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Unsteady fluid-dynamic force solely in terms of control-surface integral
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In experimental aerodynamics (and hydrodynamics) it is well known that, if the flow past a solid
body is steady, then the total force on the body can be conveniently estimated by the measured flow
data on an appropriate control surface alone. We now show that, for the first time, the steady-flow
condition can be removed provided that the flow is incompressible: two innovative formulas for the
total force acting on any solid body that moves and deforms arbitrarily in a viscous incompressible
fluid, solely in terms of control-surface integrals, are derived based on derivative-moment
transformations. The formulas are verified by a numerical test for flow over a two-dimensional
fishlike swimming body. © 2005 American Institute of Physics. [DOI: 10.1063/1.2055528]

As an applied branch of fluid dynamics, a main concern
of external aecrodynamics (and hydrodynamics) is the forces
experienced by a solid body moving through a viscous fluid,
of which the experimental determination has been the ulti-
mate basis of all relevant studies. In engineering applica-
tions, balances are widely employed in force measurement,
but its accuracy is limited by support interference. It is espe-
cially difficult to measure the very small drag component of
streamlined bodies. Most of all, the relation between the
force and local flow quantities, which is of crucial impor-
tance for flow diagnosis, is missing. Information on this re-
lationship can only be obtained by using integral-type force
formulas, which as a fundamental requirement should be ex-
pressed in a way that permits convenient experimental mea-
surement of a relevant integrand with high accuracy. Unfor-
tunately, despite developments made over the past century,
theoretical fluid dynamics has never provided any general
integral formulas satisfying this requirement.

Consider an incompressible flow with uniform density p
over a body as an example. The force acting on the body
takes the following alternative standard forms based on (a)
the direct integral of surface stresses over the body surface
and (b) the rate of change of total momentum in a generic
control volume V.

F=—f (- pn + 7)dS (1a)
B
d
=—p— udV+f [-pn+7-pu(u,-v,)]ds. (1b)
dt Vf 2

Here, u is the fluid velocity, p is the pressure, Vi is a fluid
domain bounded externally by an arbitrary control surface 2,
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and internally by the material body surface dB, with the unit
normal vector n pointing out of V;, and 7=uwXn is the
shear stress with u being the dynamic viscosity and =V
Xu the vorticity (see Fig. 1). For generality we allow the
body surface dB to have a specified velocity distribution u
=b(x,?) and the control surface X to have an arbitrary veloc-
ity v(x,?). u, and v, in (1b) are the normal components of
u(x,r) and v(x,7) on 2, respectively. For completeness, we
give the proof of (1b) at the end of this Brief Communica-
tion.

While these standard formulas can be used in a numeri-
cal simulation after the flow field is solved, subjected to the
numerical accuracy of course, none of them are convenient
in experimentally determining the forces with a high accu-
racy, which, however, is supposed to serve as the test bed of
all numerical results. For example, owing to the difficulty in
measuring the distributed shear stress 7, it is not easy to use
(1a). On the other hand, when the flow is steady in V/,
viewed in a frame of reference fixed to a rigid body, the first
term of (1b) vanishes, so that the total force can conveniently
follow from a survey of the flow data over a fixed control
surface 2, (with v=0) only:

F=f (—=pn +7—puu -n)ds. (2)
3

This method has long been adopted as a complement to bal-
ance measurement, in particular when the front and side
boundaries of V are sufficiently far from the body so that the
flow thereon can be assumed approximately uniform at large
Reynolds numbers and only a wake-plane survey is needed.
Unfortunately, the flow steadiness is a very severe limitation.
It excludes the general applicability of the control-surface
survey method to many complex flows of significant interest,
such as vehicle maneuvering, fish swimming, insect flight,
dynamically deformable smart wings, fluid-solid coupling,
and active flow control by unsteady excitation, among oth-
ers. Today, with the rapid development of noninterference
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FIG. 1. Sketch of domain and notations.

instantaneous flow-field survey techniques such as particle
image velocimetry (PIV), it is in principle possible to obtain
the flow data in Vi and their time dependence, and hence to
estimate the volume integral in (1b). However, it is still not
easy to survey the flow field in a finite V; all the way down
to the body surface. Therefore, a pure control-surface inte-
gral is still highly desired.

