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Turbulent force as a diffusive field with vortical sources
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In Reynolds-average Navier–Stokes equation it is the divergence of Reynolds stress tensor, i.e., the
turbulent force, rather than the tensor itself, is to be simulated and partially modeled. Thus, directly
working on turbulent force could bring significant simplification. In this paper a novel exact
equation for incompressible turbulent forcef is derived: (]/]t 2n¹2)f5¹•S, where n is the
molecular viscosity and all source terms in tensorS to be modeled are vortical. The dominant
mechanism is the advection and stretching~with an opposite sign! of a ‘‘pseudo-Lamb vector’’ by
fluctuating velocity field. No coupling with pressure is involved. The equation follows from a study
of the mean fluctuating Lamb vector and kinetic energy, which constitute the turbulent force. Both
constituents are governed by the same kind of equations asf. This innovative turbulent-force
equation is similar to Lighthill’s acoustic analogy and naturally calls one’s attention to studying the
vortical sources of turbulent force. The methodology described here may lead to turbulence models
which provide more complete treatment than that of two-equation models, but relatively easier
computation than that of second-order closures. ©1999 American Institute of Physics.
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I. INTRODUCTION

The Reynolds averaged Navier–Stokes~RANS! equa-
tion has been the major means in simulating complica
turbulent flows of engineering interest. Large-eddy simu
tion ~LES!, though promising in the future, can only de
with relatively simple configurations and low Reynolds nu
bers within the current computer capacity. Even though t
used a highly optimistic estimate, Spalartet al.1 have re-
cently shown that for an airplane wing an LES needs a nu
ber of grid points of order of 1011 and that of time steps o
53106, which would be feasible only 40 years later acco
ing to the present growth rate of computer power. F
RANS, algebraic, one-equation or two-equation models h
been mainly based on the scalar kinetic energy-dissipa
relation. In the transport of kinetic energy and dissipati
the molecular viscosity is replaced by eddy viscosity; but
practice these models have turned out to be inadequa
simulate highly unsteady separated vortical flows. Evide
~e.g., Wuet al.2! has indicated that some key large-scale v
tical structures could be smeared out by a too-large e
viscosity, so that sometimes the prediction could even
qualitatively questionable.
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b!Permanent address: Department of Modern Mechanics, University of
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The highest level of RANS is the second-order closu
based on full transport equation of the Reynolds stress.3 This,
however, is still impractical in engineering computation
Moreover, the second-order closure involves several com
cated tensor correlations, and an oversimplified modeling
any single term could hamper the entire accuracy of
simulation. Therefore, searching for new approaches
RANS modeling with adequate complexity and robust p
dictive ability is still an urgent task.

As one of the efforts toward this goal, in this paper w
develop an innovative formulation very different from co
ventional ones. The primary motivation of our approach w
the following general mathematic observation. Any vec
field f in three-dimensional space can be expressed as
divergence of a ‘‘tensor potential,’’ sayT, such that
f5¹•T. A given f has infinitely many such potentials, whic
may have up to nine independent components and of wh
the differences are divergence-free tensors. Among these
sor potentials the simplest one has only three indepen
components, which are a linear combination of the scalar
vector potentials in the Stokes–Helmhotz~SH! decomposi-
tion of f. Namely, if

f5¹f1¹3c, ¹•c50,

then the simplest tensor potential off is T̂i j 5d i j f2e i jkck .
Thus, if one is interested inf only, there is no need for
studying its tensor potentials of more than three independ
components.

i-

i-
© 1999 American Institute of Physics
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The implication of this observation to incompressib
turbulence is evident. LetU, V, andH05P1uUu2/2 be the
mean velocity, vorticity and stagnation enthalpy, resp
tively. In the RANS equation with unit density

]U

]t
1V3U52¹H02f1n¹2U, ~1a!

what really matters is only the turbulent force

f5¹•~u8u8!, ~1b!

rather than the six-component Reynolds stressu8u8 itself.
Here and below an overline means ensemble average. T
it would be preferable to directly study the former or its S
potentials instead of the latter. This idea was first propose
an unpublished paper of Wuet al.4 In an unpublished
report,5 Perot and Moin proposed some modeled transp
equations for the SH potentials of the turbulent forcef based
on the data of direct numerical simulation. They showed t
this approach has a computational cost comparable to
equation models but a predictive ability approaching tha
second-order closure.

