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The ground effect on insect normal hovering is investigated using an immersed boundary-lattice
Boltzmann method to solve the two-dimensional incompressible Navier–Stokes equations. A virtual
model of an elliptic foil with oscillating translation and rotation near a body surface or ground is
used. Computations have been carried out for some parameters including the distance between the
foil and the surface, phase difference between the rotation and translation, and amplitude of
oscillating rotation. The ground effect on the unsteady forces and vortical structures is analyzed. In
particular, three typical regimes of force behavior due to the ground effect, i.e., force enhancement,
force reduction, and force recovery regime, are identified and closely associated with the evolution
of vortex structures. The results obtained in this study provide physical insight into the
understanding of aerodynamics and flow structures for insect normal hovering flight with a ground
effect and flying mechanisms relevant to insect perching on body. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2958318�

I. INTRODUCTION

Insect flying through air has developed the superior and
complete performance of flying in complex environments. In
nature, flying insect usually perches on some bodies and the
ground effect will play a significant influence on the flying
performance.1 The relevant aerodynamic characteristics are
helpful for understanding the flight stability of biomimic
man-made machines.2,3 However, to our knowledge, the
ground effect on the insect flying behaviors has never been
studied and is highly desired. We will thus investigate the
ground effect on the insect hovering in the present paper.
Moreover, extensive work on the unsteady mechanisms in
insect flight has been carried out experimentally and numeri-
cally and will be briefly reviewed below.

The flow around the insect wing has been studied experi-
mentally to exhibit the complex behaviors with highly un-
steady and vortical structures.4–12 Experiments have verified
that the leading-edge vortex �LEV� over the insect wing
plays the most important aspect in insect flight to signifi-
cantly generate the lift during the translation of the flapping
wing.7–12 Moreover, it is also found that the lift can be en-
hanced by rotational effect and wake capture.13 Using an
analysis of the momentum imparted to the fluid by the vortex
wake, the LEV can explain the high lift on the insect wing.
This high lift mechanism is called the delayed stall �or dy-
namic stall� mechanism.9,13 In the experiment of a model of
the fruit fly,10,13 large lift and drag peaks occur at the begin-
ning and the end of the stroke in the case of advanced rota-
tion, i.e., wing rotation preceding the stroke reversal, in ad-
dition to the large lift and drag during the translational phase
of a stroke. The force peaks at the beginning of the stroke
can be explained by the wake capture mechanism. Basically,

these involved mechanisms about the high lift on the insect
wing have been analyzed in detail.9–13

The unsteady mechanisms in insect flight have also been
investigated by numerical simulations.14–21 Liu et al.14,15 first
carried out a numerical simulation to deal with unsteady
aerodynamics around a flapping wing mimicking moth’s
forewing and hindwing. Then, to supplement experiments,
extensive numerical studies have been performed to reveal
the mechanisms relevant to insect flight performance.16–24

Although the major work was done based on two-
dimensional �2D� simulations, we should remind the role of
three dimensionality on stabilizing LEV of the flapping wing
and enhancing lift production. Liu et al.15 have indicated that
a LEV with axial flow is detected during translational mo-
tions of three-dimensional �3D� flapping wing, causing a
negative pressure distribution and enhancing lift production.
The axial flow is induced by the spanwise pressure gradient
and can stabilize the LEV.

Given the complexity and expensive cost of modeling
fluid flows in three dimensions,18,24 it is reasonable to em-
ploy a 2D simulation to study the mechanisms in flapping
flight. A much smaller spanwise flow, about 2%–5% of the
tip velocity over a dynamically scaled mechanic fruit fly
wing at Reynolds number around 150, was experimentally
determined by Birch and Dickinson.11 Smoke visualization
of free-flying butterflies also did not observe substantial
spanwise flow, but reported high variability of 3D flow
patterns.5 It is likely that the spanwise flow within the vortex
core occurs only at sufficiently large Reynolds number as in
the case of a hawkmoth, but not at low Reynolds number as
in the case of a fruit fly. Computed forces on a 3D dragonfly
wing match ones obtained in 2D computations, despite the
differences in the LEV structures.25 Recently, Wang et al.20

also confirmed that the unsteady forces predicted by 2D
computation agree well with 3D experimental data, in par-
ticular, in the case of advanced and symmetric rotation of
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flapping wing. Thus, a 2D approach can be reasonably em-
ployed to predict the aerodynamic behaviors of insect flight.

