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Turbulent force as a diffusive field with vortical sources

Jie-Zhi wu?
The University of Tennessee Space Institute, Tullahoma, Tennessee 37388

Ye Zhou

Institute for Computer Applications in Science and Engineering, NASA Langley Research Center,
Hampton, Virginia 23681 and IBM Research Division, T. J. Watson Research Center, P.O. Box 218,
Yorktown Heights, New York 10598

Xi-Yun Lu® and Meng Fan®
The University of Tennessee Space Institute, Tullahoma, Tennessee 37388

(Received 9 January 1997; accepted 18 November)1998

In Reynolds-average Navier—Stokes equation it is the divergence of Reynolds stress tensor, i.e., the
turbulent force, rather than the tensor itself, is to be simulated and partially modeled. Thus, directly
working on turbulent force could bring significant simplification. In this paper a novel exact
equation for incompressible turbulent foréeis derived: @/t —vV2)f=V-S, wherev is the
molecular viscosity and all source terms in tenSoto be modeled are vortical. The dominant
mechanism is the advection and stretchimith an opposite signof a “pseudo-Lamb vector” by
fluctuating velocity field. No coupling with pressure is involved. The equation follows from a study
of the mean fluctuating Lamb vector and kinetic energy, which constitute the turbulent force. Both
constituents are governed by the same kind of equations @kis innovative turbulent-force
equation is similar to Lighthill's acoustic analogy and naturally calls one’s attention to studying the
vortical sources of turbulent force. The methodology described here may lead to turbulence models
which provide more complete treatment than that of two-equation models, but relatively easier
computation than that of second-order closures. 1999 American Institute of Physics.
[S1070-663(99)01303-3

I. INTRODUCTION The highest level of RANS is the second-order closure
based on full transport equation of the Reynolds sttdgss,

The Reynolds averaged Navier—Stok@ANS) equa-  however, is still impractical in engineering computations.
tion has been the major means in simulating complicateq/ioreover, the second-order closure involves several compli-
turbulent flows of engineering interest. Large-eddy simulacated tensor correlations, and an oversimplified modeling of
tion (LES), though promising in the future, can only deal any single term could hamper the entire accuracy of the
with relatively simple configurations and low Reynolds num-simulation. Therefore, searching for new approaches to
bers within the current computer capacity. Even though the\RANS modeling with adequate complexity and robust pre-
used a highly optimistic estimate, Spalatal® have re- (ictive ability is still an urgent task.
cently shown that for an airplane wing an LES needs a num-  As one of the efforts toward this goal, in this paper we
ber of grid points of order of 8 and that of time steps of develop an innovative formulation very different from con-
5% 10°, which would be feasible only 40 years later accord-yentional ones. The primary motivation of our approach was
ing to the present growth rate of computer power. Forthe following general mathematic observation. Any vector
RANS, algebraic, one-equation or two-equation models havgeld f in three-dimensional space can be expressed as the
been mainly based on the scalar kinetic energy-dissipatiogivergence of a “tensor potential,” sayl, such that
relation. In the transport of kinetic energy and dissipationf=V.T. A givenf has infinitely many such potentials, which
the molecular viscosity is replaced by eddy viscosity; but inmay have up to nine independent components and of which
practice these models have turned out to be inadequate {Re differences are divergence-free tensors. Among these ten-
simulate highly unsteady separated vortical flows. Evidencgor potentials the simplest one has only three independent
(e.g., Wuet al?) has indicated that some key large-scale vor-components, which are a linear combination of the scalar and

tical structures could be smeared out by a too-large eddyector potentials in the Stokes—Helmhd&H) decomposi-
viscosity, so that sometimes the prediction could even bgon of f. Namely, if

gualitatively questionable.
f=Vop+VX, V=0,
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The implication of this observation to incompressible |7 —y, (5)
turbulence is evident. Ldt, Q, andHo=P+|U|?/2 be the o
mean velocity, vorticity and stagnation enthalpy, respecth€ transverse and longitudinal partsfaire

tively. In the RANS equation with unit density fo=1", (6a)
2]V ] -
—r FOXU=—VHo—f+1V2U, (1a) fI=V(K+x). (6b)
In contrast to the convention&l— e models that attempt
what really matters is only the turbulent force to represent the whole effect 6f we now see thaK only

f=V-(W) (1b) reflects a portion of the longitudinal component fofThe
' main part off is thevectorial and vorticall’ as it should be,