The study for the SH potentials of turbulent force can
put on a rational basis only if these potentials can be ide
fied as well-defined physical quantities, since then their o
transport equations can be derived. For turbulent force
identification is straightforward6

f5u8•¹u85 l81¹K, ~2!

where

l85v83u8, ~3a!

K5 1
2uu8u2, ~3b!

are the mean fluctuating Lamb vector and kinetic ener
respectively. To split Eq.~2! into the two parts of the SH
decomposition, we define an intrinsic transverse-longitud
decomposition~an SH decomposition! for a vector, denoted
by F5F'1Fi , such that

¹•F'50, ~4a!

¹3Fi50. ~4b!

As is well known, this splitting is in general not unique; it
invariant under a gauge transformation

F'→F̃'5F'1¹c, Fi→F̃i5Fi2¹c, ¹2c50.

This nonuniqueness does not exist for unbounded flow w
uniform condition at infinity or flow with periodic boundar
conditions, as can be easily seen in Fourier space.
bounded flow, the arbitrariness comes from the fact that
only has physical boundary conditions for an unsplit vec
but not for each split part. Note that it is this freedom th
enables introducing a proper artificial boundary condition
c, and henceF' andFi , which can ensure the exclusion o
the gradient of any potential, including pressure, fromF' .
This interesting issue deserves a separate analysis; thu
this paper we simply ignore the role of¹c for neatness.
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l8i5¹x, ~5!

the transverse and longitudinal parts off are

f'5 l8' , ~6a!

fi5¹~K1x!. ~6b!

In contrast to the conventionalK2e models that attemp
to represent the whole effect off, we now see thatK only
reflects a portion of the longitudinal component off. The
main part off is thevectorial and vorticall̄ 8 as it should be,
because turbulence is inherently a vectorial and vortical fie
While models based on second-order tensors seem to
more than necessary, models based on a scalar equatio
inevitably oversimplified.

This being the case, in this paper we focus on the ex
transport equation for turbulent force. We proceed as
lows, each step containing some new results.

First, in Sec. II we derive the exact transport equatio
for the full Lamb vectorl5v3u as well as its mean fluctu
ating partl̄ 8. We find that as in the momentum equation, t
nonlinear evolution ofl is solely governed by the advectio
and stretching–tilting~with an opposite sign! of its trans-
verse part. We confirm this observation by a numerical
ample. Of particular interest is the finding that the equat
for l̄ 8 is extremely simple: A linear diffusion equation wit
molecular diffusivity and vortical sources, which are deco
pled from any longitudinal quantities.

In Sec. III we revisit the transport equation of fluctuatin
kinetic energy and cast it to the same form as that forl̄ 8.
Then the equation for turbulent force, our kernel result, i
mediately follows from Eq.~2!. It has exactly the same struc
ture as thel̄ 8-equation, and hence significantly differs fro
conventional formulations.

We believe that these results set a basis toward a n
direction in turbulence study and modeling. Although t
analysis is made for RANS, with minor modification th
same idea is well applicable to subgrid-scale modeling
LES.

II. TRANSPORT EQUATIONS FOR LAMB VECTOR
AND ITS FLUCTUATIONS

The importance of Lamb vectorl in general fluid dynam-
ics is well known~e.g., Refs. 7 and 8!. It is also known that
li andl' play very different roles. In particular, the relevan
of Lamb vector and its two parts to turbulent flows has
tracted many researchers. For example, the investigation
the Lamb vector was recently focused on its role in topolo
cal fluid mechanics.9,10 Moffatt11–13 argued that turbulen
flow may spend a large portion of its time in a neighborho
of fixed points of steady Euler equations, e.g., solutions
¹h052 l52 li , whereh0 is the stagnation enthalpy. Thi
proposal was based on an important article by Arnold14 on
magnetohydrodynamics. Using the well-known analogy
tween the magnetohydrodynamics and the Euler equat
for incompressible steady flows of an inviscid fluid, Arnold
result has immediate bearing to the question of existence
structure of solution of the latter. The structure of these
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stable Euler flows, in turn, may have some bearing on
problem of the spatial structure of turbulence. Moreov
Several authors have noticed that for fully developed tur
lence l̄ i8 can be larger thanl8' ~e.g., Refs. 15 and 16 an
references therein!, especially in the regions with strong en
strophy or dissipation. Then the nonlinearity of the flow
reduced. Indeed, Kraichnan and Panda17 clearly demon-
strated such a reduction by showing that the quantity^u¹h0

1 lu2& is only about 57% of the corresponding value for
Gaussian field with the same energy spectrum~see review by
Moffatt and Tsinober18!.