Although this desired goal can by no means be achieved
by any standard force formulas, we now show that it can be
done by a transformation of (1b) to a nonstandard form by
the familiar identity

Jvdez—va(V -f)dV+va(f-n)dS (3)

for any piecewise differentiable vector field f, with x being
the position vector measured from any fixed origin. We call
these kinds of integral identities, which express the integral
of a vector field by certain moments of its spatial derivatives,
the “derivative-moment transformations” (DMT for short).
One may recall that (3) was the basis of the classic Foppl
total vorticity theorem

J wdV=0if w,=0at JV.
v

Therefore, owing to the continuity equation V-u=0, we see
immediately that (Ib) can be cast to

d
F=—p—<f xbndS+f xu,,dS)
dr\J s s

+ f [_ pn+ 17— Pu(’/‘n - vn)]dS7 (4)
3

where b, is the specified normal component of the body-
surface velocity.

The pressure term in (4) can be replaced by an accelera-
tion term, through another DMT identity for the integral of a
normal vector ¢n over a closed surface S, with ¢ being any
tangentially piecewise differentiable scalar:

fg{)ndS:—leX(nXVd))dS, (5)
s kJs

where k=n—1 and n=2,3 is the spatial dimensionality. Thus,
setting ¢=—p and using the local momentum balance
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pa:—Vp—,uVXw, (6)

where a=Du /Dt is the material acceleration, we obtain
p
— | pndS=-=| x X (n Xa)dS
s kJs

—Efxx[nX(VXw)]dS.
kJs

Therefore, an alternative to (4), we have

d
F=—p—<J xbndS+f xu,,dS)
dr\J s

—fox(nXa)dS+F2, (7)
kJs
where
FEE—EJxX[nX(VXw)]dS+f 7dS (8)
kJs s

collects all viscous vortical effects on the force.

It should be stressed that the above force formulas in
terms of control-surface integrals alone exist for incompress-
ible flow only. In an unsteady compressible flow distur-
bances propagate with finite speed, and hence a volume in-
tegral over V, has to be involved.

Two more remarks on DMT-based formulas are in order
here. First, for two-dimensional flow, identity (3) will be-
come trivial if f is perpendicular to the flow plane (as is the
case for the vorticity). But it is well applicable if f is on the
plane, as is the present case for the velocity u. Second, each
of the identities (3) and (5) belongs to one type of derivative-
moment transformation: the “inner-product” type and the
“cross-product” type, of which a more systematic analysis
has been given by Wu and Wu.' The cross-product type may
lead to a fruitful set of nonstandard force formulas able to
reveal the local dynamic mechanisms responsible for the
force and moment, for which a preliminary report of a com-
plete theory is given by Wu, Lu, and Zhuang.2

We now proceed to verify the new formulas (4) and (7)
by calculating a two-dimensional viscous flow, governed by
(6) and the continuity equation, over a fishlike swimming
body. In dimensionless form, the Reynolds number is defined
as Re=UL/v, where U is the free-stream velocity, L the
length of the body, and » the kinematic viscosity. A
NACAOQO012 airfoil is used as the contour of the body at an
equilibrium position of undulating motion. The midline of
the body is making a transversal oscillation in the form of a
wave traveling in the streamwise direction, described by

Yu=A,(x)cos[2m(x —ct)], O0sx<1, (9)
where A,, and ¢ are the amplitude and phase speed of the
traveling wave. To model reasonably the lateral motion of
the backbone undulation of fish swimming, A,,(x) is approxi-
mated by a quadratic polynomial
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FIG. 2. Three control domains with the control surfaces 3,(i=1,2,3) at an
instant #/T=0 with T being the period of wave travelling in (9).