In the present study, a 2D virtual model, which is an
elliptic foil with oscillating translation and rotation near a
surface, is used to deal with the ground effect on insect hov-
ering motion. Although we recognize the limitation of this
model, we nevertheless feel that the results will be of help in
physical understanding of the relevant mechanisms for insect
perching on body. To deal with the unsteady forces and flow
structures, the 2D incompressible Navier–Stokes equations
are solved using an immersed boundary-lattice Boltzmann
method �IB-LBM�, which can be convenient to treat the flap-
ping foil boundary and the fixed ground boundary.21,26–30

This paper is organized as follows. The physical problem
and mathematical formulation are described in Sec. II. The
numerical method and validation are given in Sec. III. The
ground effect on the unsteady forces and vortical structures
is discussed in Sec. IV. Finally, concluding remarks are given
in Sec. V.

II. PHYSICAL PROBLEM AND MATHEMATICAL
FORMULATION

To investigate the flow around an elliptic foil with oscil-
lating translation and rotation near a ground, as shown in
Fig. 1, the incompressible Navier–Stokes equations are used
and given as

�u

�t
+ u · �u = −

1

�
� p + ��2u , �1�

� · u = 0, �2�

where u is the velocity, p the pressure, � the density of the
fluid, and � the kinematic viscosity, respectively.

The flapping motion of insect wing in Fig. 1 can be

described as19,20

A�t� = Am cos�2�t/T� , �3�

��t� = �0 − �m sin�2�t/T + �� , �4�

where T is the period, Am is the amplitude of oscillating
translation, �0 and �m are the mean angle of attack and am-
plitude of oscillating rotation, respectively, and � is the
phase difference between the rotation and translation.

We use the chord length of the foil c and the velocity U,
related to the oscillating translation U=2�Am /T, as the
length and velocity scales, respectively.20 Then, the Reynolds

number is defined as Re=�Uc /�. The corresponding nondi-
mensional variables shown in Eqs. �3� and �4� are still rep-
resented by the same symbols for writing convenience. To
deal with the ground effect on insect flight, another param-
eter D is introduced to represent the distance between the foil
and the ground, or called the ground clearance.31,32 In the
present calculation, no-slip boundary condition is used on the
foil and ground surface, and the boundary normal derivatives
of velocity vanish on the top boundary and the two vertical
boundaries.

The total force acting on the flapping foil consists of the
friction and pressure. Since a normal hovering is considered,
the vertical and horizontal force coefficients are used and
defined as CV=FV / �0.5�U2c� and CH=FH / �0.5�U2c�, re-
spectively, where FV and FH are the vertical and horizontal
forces calculated by integrating the viscous stress and pres-
sure along the foil.

III. NUMERICAL METHOD AND VALIDATION

To solve Eqs. �1� and �2�, an IB-LBM �Refs. 27–30� is
used. In the immersed boundary method,33,34 two sets of co-
ordinates are employed. As shown in Fig. 1, the fluid domain
� is represented by the Eulerian coordinates x and the foil
boundary � is denoted by the Lagrangian coordinates X�s , t�
with M Lagrangian boundary points uniformly distributed.
An external force f�x , t� is directly introduced in the right-
hand side of Eq. �1� to mimic the boundary immersed in the
fluid flow. Based on the Proteus method proposed by Feng
and Michaelides,30 f�x , t� can be obtained by

f�x,t� = �
�

F�s,t�	�x − X�s,t��ds

= �
m=1

M

f̂�X�s,t��Ds�x − Xm�s,t��h	s, �5�

where F�s , t� is the surface force density, f̂�X�s , t�� is the
flow force density at the Lagrangian points, and h is the
uniform lattice spacing. 	s is the arch length between two
intersections of the boundary �. Ds is a smoothed approxi-
mation of the 2D Dirac 	 function,34

Ds�x − Xm� =
1

h2	h� x − Xm

h
�	h� y − Ym

h
�

and

	h�r� = 	1

4

1 + cos��r

2
�� , �r� 
 2

0, �r� � 2.


