the hydrophobic strips, it contracts inward slightly. Hence,
different wettabilities can be achieved by specifying different
0s into Eq. (15). The evolution of the droplet is consistent with
that in Ref. [43].

Through the above tests of the droplet behaviors on an ideal
wall, it is confirmed that the LBM combined with the wetting
boundary treatment is a good tool to study moving contact line
problems without hysteresis [17,18,35].
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FIG. 5. Comparison of shape and position of a droplet slipping
on a wall under gravity at different times. The time is normalized by
/H/g. The left and the right are the results of the LBM and FEM,
respectively.

B. Droplet on a nonideal wall with contact angle hysteresis

Droplet moving on a nonideal wall with contact hysteresis is
an important research topic. In this section, the wetting bound-
ary conditions are also tested for contact angle hysteresis.

t=7.40

FIG. 6. A three-dimensional droplet spreading on a heteroge-
neous surface with intersecting strips that have opposite wettability.
The time is normalized by /H/g.
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1. Droplet slipping in shear flows

In this flow, an initially semicircle droplet deforms or slips
in a shear flow driven by an upper plane moving with a constant
velocity U.

Qualitative simulation results about effect of contact angle
hysteresis are given in Fig. 7. There are four typical motion
modes of the contact points due to four specified hysteresis
windows. In Fig. 7(a), both the upstream and downstream
contact angles are always inside the hysteresis window
(0°,180°), so the two corresponding contact points are pinned
on the wall at all times. In Fig. 7(b), the upstream contact angle
varies from the right angle to acute angles, so it is always in
the range (0°,110°); consequently, the upstream contact point
cannot move. For the downstream contact point, at early stages
it is pinned as the contact angle is less than 110°, and later it
moves due to the contact angle greater than 110°. In Fig. 7(c),
the downstream contact angle varies from the right angle to
obtuse angles, which are always in the range (70°,180°), so the
downstream contact point remains immobile. For the upstream
contact point, at early stages it is pinned due to the contact
angle greater than 70°, and later it moves due to the contact
angle less than 70°. Figure 7(d) shows that at early stages
the droplet deforms and keeps pinned; subsequently, the two
contact angles do not fall into the specified hysteresis window
and the whole droplet slips.

Effect of contact angle hysteresis is also tested through 3D
cases. In our simulations, initially, a 3D hemispherical droplet
is resting on a solid plane in a Couette flow, where the upper
wall moves rightward and the bottom wall remains stationary.
In our 3D simulations, four typical motion modes for the
contact lines as those in the 2D study (i.e., Fig. 7) are also
achieved. Two of the four modes are shown in Figs. 8 and 9. In
the figures, the shapes of contact lines at different times are also

(@) 7

(b)

()

(d) 7

FIG. 7. Four typical motion modes of contact points by
specifying contact angle hysteresis effect in the He-Chen-Zhang
model.  (a)fg =0°,604, = 180°; (b)Or = 0°,04 = 110°; (c) g =
70°, 04 = 180°; (d)0g = 70°,6, = 110°.
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(a) B_
X

(b) EL

FIG. 8. (Color online) Movement of a 3D hemispherical droplet,
which is driven by a shear flow at (a) t = 2000 t.s., (b) t = 6500 t.s.,
(c) t = 8000 t.s. The hysteresis window is 6 = 0°,60, = 110°.
The shapes of contact lines at different times are shown in the right
column.

shown in the right column. Figure 8 is obtained through setting
the hysteresis window (0°,110°). The motion mode is similar
to that of Fig. 7(b), in which the upstream contact line keeps
stationary while the downstream section moves. In this motion
mode, the contact area increases. Figure 9 is obtained through
setting the hysteresis window (70°,180°). The motion mode
is similar to that of Fig. 7(c), in which the upstream section
moves while the downstream section remains stationary. In

(@) EL

(b) \fL
X

FIG. 9. (Color online) Movement of a 3D hemispherical droplet
driven by a shear flow at (a) r =2000 t.s., (b) t = 6000 ts.,
(c) t = 8000 t.s. The hysteresis window is 8z = 70°, 04 = 180°. The
shapes of contact lines at different times are shown in the right column.
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0 02 04 _06 08 1
FIG. 10. Comparison of interface profiles when droplets reach

stationary states under shear flows. The capillary number takes the
value (a) Ca = 0.05, (b) Ca = 0.10, (c) Ca = 0.15, respectively.

this mode, the contact area decreases. Both the 2D and 3D
results of simulations are consistent with the predictions about
the typical phenomena of contact angle hysteresis.