In spite of these progresses, the transport ofl and its
mean fluctuation have never been fully explored, althou
the first such attempt was made as early as nearly se
decades ago by J. J. Thomson.19 Based on an analogy be
tween vortex filaments and electric-force lines, Thoms
proposed to describe turbulence in terms of fluctuating v
ticity v8 and mean fluctuating Lamb vectorl8, and suggested
a model equation forl8. While Thomson’s model was too
simplified to be of any use, his idea was revived in a rec
paper of Marmanis20 who re-examined the analogy betwe
the Navier–Stokes equations and Maxwell’s equations
its application to turbulence. Our approach is somewhat
ferent, with new formulation for RANS and LES in mind. I
this section we examine the exact equations forl and l8.

A. Transport of full Lamb vector

Consider an incompressible flow of unit density, go
erned by

]u

]t
1 l52¹h01n¹2u, ~7a!

¹•u50, ~7b!

where l5v3u is the Lamb vector andh05p1uu2u/2 the
stagnation enthalpy. Based on~4!, Eq. ~7a! is split to

]u

]t
1 l'5n¹2u, ~8a!

li52¹h0 . ~8b!

Take the vector product ofv and Eq.~7a!, and that of the
vorticity transport equation

]v

]t
1¹3 l5n¹2v, ~9!

andu, and make the sum of the results. After some alge
we find the exact transport equation for the full Lam
vector l

] l

]t
1u•¹ l1 l•¹u2n¹2l5¹h03v1nq, ~10!

where4

q522nv,k3u,k5n¹•t, ~11a!

t i j 5~uk,i1ui ,k!~uj ,k2uk, j !2v iv j , ~11b!

is a viscous source.21
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An important mechanism of thel transport is the third
term of Eq. ~10! on the left, which represents the invisc
stretching and tilting with an opposite sign. The former d
serves a further examination. It can be described by
variation of the scalar

J[ 1
2u lu25 1

2~ uvu2uuu22H2!, ~12!

whereH[v•u is the helicity density. The transport equatio
for J reads

DJ

Dt
1 l•d• l2n¹2J52n¹ l:¹ l1QJ , ~13!

whered is the strain-rate tensor,n¹l: ¹l is theJ-dissipation,
and

QJ5~Hv2uvu2u!•¹h01n l•q. ~14!

Becausev• l5u• l50, in Eq.~14! ¹h052 li can be replaced
by l' . Denote l•d• l5aJ such thata is the opposite-sign
stretching factor forl. Because generically in a strain field
vector’s stretching dominates shrinking, we expecta.0 in
average. This causes an inviscid reduction ofJ and hence
implies that velocity and vorticity tend to be aligned. How
ever, we shall see evidence that this tendency is countera
by advection, and it is the competition of these two mec
nisms that determines the inviscid evolution ofl. Conse-
quently, a turbulence can hardly become fully Beltramian22

We return to Eq.~10!. By using Eq.~8b!, there is

¹h03v52 li3~¹3u!5 li•¹u1¹ li•u1¹~u• l'!,

where again we used the factu• li52u• l' . Thus

u•¹ l1 l•¹u2¹h03v

5¹•~ul'1 l'u!2¹~u• l'!1u•¹ li2¹ li•u,

in which the last two terms are cancelled since¹ li

52¹¹h0 is a symmetric tensor. Therefore, Eq.~10! takes a
more compact form:

] l

]t
1¹•~ul'1 l'u!2n¹2l5¹~u• l'!1nq. ~15!

The inviscid transport ofl is now governed by advection an
opposite-sign stretching–tilting ofl' . Later in Sec. III A we
shall recognize that¹(u• l') represents a ‘‘residue’’ of the
advection of the gradient of kinetic energy~with a sign dif-
ference!.

We project Eq.~15! into solenoidal space. Since

¹2l5¹~¹• l!2¹3¹3 l5¹~¹• li!1¹2l' ,

the transverse part of Eq.~15! reads

] l'
]t

1@¹•~ul'1 l'u!#'2n¹2l'5nq' . ~16!

Except viscous effect,l' has no source or sink inside th
flow field, similar to the case of vorticity or any other sol
noidal field.