Moreover, the time-discretized Lagrangian force density

f̂�X�s , t�� can be constructed by the direct forcing
method,26,30

α

A
D

Γ

Ω

FIG. 1. Sketch of a foil in normal hovering motion of insect flight near a
surface.
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f̂ i
n+1 = ���Ui

n+1 − Ui
n

�t
��

�

+ RHSn, �6�

where Ui is the prescribed velocity of the moving boundary
� and RHSn includes the convective, pressure, and viscous
terms at the nth time level. The Eulerian force density f�x , t�
is then solved by substituting f̂�X�s , t�� into Eq. �5�.

The LBM is an approach to solve fluid dynamics prob-
lem based on microscopic kinetic models.35 To calculate Eqs.
�1� and �2�, an additional term is included in the discrete
lattice Boltzmann equation and given as36

f i�x + ei�t,t + �t� − f i�x,t�

= −
1


�f i�x,t� − f i

eq�x,t�� + �tFi, �7�

where f i�x , t� is the distribution function for particles with
velocity ei at position x and time t, �t is the time increment,
and  is the relaxation time. The D2Q9 model37 is used in the
present computation, and the equilibrium distribution func-
tion f i

eq is defined as

f i
eq = �i�
1 +

e · u

cs
2 +

uu:�eiei − cs
2I�

2cs
4 � ,

where �i is the weighing factor, cs is the sound speed, � and
u are the fluid density and velocity, respectively, and can be
obtained by the distribution function, accounting for the ex-
ternal force f�x , t�,

� = �
i

f i, �8�

�u = �
i

ei f i +
1

2
f�t . �9�

Additionally, the forcing term in Eq. �7� is determined by

Fi = �1 −
1

2
��i
 ei − u

cs
2 +

e · u

cs
4 ei� · f . �10�

The computational loop to advance the solution from
one time level to the next in the IB-LBM solver consists of
the following three substeps. First, we solve the flow force

density at the Lagrangian points f̂�X�s , t�� from Eq. �6� and
update the Eulerian force density f�x , t� from Eq. �5�. Then,
f�x , t� is substituted into Eq. �10� to calculate the forcing
term, and the distribution function is updated by Eq. �7�. The
last step is that Eqs. �8� and �9� are solved for the new den-
sity � and velocity u.

To validate the present code and method, some typical
flows were examined.27,28 We also performed extensive con-
vergence checks and validations. The time-dependent verti-
cal and horizontal coefficients for a flapping foil near a
ground calculated by different lattice spacings are shown in
Fig. 2. The results by different computational conditions
agree well with each other. It can be confirmed that the com-
puted results are independent of the lattice spacing and com-
putational domain size. To keep an accurate prediction, the
results given below were calculated by the finer grid and
larger domain, i.e., �x=0.0125 with a computational domain
�−20,20� in the x-direction and �0, 24� in the y-direction.
Moreover, to perform quantitative comparison with the lit-
erature, we have calculated some no-ground cases. As a
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FIG. 2. Time-dependent vertical �a� and horizontal �b� force coefficients of
normal hovering motion near the ground for D=1, �m=45°, and �=0°.
Solid lines: �x=0.025 with the computational domain �−10,10� in the
x-direction and �0, 12� in the y-direction; dashed lines: �x=0.0125 with
�−20,20� in the x-direction and �0, 24� in the y-direction.
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FIG. 3. Comparison of the present result and previous data for the horizon-
tal �a� and vertical �b� force coefficients during two strokes for dragonfly
hovering flight with the stroke plane inclined at an angle of � /3, Re=157,
�m=45°, �=0°, and Am=1.25.
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typical case, Fig. 3 shows the time-dependent horizontal and
vertical force coefficients during two strokes for dragonfly
hovering flight. This case has been carefully studied by
Wang16 and Xu and Wang.21 It is seen that our result agrees
well with the data obtained by using different numerical
methods.16,21

IV. RESULTS AND DISCUSSION

In this section, we present some typical results on the
force behaviors and vortical structures for a flapping foil near
a ground. Based on the selected parameters in modeling in-
sect hovering,16–21 the parameters used here are given as fol-
lows: the amplitude of rotation �m=30°, 45°, and 60°, the
mean angle of attack �0=90°, the amplitude of translation
Am=1.25, the phase difference �=−45°, 0°, and 45°. The
Reynolds number Re is 100, corresponding to the flight con-
dition of the fruit fly, and the thickness ratio of the foil is
0.25. To deal with the ground effect, the ground clearance D
ranges from 1 to 6.