In a shear flow of low capillary number, the droplet deforms
or creeps along the solid wall. In this small section, we
compared our LBM result about this flow with the result of
Schleizer et al. [13], as Dupont et al. did [6]. Because the He-
Chen-Zhang model is not able to simulate cases of two-phase
flows with identical densities, here the Lee-Lin model [27] is
adopted. In our study, o;/p, =1 and p;/ue = 1. In Fig. 10,
the LBM results of droplet deformations are compared with
those obtained by the boundary-integral method [13]. In these
simulations, we set 6 = 10°,6,4 = 170°, according to the
study of Dupont et al. [6], a wide contact angle hysteresis
window, to make the two contact points immobile at low
capillary number (Ca = u,;U /o). The solid and dashed lines
represent the interface profiles of a steady droplet under three
different Ca s. The good agreement shows that the LBM
simulation is a suitable tool for modeling contact line problems
with hysteresis in shear flows.

2. Droplet slipping under gravity

The behavior of a droplet on an inclined wall under gravity
may be similar to that in a shear flow. However, several
benchmark problems about a droplet slipping under gravity can
further validate our scheme. Hence, the behaviors of a droplet
on a nonideal wall under gravity are simulated. As expected,
under certain circumstances significant different behaviors of a
droplet on ideal surfaces and nonideal surfaces were observed.
As an example, the results of Bo = 0.519 are shown in Fig. 11.
At this Bo, a droplet cannot stay stationary and keep slipping
on an ideal wall; however, it can be pinned on a nonideal wall
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(@)

(b)

FIG. 11. Significantly different behaviors of a droplet on a
nonideal wall and an ideal wall. Bo = 0.549, Re = 12.471, oo = 55°.
(a) O = 115°, 0,4 = 145°, the droplet deforms and keeps stationary;
(b) the droplet slips all along on an ideal wall.

due to hysteresis. In the simulation, the upper and lower bounds
of the hysteresis window is set as O = 115°, 6,4 = 145°.

For the hysteresis cases, when a droplet sticks to a wall, the
tangential component (parallel to the wall) of the gravity and
the surface tension applied to the droplet are in balance [44,45].
Hence, an equation about force balance along the wall direction
is written as [6]

p1A;gsina = o(cosb, — cosby), 201

where A; is the area of liquid droplet in 2D simulations, and
6, and 6, denote the upstream contact angle and downstream
contact angle, respectively. Equation (21) can also be written
as

sina = (cos 6, — cosb;)/Eo, 22)

where Eo is the Eotvos number that is defined as Eo =
p1A;g /o . Several cases of droplets pinning have been tested on
nonideal walls with different obliquities. Figure 12 shows that
sin & has a good linear relationship with (cos 6, — cos 6;)/Eo,
and the slope of the fit line is about 1.05, which is very close
to unity, the theoretical one.

Furthermore, we compared the present LBM [27] results
of droplet deformations with those obtained by Dupont et al.
[6]. The computational domain is 400 x 100. A semicircular
droplet with a radius R = 40 is put on an inclined wall. Nine
cases with different contact angle hysteresis windows, inclined
angle «, and Eo as those investigated by Dupont et al. [6] are
simulated. In these LB simulations, the Lee-Lin model is used
and p;/pg = 1000, w;/p, = 500. The comparison between
LBM results and those of Dupont et al. [6] is shown in Fig. 13.

0.9F
0.8F
0.7
0.6F
0.5F
0.4
0.3

02 03

sinol

LBM
Linear fit

04 05 06 07 08 09
(sin® -sin6 )/Eo

FIG. 12. Validation of Eq. (22) when a droplet is pinned on a
wall. The slope of the linear fit is 1.05.
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FIG. 13. Comparison of interface profiles when droplets reach
steady states on an inclined wall. o denotes the tilt angle. The
solid and dashed lines represent the shapes obtained by Dupont
et al. [6] and our LBM scheme, respectively. The hysteresis window
of the cases in left, middle, and right columns are (6g,04) =
(80°,100°), (60°,120°), (40°,140°), respectively.

Here, Eo = p,ng/a and cases of Eo = 0.5, 1.0,2.0 were
simulated. From the figure we can see that when droplets
reach steady states under gravity, the interface shapes obtained
through LBM agree very well with those obtained by Dupont
et al. [6]. This quantitative comparison further confirms that
our scheme is reliable for contact line problems with hysteresis
effect.

Currently, lots of interesting phenomena involving contact
angle hysteresis effect have been found and studied experi-
mentally [46,47]. For instance, Mettu et al. studied the role
of contact angle hysteresis in the motion of liquid drops on
surfaces induced by asymmetric vibration [46]. Luo et al
observed the stretching and contraction of the drops on an
inclined wall mimic the motion of an inchworm by tuning
contact angle hysteresis [47].