The longitudinal part ofl follows from subtracting Eq.
~16! from Eq. ~15!
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] li

]t
2n¹~¹• li!5¹~u• l'!2@¹•~ul'1 l'u!# i1nqi .

~17!

The second term on the left is similar to the longitudin
viscous effect in the compressible Navier–Stokes equat
Moreover, there must exist someC( l') such that

¹~u• l'!2@¹•~ul'1 l'u!# i1nqi52¹C,

so from Eq.~17! we obtain an inhomogeneous linear diff
sion equation forh0

S ]

]t
2n¹2Dh05C~ l'!, ~18!

in which the integration constant~a function of time! is ab-
sorbed inC.

B. Dominant mechanisms in Lamb vector evolution

Denoting

L5
]

]t
2n¹2,

and lettingL21 be its inverse~integral! operator, Eq.~8a!
indicates that in Eq.~15! we may write

¹•~ul'1 l'u!52¹•@~L21l'!l'1 l'~L21l'!#.

The sourcenq can be similarly expressed through Eqs.~8a!
and~9!. Therefore, like the velocityu in Eq. ~8a!, l is solely
driven byl' and its global history. It is this nonlinear global
and historical effect that causes most complicated evolu
of all vortical flows including turbulence. This can also b
seen from Eq.~17!, where as sources the right-hand side
entirely from l' and its global history. Thus, following th
variation of l' ,li varies passively.li is neither advected nor
stretched–tilted. This is similar to the behavior of pressu
gradient. However, unlike the pressure, becauseli52¹h0

contains kinetic energy, it is governed by an inhomogene
linear diffusion equation.

In order to gain some taste of the key role ofl' in the
evolution of Lamb vector, a preliminary numerical compu
tion was made for the evolution of a perturbed periodic v
tex array. A pseudo-spectral method was used in a cubic
of size 2p, with 643 coarse grid. The Reynolds number bas
on unperturbed vortex-core radius and maximum circum
ential velocity was 105. The unperturbed basic flows was th
‘‘frozen Oseen vortex,’’ of whichl'50 and li is along the
radial direction. To this basic flow we imposed an initi
spiral perturbation at its axis containing six different nona
symmetric modes, with the maximal radial deviation fro
the z axis being 5% radius. We did not expect that sma
scale eddies can be resolved by this coarse grid. Indeed
lowing the suggestion of a referee, we found that the spa
averaged skewness and flatness factors of velocity field a
end of computation (t5100) are quite different from that in
a fully resolved freely decaying turbulence. But the comp
tation does give an evidence on what is happening in
evolution of Lamb vector.
l
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The initial perturbation yields a small nonzerol' , which
makes positive and negative helicity densityH[v•u alter-
natively dominant in the vortex core. Figure 1 shows t
isosurfaces ofH at selected time of initial stage of evolution
The inside structure ofH is more complicated, as seen fro
Fig. 2 for its ~x,z! sectional contours. It is of interest that a
time goes on the plot ofH is gradually filled by its positive
and negative extreme values, indicating a tendency of be
Beltramian~but not completely!. While our concern here is
not exploring the specific physical process of vortex insta
ity and transition to turbulence, it is worth mentioning th
the unstable evolution shown in Figs. 1 and 2 is similar
those observed experimentally by Sarpakaya,23 and numeri-
cally by, among others, Melander and Hussain,24,25 Virk
et al.,26 and Sreedhar and Ragab.27

We concentrate on the time evolution ofl, l' , and li .
Their space-averaged absolute values, denoted by^u•u&, are
shown in Fig. 3 with a quite coarse time intervalDt54,
which may have smeared out high-frequency fluctuatio

FIG. 1. Isosurfaces of helicity densityv•u5(20.1, 0.1) at~a! t51 and~b!
t540.
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FIG. 2. Sectional contours of helicity densityv•u on y2z plane at~a! t
51 and~b! t540. The unperturbed vortex axis is along thez direction. The
minimum and maximum values ofv•u are: ~a! ~20.160, 0.172!; ~b!
~25.317, 7.247!.