rather than the six-component Reynolds stre&s’ itself.  because turbulence is inherently a vectorial and vortical field.
Here and below an overline means ensemble average. Thu4/hile models based on second-order tensors seem to be
it would be preferable to directly study the former or its SHmore than necessary, models based on a scalar equation are
potentials instead of the latter. This idea was first proposed ifevitably oversimplified.
an unpublished paper of Wetal? In an unpublished This being the case, in this paper we focus on the exact
report® Perot and Moin proposed some modeled transportransport equation for turbulent force. We proceed as fol-
equations for the SH potentials of the turbulent fofdmsed lows, each step containing some new results.
on the data of direct numerical simulation. They showed that ~ First, in Sec. Il we derive the exact transport equations
this approach has a computational cost comparable to twdor the full Lamb vectol=wXu as well as its mean fluctu-
equation models but a predictive ability approaching that ofating partl’. We find that as in the momentum equation, the
second-order closure. nonlinear evolution of is solely governed by the advection

The study for the SH potentials of turbulent force can beand stretching—tiltinglwith an opposite signof its trans-
put on a rational basis only if these potentials can be identiverse part. We confirm this observation by a numerical ex-
fied as well-defined physical quantities, since then their owrample. Of particular interest is the finding that the equation
transport equations can be derived. For turbulent force thigr |’ is extremely simple: A linear diffusion equation with
identification is straightforwaft molecular diffusivity and vortical sources, which are decou-

vy pled from any longitudinal quantities.

f=u”- Vur=1"+VK, @ In Sec. lll we revisit the transport equation of fluctuating
where kinetic energy and cast it to the same form as thatlfor

- —— Then the equation for turbulent force, our kernel result, im-

I"=a’xu’, (33 mediately follows from Eq(2). It has exactly the same struc-

K="u'[2 (3p) tureas the'-equation, and hence significantly differs from

conventional formulations.

are the mean fluctuating Lamb vector and kinetic energy, e believe that these results set a basis toward a novel
respectively. To split Eq(2) into the two parts of the SH direction in turbulence study and modeling. Although the
decomposition, we define an intrinsic transverse-longitudinahnalysis is made for RANS, with minor modification the
decompositionan SH decompositigrfor a vector, denoted same idea is well applicable to subgrid-scale modeling in

by F=F, +F,, such that LES.
V.-F, =0, (43
B Il. TRANSPORT EQUATIONS FOR LAMB VECTOR
VXF=0. (4D AND ITS FLUCTUATIONS
As islwell known, this splitting is in ggneral not unique; it is The importance of Lamb vectoin general fluid dynam-
invariant under a gauge transformation ics is well known(e.g., Refs. 7 and)8lt is also known that

I, andl, play very different roles. In particular, the relevance
of Lamb vector and its two parts to turbulent flows has at-
This nonuniqueness does not exist for unbounded flow withracted many researchers. For example, the investigations of
uniform condition at infinity or flow with periodic boundary the Lamb vector was recently focused on its role in topologi-
conditions, as can be easily seen in Fourier space. Faral fluid mechanicg!® Moffatt!! 13 argued that turbulent
bounded flow, the arbitrariness comes from the fact that onow may spend a large portion of its time in a neighborhood
only has physical boundary conditions for an unsplit vectorof fixed points of steady Euler equations, e.g., solutions of
but not for each split part. Note that it is this freedom thatVhy=—I=—1;, wherehy is the stagnation enthalpy. This
enables introducing a proper artificial boundary condition forproposal was based on an important article by Artbtth
¢, and hencd=, andF;, which can ensure the exclusion of magnetohydrodynamics. Using the well-known analogy be-
the gradient of any potential, including pressure, frém. tween the magnetohydrodynamics and the Euler equations
This interesting issue deserves a separate analysis; thus, fior incompressible steady flows of an inviscid fluid, Arnold’s
this paper we simply ignore the role 8%/ for neatness. result has immediate bearing to the question of existence and
Now, denoting structure of solution of the latter. The structure of these un-

F.—F =F +Vy, F—F=F-Vy, V=0
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stable Euler flows, in turn, may have some bearing on the An important mechanism of thetransport is the third
problem of the spatial structure of turbulence. Moreoverterm of Eq.(10) on the left, which represents the inviscid
Several authors have noticed that for fully developed turbustretching and tilting with an opposite sign. The former de-