A. Ground effect on force behaviors

The aerodynamic forces acting on the flapping foil are
directly associated with the study of insect flight. Here we
first investigate the ground effect on the forces. Based on our
calculations, periodic or quasiperiodic variations of time-
dependent forces are achieved after three to five strokes for
all the cases considered. Typically, Fig. 4 shows the time-
dependent vertical force coefficient for D=2.5 and 5. From
Figs. 2 �D=1� and 4 �D=2.5 and 5�, the time-dependent
forces exhibit periodic changes from the fourth stroke. The
time-averaged values used below are obtained over several
strokes in the periodic or quasiperiodic state. Because the

horizontal force cancels almost over a period, as suggested in
previous work,20 its absolute value is used when taking the
average.

The time-averaged force coefficients C̄V and C̄H versus
the ground clearance D are shown in Fig. 5. To deal with
the ground effect on the forces, the forces acting on the
foil without the ground effect �or denoted by D=�� for

�m=45° and �=0° are also calculated with C̄V�=0.39 and

C̄H�=1.28 approximately. As D increases, the vertical force

C̄V decreases quickly to a minimum at D=2 approximately,

then increases gradually and approaches to C̄V�. Similarly,

the horizontal force C̄H decreases to a minimum at D=3

approximately and increases to C̄H�.
Based on the force coefficients, we have identified three

regimes of force behavior due to the ground effect, i.e., force
enhancement, force reduction, and force recovery regime.

From Fig. 5, as D�1.5, C̄V and C̄H are enhanced and the
force behavior belongs to the force enhancement regime. As

1.5�D�3.5, C̄V and C̄H are obviously less than C̄V� and

C̄H� with the force behavior lying in the force reduction
regime. As D increases further, say D�3.5 in Fig. 5, the

ground effect becomes weak and C̄V and C̄H gradually in-

crease to approaching C̄V� and C̄H�. For neatness, we clas-
sify this force variation as a force recovery region. Further,
we have examined our extensive results for different param-
eters shown below and identified that there exist such the
three regimes of the force behavior.

To understand the underlying physical mechanisms rel-
evant to the three force regimes, we further discuss the time-
dependent force here and the vortical structures in the fol-
lowing subsection. For clearly exhibiting the force variation,
the time-dependent force coefficients CV and CH over only
one stroke after reaching a periodic state are shown in Fig. 6.
It is seen that two peaks of CV occur in the stroke at D=1. As
D increases, e.g., D=2.5 and 5, four peaks of CV appear in
the stroke and the fourth peak value at t /T=0.8 approxi-
mately becomes higher. This behavior is closely associated
with the time development of vortex structures near the flap-
ping foil and will be discussed below.

At D=1, lying in the force enhancement region, a
large CV is generated over the forth �i.e., first half-stroke� and
back �i.e., second half-stroke� strokes with two peaks at
t /T=0.15 and 0.65 approximately. Correspondingly, CH also
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FIG. 4. Time-dependent vertical force coefficient of normal hovering mo-
tion near the ground for D=2.5 �a� and 5.0 �b�.
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FIG. 5. Mean horizontal �C̄H� and vertical �C̄V� force coefficients vs D for
�m=45° and �=0°.
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exhibits a large magnitude during the stroke. Note that CH in
two half-strokes is almost equal and in opposite direction,
thus making negligible net contribution to the net force. With
the increase in D, say D=1.5, the magnitudes of CV and CH

become relatively smaller but still have higher contributions
to the forces compared to the other cases in the force reduc-
tion and recovery regimes. Thus, the ground effect plays an
important role in the force enhancement regime. It is also
suggested that insect flight can effectively take advantage
of the ground effect to obtain high lift and improve flight
efficiency.