FIG. 3. Time evolution of spatially averaged absolute values ofli , l' , and
l.
The figure indicates that although initiallyu l'u.0, it quickly
grows and in average becomes larger thanu liu. This confirms
that, as predicted by the theory, the former drives the lat
After arriving their peak values,^ulu&, ^u l'u&, and^u liu& start to
decrease. To see which effect of advection, stretching,
viscosity causes this decay most, Figs. 4~a!–4~c! show the
corresponding evolution of the mean absolute values
u•¹ l' , l'•¹u, and nq, along with their transverse
longitudinal splitting. After a peak att.36, there is a fast
falling of ^uu•¹ l'u&, which also drives the falling of̂ uu
•¹ liu&. More significantly, unlike the advection, the enti

FIG. 4. Time evolution of spatially averaged absolute values of terms
equation~15!: ~a! (u•¹ l') i , (u•¹ l')' , and u•¹ l' ; ~b! ( l'•¹u) i , (l'
•¹u)' , and l'•¹u; ~c! nqi , nq' , andnq.
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trend ofl' andl ~Fig. 3! is closely similar to that of Fig. 4~b!.
This demonstrates the key role of the opposite-sign stre
ing of l' . The viscous source/sink termnq is relatively small
although larger thanO(Re21). A similar level was found for
the diffusion ofl ~not shown!. However, the mild decay ofu lu
after t560 may be due to the accumulatedJ-dissipation as
indicated in Eq.~13!.

Figures 5~a!–5~c! present the evolution of maximum lo
cal absolute values ofl ~taken from the computational do
main! and its splitting, and that of transverse and longitu
nal parts ofu•¹ l' and l'•¹u. Here, two sharp peaks o
u(u•¹ l')'umax and u( l'•¹u)'umax are evident. Since the
magnitude of these peaks are about 20 times of the m
values, the local events with vary large peaks must be r
tively rare. Note that the peaks of (l'•¹u)' have a time lag
compared to that of (u•¹ l')' . The most active mechanism
of the fast growth of (u•¹ l')' is likely due to the vorticity
enhancement by stretching at higher wave numbers—f
Fig. 2 we saw that att536 the flow is already quite chaotic
This abrupt growth ofl is then quickly upset by its induce
stretching–tilting with opposite sign. The peak values of
latter is only about one-third of the former; but, becau
shrinking causes an exponential type of temporal decay
u l'u, a one-third level is sufficient to suppress the peak a
later time. The second peak att540 in Fig. 5~b! should be
another similar process.

Figure 6 shows the three components of the vectoru
•¹ l')' along thex axis, which is perpendicular to the vorte
axis. The time ist532, when the first peak appears. In t
figure the components of (u•¹ l') i are also plotted for com
parison, which do not have strong fluctuations. The locati
of (u•¹ l') i peaks are near the outer edge of the core, kno
to be about the most unstable region of a disturbed vo
where circumferencial vortex filaments spiral out.23 The
same components along the vortex axis~not shown! have
much smaller peaks. A corresponding fluctuation
( l'•¹u)' at t536 ~when its strong peaks occur!, compared
with that of (l'•¹u) i , is shown in Fig. 7. In contrast to Figs
5–7, for l' and li at these times we saw no strong fluctu
tions ~not shown!.

C. Transport of mean fluctuating Lamb vector

Returning to turbulent force, we split the velocity, vo
ticity, and pressure into a mean part and a fluctuating pa

u5U1u8, v5V1v8, p5P1p8, ~19!

such that

~V1v8!3~U1u8!5L1 l8, ~20a!

~P1p8!1~ uU1u8u2!/25H01K, ~20b!

where

L5V3U, ~21a!

H05P1 1
2uUu2, ~21b!

are the mean Lamb vector and stagnation enthalpy, anl8
and K are defined by Eqs. 3~a! and 3~b!. Substituting Eq.
~20! into Eqs.~8a! and ~8b!, for the mean flow there is
h-
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e
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]U

]t
1L'52 l8'1n¹2U, ~22a!

L i52¹H02~ li81¹K !. ~22b!

Note that comparing Eqs.~22a! and ~22b! and Eq.~1a! re-
covers Eqs.~2!, ~6a!, and~6b!.

Now, by comparing Eqs.~22a! and ~8a!, and following
the same procedure of deriving Eq.~15!, we obtain the trans-
port equation forL :

FIG. 5. Time evolution of maximum absolute values of:~a! li , l' , andl; ~b!
(u•¹ l') i and (u•¹ l')' ; ~c! ( l'•¹u) i and (l'•¹u)' .



ua

e

n

n

b

in

of

y
s is

ome

cus
ti-

ds

an
is

.
gy

s

633Phys. Fluids, Vol. 11, No. 3, March 1999 Wu et al.
]L

]t
1¹•@U~L'1 l8'!1~L'1 l8'!U#

5¹@U•~L'1 l8'!#1n¹2L1nQ, ~23!

whereQ has the same form as Eq.~11! but with u and v
replaced byU and V, respectively. The term¹•(Ul8'

1 l8'U) is analogous to the Reynolds stress in RANS eq
tion. Equation~23! will be closed oncel8' is known.