IenceI_H’ can be larger thaf', (e.g., Refs. 15 and 16 and Serves a further examination. It can be described by the
references thereinespecially in the regions with strong en- variation of the scalar
strophy or dissipation. Then the nonlinearity of the flow is J51|I|2=1(|w|2|u|2—H2) (12)
reduced. Indeed, Kraichnan and Paidalearly demon- 2 2 ’
strated such a reduction by showing that the quait®h,  where=w- u is the helicity density. The transport equation
+1|2) is only about 57% of the corresponding value for afor J reads
Gaussian field with the same energy specttaee review by D
Moffatt and TS|nobé78). . _+I'd'|_VV2\]:_VVI:V|+QJ, (13)

In spite of these progresses, the transport ahd its Dt
mean fluctuation have never been fully explored, aIthOngr\]/vhered is the strain-rate tensoprVI: VI is the J-dissipation,
the first such attempt was made as early as nearly seven
decades ago by J. J. ThomsSrBased on an analogy be-
tween vortex filaments and electric-force lines, Thomson Q;=(Hw—|w|?u)-Vho+vl-q. (14)
proposed to describe turbulence in terms of fluctuating vor- )
ticity @’ and mean fluctuating Lamb vectdr and suggested Becausaw-1=u-1=0, in Eq.(14) Vho:._l” can be rgplaged
a model equation fol’. While Thomson’s model was too by l, . Denotel-d-1=aJ such thata is the opposite-sign
simplified to be of any use, his idea was revived in a recen§tretch|ng factor fot. Because generically in a strain field a

paper of Marmanf® who re-examined the analogy between vector’s stretching dominates shrinking, we expect0 in

the Navier—Stokes equations and Maxwell's equations angYeragde. This causes an inviscid reductionJaind hence

its application to turbulence. Our approach is somewhat diflmplles that velocity and vorticity tend to be aligned. How-

ferent, with new formulation for RANS and LES in mind. In ever, we s_hall see _ev_ldence that th_|s_ tendency is counteracted
. . . . = by advection, and it is the competition of these two mecha-
this section we examine the exact equations| fand|’.

nisms that determines the inviscid evolution lofConse-
quently, a turbulence can hardly become fully Beltranffan.

A. Transport of full Lamb vector We return to Eq(10). By using Eq.(8b), there is

Consider an incompressible flow of unit density, gov- VhoX ==} (VXxu)=l;- Vu+Vl-u+v(u-1,),

erned by where again we used the factl,=—u-1, . Thus
ou
E+I=—Vho+vV2u, (78 u-Vi+1-Vu—VhoX @

=V-(ul, +1,u)—=V(u-l,)+u-VI,=VlI,-u,
V.u=0. 7 (uly +1; (u-ly) 1= Vi

wherel=wxu is the Lamb vector ando=p+|u?|/2 the
stagnation enthalpy. Based &), Eq. (7a) is split to

in which the last two terms are cancelled sindd,
=—VVh, is a symmetric tensor. Therefore, Ed0) takes a
more compact form:

du
— ], = 2 ol
ot L=vViu, (83 E+V~(ull+liu)—vV2I=V(u-Il)+Vq. (15

l,=—Vhy.
! 0 (8b) The inviscid transport of is now governed by advection and
Take the vector product ab and Eq.(7d), and that of the  opposite-sign stretching—tilting ¢f . Later in Sec. Il A we

vorticity transport equation shall recognize thaV (u-1,) represents a “residue” of the
PR advection of the gradient of kinetic ener@yith a sign dif-
E+VX|: Vo, (9) ference.

We project Eq(15) into solenoidal space. Since

andu, and make the sum of the results. After some algebra
p . " g V2A=V(V-)—-VXVXI=V(V.1,)+ V2, ,

we find the exact transport equation for the full Lamb

vector| the transverse part of E¢L5) reads
dl
_ . . — 2 = &l
(9t+u VI+1-Vu—vV=VhyX @+ 1q, (10 0_:+[V’(U|l+lLu)]L_VV2|L:qu_- (16)
wheré Except viscous effectl, has no source or sink inside the
0=—2vw , XU,=vV-7, (113 flow field, similar to the case of vorticity or any other sole-
noidal field.
7ij = (Ugi T Uj 1) (Uj = Uy j) — wjo;, (11b

The longitudinal part of follows from subtracting Eq.
is a viscous sourcé- (16) from Eq. (15)
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|
(V) =V (U-1,)—[V-(ul, 1, 0], + g :

at
17
The second term on the left is similar to the longitudinal X

viscous effect in the compressible Navier—Stokes equation.
Moreover, there must exist somie(l, ) such that

V(u-1)=[V-(ul +l u]+vg=—-VV,

so from Eq.(17) we obtain an inhomogeneous linear diffu-
sion equation fohg

J 2
s~V o= (), (18)

in which the integration constaiga function of time is ab-
sorbed inW.