A, (x) = Co+ Cix + Cox?, (10)

where the coefficients Cy, C;, and C, are solved from the
kinematic data of a steadily swimming saithe,” which gives

A,(0)=0.02, A,(0.2)=001, A,(1.0)=0.10. (11)

To set the kinematic conditions on the deformable body, as
used and confirmed previously by Wassersug and Hoff* and
Liu ef al.,” we assume that the body length is unchanged
during swimming and its undulation is purely a lateral com-
pressive motion.
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The governing equations are solved using the finite vol-
ume method (FVM) in a time-accurate manner proposed by
Liu and Kawachi.® A third-order upwind scheme is employed
to compute the convective term in an ultimate conservative
scheme.” The viscous term is evaluated by a Gauss integra-
tion in FVM. The discretized formulation was described in
detail in Ref. 6. Since our goal is to compute flow around the
undulating body, a method of regenerating O-type grids fit-
ting the deforming body surface at each time step is em-
ployed, with the outside boundary of computational domain
being fixed. The basic code used here was provided by Liu
and Kawachi® and has been validated extensively, especially
for the hydrodynamics and undulating propulsion of tadpoles
with Re up to 10°.3°

As the phase speed of traveling wave in (9) is a key
parameter for the propulsion of the undulating body,sfm we
calculate three typical cases with ¢=0.5, 1.0, and 1.5 at Re
=10* To verify (4) and (7), three different control domains
with control loops 2;(i=1,2,3) coinciding with three cir-
cumferential gridlines shown in Fig. 2 are tested. Note that
since the integration domain V/, is a subset of the computa-
tional domain, 3; vary as the regeneration of the deformable
grids.

The time dependence of the lift and drag coefficients, C;,
and Cp, during one cycle is shown in Fig. 3 after periodic
results are reached through a few cycles. The results are
calculated by (4) and (7) with different control domains as
well as by the stress-integral formula (1a). The relative errors
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FIG. 3. Time-dependent lift (C;, left
column) and drag (Cp, right column)
coefficients during one cycle for
¢=0.5 (top panels), 1.0 (middle pan-
els), and 1.5 (bottom panels). Here,
“DMT1” and “DMT2” denote the re-
sults calculated by (4) and (7) with
different control domains, respec-
tively, and “standard” represents the
results calculated by the conventional
stress-integral formula (1a).
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of the time-averaged C; and Cj, predicted by (4) and (7),
with respect to the values by (la), are found to be less than
1%. The independence of computed forces of the control
domain is well confirmed as it should.

The above results suggest that, with high-accuracy flow
data gained by the PIV in a neighborhood of %, (4) or (7)
may easily lead to a force estimate with an accuracy higher
than those estimates based on any conventional experimental
means. In this regard, an important issue is that the formulas
should be robust, i.e., insensitive to the inevitable measure-
ment inaccuracy. Thanks to the comment and suggestion of a
referee, a numerical test of this robustness has been carried
out to mimic the effect of measurement inaccuracy in PIV
data (typically 5%) on the overall quality of the force pre-
diction. In the test, artificial noise of 5% free stream velocity
was added to the data computed by both (4) and (7). Since
the influence of the noise is quickly weakened by the modu-
lation of the body’s transversal motion, the noise was intro-
duced 20 times evenly in a period. The error response was
observed to be less than 1% or smaller (figure not shown).

Note that with a given velocity field along and near 3
measured by PIV, the relative merit of (4) and (7) in appli-
cation depends on the accuracy of data processing methods
for inferring pressure and acceleration. For example, the
pressure can be inferred by the averaged omnidirectional in-
tegration algorithm (Liu and Katz'"), which can filter the
noise of the acceleration estimate. Thus, it is expected that by
this algorithm the force predicted by (4) may be more accu-
rate than that by (7).

Finally, we prove (1b). For any tensor field F(x,z) de-
fined on a deformable and movable control volume Vi, with
v(x,1) being the velocity of 3V, the Reynolds transport theo-
rem reads

d oF
— | FdV=| —dV+ Fn-vds. (12)
dtly, v, It v,

We may continue v(x,#) smoothly into the interior of V/, so
that

f fn'vdS=f V - (vF)dv
vy vy

:f V - [uF-(u-v)Fldv,
Vi

where u is the fluid velocity. Then (12) becomes
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d DF
—| Fav=| |=—=—+FV -ulav
dat)y, v. \ Dt
i f
—f (u,—v,)FdS. (13)
Wy

Thus, for incompressible flow we have

d
JadV:—f udV+f (u,—v,)uds. (14)
vy dr 2 vy

But integrating (6) over V; yields

f=—pf
1%

adV+f (- pn + 7)dS, (15)
G =

of which a combination with (14) proves (1b).
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