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Dynamic responses of a two-dimensional flapping foil motion
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The investigation of a flapping foil, which is used as a basic mode of the flapping-based locomotion
in insects, birds, and fish, is performed by solving the Navier-Stokes equations numerically. In this
Brief Communication we provide insight into the understanding of dynamics of a flapping foil. A
critical flapping Reynolds number based on the flapping frequency and amplitude, above which a
forward flapping movement occurs, is predicted. The dynamics of the flapping foil are analyzed in
two dynamic responses, i.e., an oscillatory movement and a steady movement, which depend on the
density ratio between the foil and the surrounded fluid. The steady movement response is related to
the forward flapping motion. The Strouhal number that governs a vortex shedding for the forward
flapping foil is calculated and lies in the range where flying and swimming animals will be likely to
tune for high propulsive efficiency. © 2006 American Institute of Physics.
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The mechanism of natural locomotion is a central ques-
tion for flying and swimming animals. Theoretical treatments
were proposed typically for the Stokesian (or low Reynolds
number approximation) and the Eulerian (or high Reynolds
number approximation) regimes.k4 More recently, the swim-
ming of animalcules in a viscous fluid at low Reynolds num-
ber is analyzed by the nonlinear equations of Stokesian
dynamics.5 However, numerous animals locomote in the
range of the intermediate Reynolds number. The mechanisms
of locomotion appropriate to this Reynolds number range do
not fall fully within the scope of either Stokesian or Eulerian
theory. Therefore, it is highly desired to reveal the relevant
mechanisms of locomotion based on some typical models.

A two-dimensional flapping foil, which is usually used
as a basic mode of locomotion in flying and swimming
animals,”” is considered here. Although we recognize the
limitation of this model, we nevertheless feel that the results
will be of help in physical understanding of the relevant
mechanisms in the flapping-based locomotion of flying and
swimming animals. As shown in Fig. 1(a), the vertical posi-
tion of the flapping foil is given by

h(7) = A cos(2mft), (1)

where A and f are the flapping amplitude and frequency,
respectively. Then, a flapping Reynolds number is defined as
Re,=p,fAc/ u, where ¢ is the chord of foil, p, the fluid
density, and u the dynamic viscosity.

Based on this model, some studies have been performed
experimentally and numerically. Vandenberghe, Zhang and
Childress® carried out an experiment to address the threshold
value of the flapping Reynolds number above which the tran-
sition to forward flapping flight from a pure flapping state
occurs. Recently, Alben and Shelley9 also took a numerical
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study to reveal the dynamics of the flapping foil and their
relation to the foil shape and mass. They only considered one
flapping amplitude (i.e., A/c=0.5) for simplifying the prob-
lem, and had somewhat less emphasis on computing the
critical flapping Reynolds number. As the critical flapping
Reynolds number is exceeded, the flapping foil begins to
move spontaneously in the horizontal direction, including a
complicated interaction of the foil with the surrounding fluid
flow.®” The foil exerts forces on the fluid through its own
inertia response and is likewise acted on by the fluid flow
pressure and viscous friction. Such fundamental fluid-body
interactions are also well shown in the dynamic responses of
flexible filaments in a flowing soap film'" and flag oscilla-
tions in fluid flow,'""? depending on the filament or flag
mass. The goal of this Brief Communication is, over the

(A, f) parameter space, to examine the critical flapping Rey-
nolds number, the Strouhal number for the forward flapping
foil, and the effect of the foil mass on the dynamic responses
of the flapping foil.

To simulate flow around an up-and-down flapping foil,
we solve the two-dimensional Navier-Stokes equations,

Vu=0, ()
du JI—,

— +uVu=-Vp+—V-u, (3)
ot Po

where u is the velocity vector, and p is the pressure. When a
foil takes only up-and-down flapping without the horizontal
movement, by using ¢ and fc as the characteristic length and
velocity to nondimensionalize the equations, two typical di-
mensionless parameters involved in this problem are the fre-
quency parameter, or frequency Reynolds number, defined as
B=pofc?! u, and the flapping amplitude A=A/c, with a rela-
tion to the flapping Reynolds number Re,=[BA. The equa-
tions are solved by a fractional-step velocity correction
method coupled with a finite element spatial discretization."
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FIG. 1. (a) Sketch of a flapping foil. The foil is an elliptic shape with the
thickness-chord ratio 1/12. (b) Vorticity contours in the symmetrical region.
Solid lines represent positive values and dashed lines negative values. (c)
Vorticity contours in the asymmetric region.