(@

B. Dominant mechanisms in Lamb vector evolution .
Denoting /‘\
X

L= i V2
ot U
and letting £~ ! be its inverse(integra) operator, Eq.(8a)
indicates that in Eq(15) we may write

Vo(ul,+uy==V-[(£7H)L+1, (27T

The sourcerq can be similarly expressed through E(&a)
and(9). Therefore, like the velocity in Eq. (8a), | is solely
driven byl, and its global historylt is this nonlinear global
and historical effect that causes most complicated evolution
of all vortical flows including turbulence. This can also be
seen from Eq(17), where as sources the right-hand side is
entirely from|, and its global history. Thus, following the (0)
variation ofl, I, varies passivelyl, is neither advected nor
stretcheeHtilted. This is similar to the behavior of pressure FIG. 1. Isosurfaces of helicity density-u=(-0.1,0.1) ata) t=1 and(b)
gradient. However, unlike the pressure, becalyse-Vh, =40

contains kinetic energy, it is governed by an inhomogeneous

linear diffusion equation.

In order to gain some taste of the key rolelpfin the The initial perturbation yields a small nonzdro, which
evolution of Lamb vector, a preliminary numerical computa-makes positive and negative helicity denshi= - u alter-
tion was made for the evolution of a perturbed periodic vor-natively dominant in the vortex core. Figure 1 shows the
tex array. A pseudo-spectral method was used in a cubic bososurfaces of{ at selected time of initial stage of evolution.
of size 27, with 64° coarse grid. The Reynolds number basedThe inside structure of{ is more complicated, as seen from
on unperturbed vortex-core radius and maximum circumferfig. 2 for its(x,2 sectional contours. It is of interest that as
ential velocity was 12 The unperturbed basic flows was the time goes on the plot of{ is gradually filled by its positive
“frozen Oseen vortex,” of whicH, =0 andl, is along the and negative extreme values, indicating a tendency of being
radial direction. To this basic flow we imposed an initial Beltramian(but not completely While our concern here is
spiral perturbation at its axis containing six different nonaxi-not exploring the specific physical process of vortex instabil-
symmetric modes, with the maximal radial deviation fromity and transition to turbulence, it is worth mentioning that
the z axis being 5% radius. We did not expect that small-the unstable evolution shown in Figs. 1 and 2 is similar to
scale eddies can be resolved by this coarse grid. Indeed, fakhose observed experimentally by Sarpak&yand numeri-
lowing the suggestion of a referee, we found that the spatialeally by, among others, Melander and Huss4ifr, Virk
averaged skewness and flatness factors of velocity field at thet al,?® and Sreedhar and Ragb.
end of computationt 100) are quite different from that in We concentrate on the time evolution lofl, , andl,.

a fully resolved freely decaying turbulence. But the compu-Their space-averaged absolute values, denoted -y are
tation does give an evidence on what is happening in thehown in Fig. 3 with a quite coarse time intervat=4,
evolution of Lamb vector. which may have smeared out high-frequency fluctuations.
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FIG. 2. Sectional contours of helicity densigy-u on y—z plane at(a) t

=1 and(b) t=40. The unperturbed vortex axis is along théirection. The
minimum and maximum values ofo-u are: (@) (—0.160, 0.172 (b)

(=5.317, 7.24Y.
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-Vu), , andl,-Vu; (¢) vq;, vq, , andq.

The figure indicates that although initialll; |=0, it quickly
grows and in average becomes larger tHgn This confirms
that, as predicted by the theory, the former drives the latter.
After arriving their peak valueg|l|), (|1, |), and(|l,|) start to
decrease. To see which effect of advection, stretching, and
viscosity causes this decay most, Fig&)44(c) show the
corresponding evolution of the mean absolute values of
u-vl,, 1I,-Vu, and v»q, along with their transverse-
longitudinal splitting. After a peak at=236, there is a fast
falling of (|u-VI,|), which also drives the falling of|u
-VI,|y. More significantly, unlike the advection, the entire
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trend ofl, andl (Fig. 3) is closely similar to that of Fig. @).