To obtain the equation forl8, then, we take ensembl
average of Eq.~15! and then subtract Eq.~23!. Define a
‘‘ pseudo-Lamb vector’’

L 8[~V1v8!3u81v83U, ~24!

which represents the rotation ofu8 by V1v8 andU by v8.
It contains both mean and fluctuating quantities, and he
the notation. Then for any quantityv5V1v8, there is

v l5~V1v8!@~V1v8!3~U1u8!#5V~L1 l8!1v8L 8.
~25!

Thus, a very neat equation forl8 follows:

S ]

]t
2n¹2D l85¹•Sl . ~26!

Here, the source tensorSl is given by

Sl5I ~u8•L'8 !2~u8L'8 1L'8 u8!1nt8, ~27!

in which I is the unit tensor andt8 has the same form as i
Eq. ~11b! but uses fluctuating quantities.28 The vector¹•Sl

contains both double and triple correlations and has to
modeled. The most remarkable feature is thatl8 is not ad-
vected byU in this equation. It is so, though, which how-
ever, has to appear~and only appears! in the mean-Lamb
vector Eq.~23! just like the turbulent force has to appear
Eqs.~22a! and ~22b! or Eq. ~1a!.

FIG. 6. The~x,y,z! components of (u•¹ l')' and (u•¹ l') i on thex axis
perpendicular to the vortex axis att532.
-

ce

e

III. MEAN FLUCTUATING KINETIC ENERGY AND
TURBULENT FORCE

In the preceding section we examined the transport
the major part of turbulent force, i.e., the first term of Eq.~2!.
To complete the theory we now turn to the second term.

A. Mean fluctuating kinetic energy

In contrast to Eq.~26! which holds only forl8 but not l,
in a recent note Wuet al.29 prove that even the full kinetic-
energyE can be cast to a diffusion equation

S ]

]t
2n¹2DE52 l'•u2

1

2
~F1nuvu2!, ~28!

whereF52nd: d is the dissipation. Owing to starting from
projected Eq.~8a! instead of Eq.~7a!, the nonlinear velocity
advectionu•¹u only leaves a ‘‘residue’’l' . Consequently,
the advection of kinetic energy,u•¹E, leaves a residue
l'•u in Eq. ~28!. The pressure work is entirely removed b
projection, and the viscous work-rate done by shear stres
partially cast to the diffusion ofE and partially causes the
simultaneous appearance of dissipation and enstrophy. S
interesting implications of Eq.~28! relevant to turbulence
theory has been briefly discussed in Ref. 29; here we fo
on its mean fluctuating part. As before, we split the quan
ties in Eq.~28! into mean and fluctuating parts such thatd
5D1d8, etc. Then the mean kinetic-energy equation rea

S ]

]t
2n¹2D 1

2
uUu252~L'1 l8'!•U2

n

2
~2D:D1uVu2!,

~29!

where 2 l8'•U is the energy exchange between the me
flow and fluctuations. The direction of this energy flux
simply determined by the relative orientation ofU and l8' .
Then, since

2nd:d5nuvu212n¹•~u•¹u!5nuvu222n¹2p,

but p850, there is 2nd8:d85nuv8u2. Hence, by using Eqs
~24! and ~25! we obtain a general mean fluctuating ener
equation

S ]

]t
2n¹2DK52L'8 •u82nuv8u2. ~30!

B. Turbulent force as a forced diffusive field

The desired equation for turbulent forcef is simply the
sum of Eq.~26! and the gradient of Eq.~30!. The latter reads

S ]

]t
2n¹2D¹K5¹•SK , ~31!

where

SK52I ~L'8 •u81nuv8u2!. ~32!

Therefore, the final form of turbulent-force equation read

S ]

]t
2n¹2D f5¹•S, ~33!

where
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S5Sl1SK52~u8L'8 1L'8 u8!1n~t82I uv8u2!, ~34!

which completes our theoretical development. Equati
~33! and~34! can also be derived from taking the sum of E
~15! and gradient of Eq.~28! first and then subtracting th
mean part.