An instantaneous inertial frame technique is used to treat the
foil motion.'"* The relevant code was extensively validated
and verified to ensure the numerical accuracy and con-
Vergence.ls’16

To identify the boundary between symmetrical and
asymmetric flow regime on the S8—A plane, for each pair of
B and A under examination, the horizontal force component
F is calculated during the flapping cycles. When F, vanishes
always during the cycles, the flow is symmetric with the flow
structure being left-right symmetric, as typically shown in
Fig. 1(b). When F, is nonzero, the flow is characterized as
asymmetric, the foil will move spontaneously in the horizon-
tal direction. As the foil takes a steady movement along one
direction, depending on the foil mass discussed below, vortex
shedding occurs with a reverse von Karman vortex street
shown in Fig. 1(c). This behavior is well consistent with the
experimental and numerical ﬁndings.6‘8’9 After a series of
tests with a large number of 8 and A pairs, the boundary
between symmetrical and asymmetric flow regime on the
B—A plane shown in Fig. 2(a) is determined in the form of a
fitting curve, A=1.987°7. Then, by Re,=pA, the critical
flapping Reynolds number can be expressed as approxi-
mately

Re§ =3.14707, (4)

Our predicted result, as shown in Fig. 2(b) for the curve
of Rej, is consistent with the critical Reynolds number range
from observations of swimming and flying animals,'"'®
among others. Further, based on numerical tests, the foil
shape with the thickness-chord ratio of less than 15%, in
which the relative scales of of swimming and flying animals
lie, has a small influence on the boundary. Following our
calculations, the critical flapping Reynolds number some-
what becomes smaller with a decrease of the thickness-chord
ratio. This behavior is also confirmed by the analysis of lin-
ear instability for several thickness-chord ratios.”

To analyze the dynamic response of spontaneously mov-
ing foil, the flapping frequency and amplitude are chosen in
asymmetric regime in Fig. 2. In this case, the horizontal
force component F',, due to the pressure and friction forces
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FIG. 2. Boundary between symmetrical and asymmetric flow: (a) B—-A
plane; (b) Re§—A plane. Symbols A and V, corresponding to some typical
cases calculated here, represent symmetrical and asymmetric flow,
respectively.

exerting on the foil from the surrounding fluid, propels the
foil to move horizontally through Newton’s second law,
d*x,
m
*dr

=Fy, (5)

where x; is the horizontal location of the foil, and m; is the
foil mass per unit spanwise length, or p.S, with p, the foil
density and S the foil area. To normalize Eq. (5) by pof>c?, a
typical parameter, the density ratio o=p,/p,, is introduced.
Here, we deal with the dynamics of the foil with differ-
ent density ratios. The horizontal locations of the foil at sev-
eral o values are shown in Fig. 3. As 0=<2.2, the foil under-
goes spontaneous oscillations, while as o=2.5, the foil
moves to a stable state and reaches a steady movement after
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FIG. 3. The horizontal locations x,/c of the foil at several o values for
A=0.5 and B=100. Here, T is the flapping period. Each location from
o=2 for the sequence of the o value shown here is added continuously by
an interval 10 to clearly exhibit these curves.
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3 to 30 (for 0=100 in Fig. 3) flapping cycles. Similar dy-
namic behaviors were also found by Alben and Shelley.9
Note that the foil can move in either direction for different
pairs of 8 and A, lying in the asymmetric region in Fig. 2;
once the direction is chosen, it does not change. It is verified
that a threshold value of the density ratio o,, e.g., o,
~2.2-2.5 for the case in Fig. 3, exists for each pair of 8 and
A. Thus, the horizontal movements of the foil demonstrate
the existence of two dynamic responses. One is an oscilla-
tory state when o <o, and the other a steady movement state
when o> o,. After extensive tests with different 8 and A
pairs as well as different o values, we have also found that
o, becomes relatively small with increasing 8 and large with
increasing A. The former behavior for o. vs B is well con-
sistent with the results,9 however, the latter for o, vs A has
not been shown in Ref. 9, since only one flapping amplitude
was considered there. The threshold values of the density
ratio are o, ~ 2—4 for all cases in the (3,A) parameter space.
As a typical case with the thickness-chord ratio 0.1,° o, is
around 3, lying in the range of o, predicted in this study.
When o> g, the speed stays constant to within 3% with o
up to 10%, and the wake of the foil in a steady movement
state exhibits a reverse von Karman vortex street, as shown
in Fig. 1(c).