This demonstrates the key role of the opposite-sign stretch-
ing of |, . The viscous source/sink terpy is relatively small
although larger tha®(Re ™ 1). A similar level was found for

the diffusion ofl (not shown. However, the mild decay df]
aftert=60 may be due to the accumulatédiissipation as
indicated in Eq(13).

Figures %a)—5(c) present the evolution of maximum lo-
cal absolute values df (taken from the computational do-
main) and its splitting, and that of transverse and longitudi-
nal parts ofu-VI, andl, -Vu. Here, two sharp peaks of
[(U-VI1)| |max @nd [(I,-VU), |max are evident. Since the
magnitude of these peaks are about 20 times of the mean
values, the local events with vary large peaks must be rela-
tively rare. Note that the peaks df ( Vu), have a time lag
compared to that of- VI, ), . The most active mechanism
of the fast growth of ¢- VI, ), is likely due to the vorticity
enhancement by stretching at higher wave numbers—from
Fig. 2 we saw that at=36 the flow is already quite chaotic.
This abrupt growth of is then quickly upset by its induced
stretching—tilting with opposite sign. The peak values of the
latter is only about one-third of the former; but, because
shrinking causes an exponential type of temporal decay of
[l |, a one-third level is sufficient to suppress the peak at a
later time. The second peak &t 40 in Fig. 5b) should be
another similar process.

Figure 6 shows the three components of the vector (
-VI1,), along thex axis, which is perpendicular to the vortex
axis. The time ig=32, when the first peak appears. In the
figure the components ofif VI, ), are also plotted for com-
parison, which do not have strong fluctuations. The locations
of (u-VI,), peaks are near the outer edge of the core, known
to be about the most unstable region of a disturbed vortex
where circumferencial vortex filaments spiral GtitThe
same components along the vortex agi®t shown have
much smaller peaks. A corresponding fluctuation of
(I, -Vu), att=36 (when its strong peaks ocqucompared
with that of (|, - Vu),, is shown in Fig. 7. In contrast to Figs.
5-7, forl, andl, at these times we saw no strong fluctua-
tions (not shown.

C. Transport of mean fluctuating Lamb vector

Returning to turbulent force, we split the velocity, vor-
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ticity, and pressure into a mean part and a fluctuating part i, 5. Time evolution of maximum absolute values@j:l, , 1, , andl; (b)

(u-V1,), and @-V1,), 5 (©) (I, -Vu), and (- Vu), .

u=U+u, o=Q+w', p=P+p’, (19
such that
(Q+ o' )X (U+u')=L+I", (209 _
—+L, =—1", +vV?U, (229
(P+p")+(JU+u'|?)/2=Hy+K, (20b) gt
where 7
Ly=—=VHy—(l; +VK). (22b
L=QXU, (213
Ho=P+3|U[?, (21b) Note that comparing Eq$223 and (22b) and Eq.(1a) re-

covers Egs(2), (6a), and(6h).

are the mean Lamb vector and stagnation enthalpy,ﬁind
and K are defined by Eqgs.(8 and 3b). Substituting Eq.
(20) into Egs.(8a) and(8h), for the mean flow there is

Now, by comparing Eqs228 and (8a), and following
the same procedure of deriving EG5), we obtain the trans-
port equation for:



Phys. Fluids, Vol. 11, No. 3, March 1999 Wu et al. 633

60 Ill. MEAN FLUCTUATING KINETIC ENERGY AND
530} TURBULENT FORCE
c
cé 0 In the preceding section we examined the transport of
S.30f the major part of turbulent force, i.e., the first term of Ez).
"_60_ To complete the theory we now turn to the second term.