On the other hand, based on experimental and numerical
results for a normal hovering wing without the ground
effect,20 the profile of CV exhibits that its peak in the back
stroke is higher than one in the forth stroke, similar to the
case at D=5 in Fig. 6. Thus the back stroke motion contrib-
utes major part to CV during one stroke. However, as shown
in Fig. 6 at D=1, the profile of CV over the forth stroke is the
same as one over the back stroke. It means that, in the force
enhancement regime, both the forth and back stroke motions
can contribute large vertical force due to the ground effect.

When D�1.5, the force behavior moves to the force
reduction regime. As a typical case for D=2.5 in Fig. 6, the
profile of CV is relatively small over the stroke, resulting in a
low averaged value in Fig. 5. It is seen that CV in the back
stroke becomes somewhat larger than one in the forth stroke.
As D increases further, the force behavior, e.g., CV and CH at
D=5 in the force recovery region, is similar to that at
D=� �Refs. 19 and 20� since the ground effect becomes
weak. CV exhibits a high peak at t /T=0.8 approximately in
the back stroke compared to that in the forth stroke. It is also
noticed that the peak value at t /T=0.8 for D=5 is higher

than one for D=2.5. The force reduction at D=2.5 is mainly
associated with the low distribution in the back stroke and
will be further analyzed based on the vortical structures.

B. Ground effect on vortex structures

The vortical structures are closely associated with the
aerodynamic characteristics in insect flight.14–20 In the
present problem, there exist the relevant mechanisms of the
constraints of the ground for different ground clearances on
the leading-edge and trailing-edge vortices �TEV� interacting
with previous ones and the flapping foil. The forces on the
foil are mainly dependent on the vortical structures near the
foil.38,39 Thus, the vortex structures around the flapping foil
are discussed to understand the underlying mechanisms as-
sociated with the three force regimes.

To deal with the ground effect on vortex structures, the
vorticity contours are shown in Fig. 7 for D=1. Since CV

during both the forth and back strokes is the same distribu-
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FIG. 6. Time-dependent vertical �a� and horizontal �b� force coefficients
during one stroke for �m=45° and �=0°.

-2 0 20

1

2

3

-2 0 20

1

2

3

-2 0 20

1

2

3

-2 0 20

1

2

3

(b)

(a)

(c)

(d)

FIG. 7. Vorticity contours during the forth stroke �or the first half-stroke� for
D=1, �m=45°, and �=0° at t /T= �a� 1 /8, �b� 2 /8, �c� 3 /8, and �d� 4 /8.
Here, solid lines represent positive values �i.e., counterclockwise vortex�
and dashed lines negative values �i.e., clockwise vortex�. Increment of the
contours is 1. The lines and increment used here are the same as ones shown
in the following figures for all of the vorticity plots.
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tion at D=1 in Fig. 6, we only discuss the time development
of vortex structures in the forth stroke. Furthermore, to ex-
hibit the correlation between the vortex structure and force
generation, the pressure plots in the field, corresponding to
Fig. 7, are also shown in Fig. 8. When the foil takes transla-
tion and rotation from t /T=0, a negative �or clockwise rota-
tional� LEV is formed gradually and enhanced by the inter-
action with a positive �or counterclockwise rotational� LEV
formed in the previous back stroke. Correspondingly, a lower
�or higher� pressure distribution occurs over the downwind
�or upwind� side of the foil in Fig. 8�a�, resulting in the peaks
of CV and CH in Fig. 6 at t /T=1 /8 approximately. The LEV
is attached to the foil in accordance with the stall-delayed
mechanism and evolved over the downwind side of the foil
at t /T=1 /4 to induce a lower pressure region, associated
with a higher CV. Then, when the foil rotates gradually to a
high angle, even �=90° at t /T=1 /2 in Fig. 7�d�, the LEV
moves away from the foil and CV decreases. Correspond-
ingly, as shown in Fig. 8�d�, a higher pressure distribution
occurs on the right side of the foil, resulting in a large nega-

tive CH at t /T=1 /2 in Fig. 6. Meanwhile, during the forth
stroke, a positive TEV interacts with a negative TEV left in
the previous back stroke to form a pair of vortices in Fig.
7�b�. Then, the vortex pair is stretched and elongated over
the ground, and finally is swept away in the horizontal direc-
tion due to their induced velocity. In the back stroke, the time
development of vortex structures with an opposite direction
is the same as the above description in the forth stroke.