When a foil moves through a fluid, the foil undergoes
viscous and inertial forces. The above mechanism immedi-
ately suggests that the foil inertia must be increased to over-
come fluid viscous force to enter into a steady movement
state, otherwise into an oscillatory state. Recently, a similar
mechanism was revealed for flexible filaments in a flowing
soap film'® and flag oscillations in fluid flow.'"'? The above
findings also demonstrate that the dynamics of flying and
swimming animals involves a complicated interaction of
their bodies with the surrounding fluid flow. Usually, real tail
or wing of swimming and flying animals has a density ratio
o~ 10'-107, so that the flapping mode can naturally stay in
the regime of a steady movement state to generate a forward
flapping flight.

The tail or wing kinematics of swimming and flying ani-
mals are well relevant to the Strouhal number, which is de-
scribed as St=A,,f/U, where U is the average forward speed
and A, is the width of the wake, taken to be equal to the
maximum excursion of the foil’s trailing edge, i.e., double

amplitude Aw=21§.19 The Strouhal number is known to gov-
ern a well-defined series of vortex growth and shedding re-
gimes for the flapping foil, or a reverse von Kdrmén vortex
street shown in Fig. 1(c). To characterize the forward speed
U, or U=dx,/dt from Eq. (5) after the foil begins to move
steadily, a forward Reynolds number is usually defined as
Rey=p,Uc/ . Then, the Strouhal number is also expressed
as St=2 Re,/Rey.

Computations are carried out for a certain A (or 8) with
changing B (or A), which lie in the asymmetric region in Fig.
2. The curves of Re,—Re are shown in Fig. 4. The relations
between Re, and Rej are nearly linear for fixed A or f3,
consistent with the experimental measurements.® We identify
that St is within the interval 0.2-0.4 approximately, at which
flying and swimming animals cruise driven by the wing or
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FIG. 4. The forward Reynolds number Re;; versus the flapping Reynolds
number Re,. The Strouhal number is St=2 Re,/Re;. Here, V denotes the
data for A=0.2 with changing B, A for A=0.5 with changing B, (I for B
=100 with changing A, and O for =200 with changing A, respectively.

tail is likely to tune for high propulsive efficiency because of
natural selection.” Compared with the predicted St with
slightly less than 0.2, which is at the lower end of the range
0.2<St<0.4,% the present St values shown in Fig. 4 are
mostly in the range of 0.25-0.3.

In summary, based on numerical analysis on a flapping
foil over an extensive (B,A) parameter space, the critical
flapping Reynolds number is predicted and expressed ap-
proximately by (4). The dynamics of the flapping foil are
analyzed in two dynamic responses, i.e., an oscillatory
movement and a steady movement, which depend on the
density ratio . The threshold value of the density ratio o, is
in the range of 2—4 for all cases in the (3,A) parameter space
considered here, and becomes relatively small with increas-
ing B and large with increasing A. When o> o, the flapping
mode stays in the regime of the steady movement state to
generate a forward flapping flight, and the wake of the foil
exhibits a reverse von Kdrmdn vortex street. The Strouhal
number, which governs a well-defined series of vortex shed-
ding (or a reverse von Kdrmdn vortex street here) for the
flapping foil, is calculated with St~ 0.2—0.4 approximately,
consistent with the regime selected by flying and swimming
animals naturally.
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