60 ; A. Mean fluctuating kinetic energy

w
o

In contrast to Eq(26) which holds only fo” but notl,
in a recent note Wit al?° prove that even the full kinetic-
energyE can be cast to a diffusion equation

y-component
o

=30+t
d 1
-60 —— V2 |E=—1I, -u— = 2
(o"t vV )E [,-u 2(CI>+v|w| ), (28
60t

where® =2vd: d is the dissipation. Owing to starting from
projected Eq(8a) instead of Eq(7a), the nonlinear velocity
advectionu- Vu only leaves a “residue’l, . Consequently,

the advection of kinetic energy- VE, leaves a residue

] , , , ) ‘ , I, -uin Eq. (28). The pressure work is entirely removed by
-3 -2 -1 0 1 2 3 projection, and the viscous work-rate done by shear stress is
partially cast to the diffusion oE and partially causes the
simultaneous appearance of dissipation and enstrophy. Some
interesting implications of Eq(28) relevant to turbulence
theory has been briefly discussed in Ref. 29; here we focus
on its mean fluctuating part. As before, we split the quanti-

w
(=)

&
S

z-com_ponent
o

&
)

FIG. 6. The(x,y,2 components of §-VI,), and u-VI,), on thex axis
perpendicular to the vortex axis &t 32.

£+V'[U(LJ_+I_IJ_)+(LJ_+I_,J_)U] ties in EQ.(28) into mean and fluctuating parts such tlat
Jt =D+d’, etc. Then the mean kinetic-energy equation reads

=V[U-(L, +I")]+»V2L+Q, (23 J 1 _ .

_ (——VVZ —|U|2==(L,+1",)-U- = (2D:D+|Q|?),

whereQ has the same form as E¢L1) but with u and @ ot 2 2
replaced byU and €, respectively. The tern¥-(Ul", (29)
+1", U) is analogous to the Reynolds stress in RANS equawhere —1’, -U is the energy exchange between the mean
tion. Equation(23) will be closed oncd’, is known. flow and fluctuations. The direction of this energy flux is

To obtain the equation for’, then, we take ensemble simply determined by the relative orientationdfand!’; .
average of Eq(15 and then subtract Eq23). Define a Then, since
* pseudo-Lamb vectdr

L'=(Q+w)XUu +w' XU, (29

2vd:d=v|w|?+2vV - (u-Vu)=r|w|?>—2vV?p,

. _ , , but p’ =0, there is 2d’:d’ = v|e'|2. Hence, by using Egs.
which represents the rotation of by 2+ «’ andU by @’. (24) and (25) we obtain a general mean fluctuating energy
It contains both mean and fluctuating quantities, and hencggyation

the notation. Then for any quantity=V+v', there is

— [ d I —
vI=(V+u )[(Q+ @)X (U+u)]=V(L+1")+0v'L". E—VVZ)K=—LL-U’—VIw’|2- (30
(25)
Thus, a very neat equation for follows: B. Turbulent force as a forced diffusive field
L v?li=v. (26) The desired equation for turbulent for€és simply the
a " =V-S. sum of Eq.(26) and the gradient of Eq30). The latter reads
Here, the source tens& is given b d
W9 y_ (E—VVZ)VKZV-S(, (31
S=I(u’-L})—(u'L]+Lju")+ve, (27
in which | is the unit tensor and’ has the same form as in where
Eq. (11b) but uses fluctuating quantitié® The vectorV-S Se=—I(LL-u + 1w, (32)

contains both double and triple correlations and has to be

modeled. The most remarkable feature is tHais not ad-  Therefore, the final form of turbulent-force equation reads
vected byU in this equation It is so, though, which how- 9
ever, has to appedand only appeajsin the mean-Lamb (E_ sz)fZVS, (33
vector Eq.(23) just like the turbulent force has to appear in

Egs. (229 and(22b) or Eq.(1a). where
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20¢ problem mentioned in Sec. | that several popular RANS
510t models smear too much some key large-scale vortical struc-
s o tures.
E (i) The longitudinal part of turbulent force, including
$-10¢ kinetic energy, is passively driven by the transverse part and
-20 completely decoupled from the latter’'s evolutipsee the
30, remark following Egs.(4a) and (4b)], unless the modeled

V- S contains this coupling. This observation reinforces our
assertion that the focus of turbulence modeling should be
shifted from scalar equations to vortical vector equations.
(iii) All source (sink) terms in Eq.(34) are vortical,
which vanish if " =0. This fact explicitly reconfirms the

N
(=)

y-component
-
o o

-;8_ very truth: No random vortices, no turbulenc&here is no
= correlation with pressure. It should be stressed that, although
2 101 in Eqs.(27) or (34) correlations such as’u’ andu’w’ are as
g o complicated as or even more so than the Reynolds stress,
310t writing the source terms as a divergence of a tensor is merely
N 20 . . for neatness. Once again it suffices to think of three-
-3 2 -1 0 1 2 3X component vectoV-S only. The physics involved in the

inviscid part of this source term is then immediately clear:
FIG. 7. The(x,y,2 components ofI( - Vu), and (,-Vu), on thexaxisat  the mean effect of advection and opposite-sign stretching of
t=36. L! by theu'-field.