When D increases, Fig. 9 shows the vortex structures for
D=2.5, lying in the force reduction regime. When the foil
moves forward, a negative LEV is formed and attached to
the foil during the forth stroke due to the stall-delayed
mechanism. Meanwhile, a positive LEV generated in the pre-
vious back stroke interacts with the upwind side of the foil at
t /T=1 /8, resulting in the reduction of CV and CH in Fig. 6,
then combines with the positive TEV at t /T=2 /8. A vortex
pair with the positive TEV and a negative TEV generated in
the previous back stroke is formed and moves away along
the horizontal-upward direction. The similar evolution of the
vortex structures with an opposite direction is also observed
in the back stroke.
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FIG. 8. Relative pressure �i.e., p− p�� contours during the forth stroke for
D=1, �m=45°, and �=0° at t /T= �a� 1 /8, �b� 2 /8, �c� 3 /8, and �d� 4 /8.
Here, solid lines represent positive values and dashed lines negative values.
Increment of the contours is 0.05.
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FIG. 9. Vorticity contours during the forth stroke for D=2.5, �m=45°, and
�=0° at t /T= �a� 1 /8, �b� 2 /8, �c� 3 /8, and �d� 4 /8.
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When D increases further, the ground effect becomes
weak. As is typically shown in Fig. 10 for D=5, the vortex
structures near the foil are similar to those at D=�. When
the foil performs translation and rotation in the forth stroke,
as exhibited in Figs. 10�a�–10�d�, a negative LEV is formed
and attached to the foil, and a positive TEV sheds into the
wake. When the foil returns in the back stroke, from Figs.
10�e� and 10�f�, the negative LEV is evolved over the foil
and combined into a shedding TEV, which is coupled with
the positive TEV formed in the forth stroke to evolve a stron-
ger vortex pair. Then, the vortex pair moves downward due
to their induced velocity. Similar to a reverse von Kármán
vortex street in the wake of a flapping foil,22,23 this vortex-
pair structure induces a jetlike mean velocity profile in the
wake and is of help in generation of the vertical force. Thus,
as shown in Fig. 6, a higher peak of CV at t /T=0.8 approxi-
mately occurs in the back stroke.

Basically, from these flow structures shown in Figs. 7, 9,
and 10, we can identify that some typical phenomena found
experimentally and numerically,8–20 e.g., dynamic stall delay,
foil acceleration in translation and rotation, and interactions
between the foil and the existing flow, are closely related to
the unsteady forces. The relevant mechanisms have been
well discussed in previous work. Here, we mainly reveal
different evolved behaviors of the vortex structures due to
the ground effect. As shown in Figs. 7�a� and 9�a�, when the
foil moves forward, the foil interacts with a positive LEV
generated in the previous back stroke. At D=1, due to the
small ground clearance, the LEV in Fig. 7�a� moves over the
leading-edge and enhances another negative LEV attached to
the foil. As shown in Fig. 6, the strengthened LEV is of help
in generation of large CV. However, at D=2.5, the LEV in
Fig. 9�a� interacts with the wind side of the foil, resulting in
the reduction of CV. Furthermore, we pay attention to the
evolution of vortex pair in Figs. 9 and 10. The vortex pair is
coupled by both TEVs with an opposite sign in each half-
stroke at D=2.5 in Fig. 9 and moves away in the horizontal-
upward direction, making against the generation of CV. Cor-

respondingly, as shown in Fig. 10 for D=5, only one vortex
pair is observed in one stroke and moves downward to be of
benefit to generating a higher CV.