In the following part, we tried to recover the “creep of an
inchworm” using our LBM to demonstrate that our scheme is
able to handle more complex contact line dynamics. The “inch-
worm” here is referred to as the droplet we simulated. In our
simulation, computational domain is 400 x 100. The initial
droplet radius is 50 l.u. and the initial apparent contact angle is
60°. The other parameters are p;/p, = 10.46, u; /gy = 10.46.
To make the droplet creep, two different hysteresis windows
(Or,604)1 = (55°,85°) (the first window), (6g,604)> = (30°,60°)
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FIG. 14. Stretching and contraction of a droplet crawling like an
inchworm due to change of hysteresis window periodically. The tilt
angle of the inclined wall is @ = 60°. Bo = 2.286, Re = 21.213.

(the second window) have been implemented alternately after
a period of T/2 = 1.414 (the characteristic time is chosen as
vH/g).

The “creep of the droplet” is shown in Fig. 14. In Fig. 14,
at the beginning, the upstream contact angle reduces with
time (could be seen in Fig. 15, 0.5T ~ 1.07), it always
belongs to the second hysteresis window. Consequently, the
upstream contact point is pinned on the wall; meanwhile,
the downstream contact angle is slightly larger than 60°
and outside the hysteresis window, so the corresponding
downstream contact point slips, which could be seen in
Fig. 14(a). When the hysteresis window shifts to the first
one (1.0T ~ 1.5T), the downstream contact angle increases
from about 60°; therefore, it is inside the window and the
downstream contact point stops slipping; on the contrary, the
upstream contact angle becomes less than 55°, so the upstream
contact point does not remain pinned and starts to move, which
could be seen in Fig. 14(b). The positions of the upstream and
downstream contact points as functions of time are shown in
Fig. 16. The distance between the two points is the wetting
length L, which elongates and shortens periodically as shown
in Fig. 16. Figure 14(c) shows a new cycle of “creeping”
motions. Qualitatively, the creeping motion of the droplet is
recovered.

3
----------------- )‘;1%0
s | =m—————- X T
a0 -
S L o’
) 0 -
3 0.5T 1.0T 1.5T 2.0T i
: : : Y
! -
S
S
e

o5 10 15

FIG. 15. Both the upstream contact angle (symbol of triangle)
and the downstream contact angle (symbol of square) as functions of
time.
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FIG. 16. Nondimensional wetting length and positions of the two
contact points vary with time. L, is the initial wetting length. x,,x,4
are the positions of upstream contact point and downstream contact
point, respectively.

IV. CONCLUSION

In this paper, the geometric formulation [36] is incorporated
into the He-Chen-Zhang model and the Lee-Lin model, which
are applied to study droplet slipping on ideal surfaces and
nonideal surfaces.

For ideal surfaces, we obtained desired contact angle
accurately. The spreading processes of an initially semi-
circle droplet toward an equilibrium contact angle and a
droplet slipping on neutral wetting solids under gravity are
simulated. The corresponding results agree well with the
results of the Shan-Chen model and finite element method,
respectively.

For nonideal surfaces, contact angle hysteresis is described
by 6k and 6,4. When a droplet is subjected to a shear flow, four
typical motion modes are observed. Furthermore, the shapes
of a droplet under three different Ca s, are in good accord with
those obtained from the boundary-integral method. When a
droplet is under gravity, droplet behaviors are totally different
with and without contact angle hysteresis. When a droplet is
pinned on solids due to hysteresis, the force balance between
the surface tension and gravity parallel to the wall is validated.
Besides, nine different cases about a droplet in equilibrium
states on inclined walls under gravity are studied, and the
interface shapes match very well with those studied by Dupont
et al. [6]. The present methods could also qualitatively recover
the complex and interesting motion of a droplet like a creeping
inchworm, which was observed in the experiment [47].

Hence, the present scheme is a promising tool in studying
the dynamical behaviors of droplets on either ideal walls
(without hysteresis) or nonideal walls (with hysteresis), in
which the hysteresis property has been known from the
experiments.

Instead of reproducing a known result, LBM may be used
as a predictive tool. It is worthy to note that, recently, Colosqui
et al. [28] presented a LBM model to simulate wetting
dynamics mesoscopically. Although presently it is unknown
how to specify the macroscopic variables, such as hysteresis
window (advancing and receding angles) in the model, it
may be promising to predict the contact angle hysteresis. In
our future study, we would try to connect the mesoscopic
descriptions [28] with the macroscopic phenomena.
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