S=§+Sc=—(u'L!+L{u)+u(7—1w']?), (34 IV. CONCLUDING REMARKS

: . ) In Reynolds averaged Navier—Stokes equation it suffices
which completes our theoretlcal deveI(_)pment. Equationg, compute the turbulent force rather than Reynolds stress
(33 and(34) cgn also be denyed from taking the sum of Eq'tensor. The former is dominated by the mean fluctuating
(15) and gradient of Eq(28) first and then subtracting the | 5o vector plus a contribution of mean fluctuating kinetic

mean part. energy. This basic observation strongly suggests that it

__This new equation of t“g?’“'e”t force is closely similar 1, 14" be of great value to develop Lamb-vector based tur-
Lighthill's acoustic analogy® in the sense that both are ex- bulence models at various orders of closure

act and in both one deals with classic linear equations with The transport equations of Lamb vectornd its pro-

constant coefficients, leaving all nonlinear terms to th%ected parts are derived. It is shown thatand its global
sources. While Lighthill's theory was a result of choosing history is the unique driving mechanism of the flow. This
proper variablé(fluctuating densityfor aerodynamic sound, transverse Lamb vector is in turn driven by the competition
now Eqgs.(33) and.(34) come from identifying the key role of |\ veen its nonlinear advection and opposite-sign
Lamb vector. A difference is, however, for sound waves SeVyyatching—tiling, decoupled from any longitudinal part of
eral choices of variables are equally permissitdach as the flow field.

pressure or stagnation enthalfyut lead to different equa- Of particular interest is the linear inhomogeneous diffu-

; ; ; 131 I P o
tions with variable complexity, herel” appears inevitably sion equation for the mean fluctuating Lamb vedtorwhich

ZQEZti\gﬁ consider the vortical form of the Nav'er_StOKeSpresents a similarity with Lighthill's acoustic analogy. The

The ab f lation h f ianificant ch ¢ transport equation for mean fluctuating kinetic energy can
: € Iah oveh or:mu a |onﬂ as a.ew S|gnt|) |cani?)c' a;)ra%ers.also be cast to the same form. Therefore, the turbulent force
(i) Although the mean uctua.tlng'Lam veclons bot appears as an inhomogeneous diffusive vector field, diffused
advected and stretchédith opposite sighby the mean flow

U. th hani \ in th ¢ only by molecular viscosity and driven by vortical sources
; these mechanisms appear only in the t_rar)spor_(B)._o (mainly the advection and opposite-sign stretching of trans-
L but not in its own transport Eq.26). Similar situation

. _ o verse pseudo-Lamb vectdr| by the fluctuating velocity
happens for the advection of mean fluctuating kinetic energ¥ield)_ This diffusion equation is a natural logical conse-

_K by U, where the “residue” of this advection appears only quence of the RANS equation, as long as we do the follow-
in Eqg. (29) but not Eq.(31). Consequently, both andVK,

and hence the turbulent force, behave more like a field rather o
than a material quantity. It is diffused only byolecular (i)  Focus on turbulent forcerather than the oversimpli-

viscosity This is a big deviation from conventional thinking fied energy-dissipation consideration, or the possibly
and formulationge.g., Ref. 3. It would be very interesting overcomplicated consideration based on full Reynolds
to examine whether the absence of advectionf dfy U, stress tensor;

along with a careful modeling of the sourde S to avoid (i)  Identify the two physical constituents ofas|’ and
simply attributing it to an eddy viscosity, could alleviate the VK; and
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(iii)

space as much as possible.
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Utilize the SH decomposition to work in solenoidal **H. K. Moffatt, “On the existence of localized rotational disturbances

which propagate without change of structure in an inviscid fluid,” J. Fluid
Mech. 173 289(1986.

It is hoped that based on this new formulation turbulence?H. K. Moffatt, “Magnetostatic equilibria and analogous Euler flows of
models could be developed at an adequate complexity levelarbitrarily complex topology. Part 1. Fundamentals,” J. Fluid MeL$,

between two-equation models and second-order closure,

With minor modification, this formulation can also be ap-
plied to large-eddy simulation.
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