This new equation of turbulent force is closely similar
Lighthill’s acoustic analogy,30 in the sense that both are e
act and in both one deals with classic linear equations w
constant coefficients, leaving all nonlinear terms to
sources. While Lighthill’s theory was a result of choosi
proper variable~fluctuating density! for aerodynamic sound
now Eqs.~33! and~34! come from identifying the key role o
Lamb vector. A difference is, however, for sound waves s
eral choices of variables are equally permissible~such as
pressure or stagnation enthalpy! but lead to different equa
tions with variable complexity,31 here l8 appears inevitably
once we consider the vortical form of the Navier–Stok
equation.

The above formulation has a few significant characte
~i! Although the mean fluctuating Lamb vectorl8 is both

advected and stretched~with opposite sign! by the mean flow
U, these mechanisms appear only in the transport Eq.~23! of
L but not in its own transport Eq.~26!. Similar situation
happens for the advection of mean fluctuating kinetic ene
K by U, where the ‘‘residue’’ of this advection appears on
in Eq. ~29! but not Eq.~31!. Consequently, bothl8 and¹K,
and hence the turbulent force, behave more like a field ra
than a material quantity. It is diffused only bymolecular
viscosity. This is a big deviation from conventional thinkin
and formulations~e.g., Ref. 3!. It would be very interesting
to examine whether the absence of advection off by U,
along with a careful modeling of the source¹•S to avoid
simply attributing it to an eddy viscosity, could alleviate th

FIG. 7. The~x,y,z! components of (l'•¹u)' and (l'•¹u) i on thex axis at
t536.
s
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problem mentioned in Sec. I that several popular RAN
models smear too much some key large-scale vortical st
tures.

~ii ! The longitudinal part of turbulent force, includin
kinetic energy, is passively driven by the transverse part
completely decoupled from the latter’s evolution@see the
remark following Eqs.~4a! and ~4b!#, unless the modeled
¹•S contains this coupling. This observation reinforces o
assertion that the focus of turbulence modeling should
shifted from scalar equations to vortical vector equations

~iii ! All source ~sink! terms in Eq.~34! are vortical,
which vanish if v850. This fact explicitly reconfirms the
very truth: No random vortices, no turbulence. There is no
correlation with pressure. It should be stressed that, altho
in Eqs.~27! or ~34! correlations such asu8u8 andu8v8 are as
complicated as or even more so than the Reynolds str
writing the source terms as a divergence of a tensor is me
for neatness. Once again it suffices to think of thre
component vector¹•S only. The physics involved in the
inviscid part of this source term is then immediately cle
the mean effect of advection and opposite-sign stretching
L'8 by theu8-field.

IV. CONCLUDING REMARKS

In Reynolds averaged Navier–Stokes equation it suffi
to compute the turbulent force rather than Reynolds str
tensor. The former is dominated by the mean fluctuat
Lamb vector plus a contribution of mean fluctuating kine
energy. This basic observation strongly suggests tha
would be of great value to develop Lamb-vector based
bulence models at various orders of closure.

The transport equations of Lamb vectorl and its pro-
jected parts are derived. It is shown thatl' and its global
history is the unique driving mechanism of the flow. Th
transverse Lamb vector is in turn driven by the competit
between its nonlinear advection and opposite-s
stretching–tilting, decoupled from any longitudinal part
the flow field.

Of particular interest is the linear inhomogeneous dif
sion equation for the mean fluctuating Lamb vectorl̄ 8, which
presents a similarity with Lighthill’s acoustic analogy. Th
transport equation for mean fluctuating kinetic energy c
also be cast to the same form. Therefore, the turbulent fo
appears as an inhomogeneous diffusive vector field, diffu
only by molecular viscosity and driven by vortical sourc
~mainly the advection and opposite-sign stretching of tra
verse pseudo-Lamb vectorL'8 by the fluctuating velocity
field!. This diffusion equation is a natural logical cons
quence of the RANS equation, as long as we do the follo
ing:

~i! Focus on turbulent forcef rather than the oversimpli
fied energy-dissipation consideration, or the possi
overcomplicated consideration based on full Reyno
stress tensor;

~ii ! Identify the two physical constituents off as l̄ 8 and
¹K; and
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~iii ! Utilize the SH decomposition to work in solenoid
space as much as possible.

It is hoped that based on this new formulation turbulen
models could be developed at an adequate complexity l
between two-equation models and second-order clos
With minor modification, this formulation can also be a
plied to large-eddy simulation.
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