C. Effect of the phase difference �
on force behaviors and vortex structures

The phase difference � between the translation and ro-
tation is an important parameter which is closely related to
the vertical force.20 We further investigate the influence of
the phase difference � on the vertical force behaviors and
vortex structures with a ground effect. Following the previ-
ous description,20 we refer �=45°, 0°, and −45° as the ad-
vanced, symmetrical, and delayed rotation cases, respec-
tively. The foil motion in these cases differs in the angle of
attack at the end of stroke, leading to different force behav-
iors and vortex structures.

Figure 11�a� shows the time-averaged vertical force co-

efficient C̄V versus the phase difference � for three typical

values of D. As emphasized in the previous work,13,20 C̄V

depends sensitively on �. The similar behavior is also re-

vealed with the ground effect. It is seen that C̄V increases
when � varies from −45° to 45° for the same D. Based on
our extensive calculations for the advanced and delayed ro-
tation cases, we also identify that there exist three regimes of
force behavior, consisting with the classification of the sym-
metrical rotation case. As shown in Fig. 11�a�, the typical

values of C̄V at D=1, 2.5, and 5 lie in the force enhancement,
force reduction, and force recovery regime, respectively.

The time-dependent vertical force coefficient CV is
shown in Figs. 11�b� and 11�c� for �=45° and −45°, respec-
tively. At D=1, similar to the profile of CV in Fig. 6�a� for
�=0°, two peaks of CV occur, while the phases related to the
peaks are different for �=45° and −45°. The profile of CV

over the forth stroke is similar to that over the back stroke.
With the increase in D, e.g., D=2.5 and 5 in Figs. 11�b� and
11�c�, there appear two obvious peaks in the stroke. Similar
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to Fig. 6�a� in the force reduction and recovery regimes, the
highest peak occurs in the back stroke. Thus, the correspond-
ing higher distribution of CV exists in the back stroke and

contributes major part to C̄V. In addition, comparing with the
profiles of CV in the back stroke, the peak value at D=2.5
lying in the force reduction regime is less than that at D=5 in
the force recovery regime.

The vortex structures in the forth stroke are shown in
Figs. 12 and 13 at D=1 for �=45° and −45°, respectively. In
Fig. 12 for �=45°, a negative LEV is attached to the foil in
accordance with the stall-delayed mechanism, resulting in a
higher CV at t /T=1 /4 approximately in Fig. 11�b�. When
the foil is moving to an angle greater than � /2, e.g., at
t /T=3 /8 and 1 /2 in Fig. 12, the flow separates more quickly
and the vertical force CV becomes lower at D=1 and even
negative values at D=2.5 and 5 in Fig. 11�b�. In Fig. 13 for
�=−45°, a positive LEV and a negative TEV formed in the
previous back stroke interact with the foil, as shown in Figs.
13�a� and 13�b�, respectively. Then, a strong LEV is formed
over the foil in Fig. 13�c�, resulting in a higher peak of CV at

t /T=3 /8 approximately in Fig. 11�c�. Comparing with the
developments of the vortex pair induced by the TEV in Figs.
12, 7, and 13, corresponding to �=45°, 0°, and −45°, respec-
tively, the vortex pair moves the most far away along the
ground at �=45°, which may be also associated with the

higher C̄V in Fig. 11�a�.

D. Effect of the rotating amplitude �m
on force behaviors and vortex structures

We further discuss the effect of rotating amplitude �m on
force behaviors and vortex structures with a ground effect.
Three amplitudes of rotation �m=30°, 45°, and 60° are con-
sidered here. The rotating acceleration for different rotating
amplitudes will mainly influence the force acting on the foil
and the flow structures near the foil.

The time-averaged vertical force coefficient C̄V versus
the rotating amplitude �m for three typical values of D is

shown in Fig. 14�a�. As �m increases, C̄V decreases for the
same D. In particular, there also exist three regimes of force
behavior at D=1, 2.5, and 5, corresponding to the force en-
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hancement, force reduction, and force recovery regime, re-
spectively. The time-dependent vertical force coefficient CV

is shown in Figs. 14�b� and 14�c� for �m=30° and 60°, re-
spectively. We can identify two peaks of CV at D=1 and four
peaks at D=2.5 and 5 over the stroke. From Figs. 14�b� and
14�c� at D=1, it is seen that the profile of CV in the forth
stroke is the same as one in the back stroke. Moreover, com-
paring with the profiles of CV at D=1, unlike the cases for
�m=30° and 45°, a platform distribution of CV for �m=60°
in Fig. 14�c� occurs over 0.1� t /T�0.3 approximately in the
forth stroke. As D increases, e.g., D=2.5 and 5, similar to
Fig. 6�a�, the highest peaks of CV in the forth and back
strokes occur around t /T=0.3 and 0.8, respectively. Compar-
ing with the distribution of CV over the stroke, relatively

major contribution to C̄V exists in the back stroke.
The evolution of vortex structures for �m=30° is similar

to that for �m=45° in Fig. 7 and is not shown here. The
vortex structures in the forth stroke are shown in Fig. 15 at
D=1 for �m=60°. Comparing with the vortex structures for
�m=45° in Fig. 7, it is identified that the LEV becomes rela-
tively weak with the increase in �m, resulting in the decrease

in C̄V in Fig. 14�a�. Moreover, as shown in Figs. 15�b� and
15�c�, since the angle of attack is relatively small and the
TEV moves far away due to the ground effect, the LEV
evolves smoothly over the foil and, as mentioned above,
induces a platform distribution of CV during the period
0.1� t /T�0.3 in Fig. 14�c�.

V. CONCLUDING REMARKS

We have investigated insect normal hovering flight in
ground effect to provide physical insight into the understand-
ing of aerodynamics and flow structures for insect normal
hovering flight and flying mechanisms relevant to insect
perching on body. The ground effect on the unsteady forces
and vortical structures is analyzed. Here, we briefly summa-
rize the results obtained in the present study and discuss the
underlying mechanisms in the normal hovering with the
ground effect.

According to the mean force behavior, we have identi-
fied three typical regimes, including force enhancement,
force reduction, and force recovery regime. As typically
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shown in Fig. 5, when the ground clearance increases, the

mean vertical force C̄V decreases quickly to a minimum, then
increases gradually and approaches to the value without the
ground effect. This behavior differs from the flow past a
pitching foil near a ground,31,32 where the normal force act-
ing on the foil decreases monotonously with the increase in
the ground clearance. Moreover, by means of extensive cal-
culations for different phase differences, i.e., the advanced,
symmetrical, and delayed rotation cases, and for different
amplitudes of rotation, we have identified that there still exist
the three force regimes.

The force characteristics are closely associated with vor-
tical structures. Some typical phenomena, e.g., dynamic stall
delay, foil acceleration in translation and rotation, and inter-
actions between the foil and the existing flow, are observed
and closely related to the forces. In the force enhancement
regime, the interaction between the existed vortex and the
foil can enhance the LEV and is of benefit to generating a
high vertical force. In the force reduction regime, the vortex
pair coupled by the existed vortex and the TEV moves away
in the horizontal-upward direction due to the ground effect,

resulting in the reduction of the vertical force. Moreover, in
the force recovery regime, the vortex pair induces a jetlike
mean velocity profile in the wake, similar to the vortex struc-
ture without the ground effect20 and is of help in the genera-
tion of higher vertical force in the back stroke.

Based on the results obtained for different ground clear-
ances, phase differences, and amplitudes of rotation, we can
understand the flying mechanisms relevant to insect perching
on body. Basically, the present results are qualitatively con-
sistent with our observation of fruit fly perching on body by
means of high-speed charge-coupled devices. When insect
takes off the body, the insect may prefer to have a flight with
the advanced rotation and relatively small amplitude of rota-
tion, which are associated with high vertical force, e.g., as
shown in Figs. 11�a� and 14�a�. In contrast, when insect lands
on the body, the insect may select preferably a flight with the
symmetrical or delayed rotation and relatively large ampli-
tude of rotation, which are related to small vertical force.

The results obtained in this study are helpful to under-
stand aerodynamics and flow structures for insect normal
hovering flight with a ground effect and flying mechanisms
relevant to insect perching on body. However, the flow char-
acteristics in this problem are certainly far more complex and
diverse than the simple model considered here. Ideally, 3D
computation of a flapping wing in ground effect is desirable
and is a target in our further work.
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