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The locomotion of a flapping flexible plate in a viscous incompressible stationary
fluid is numerically studied by an immersed boundary-lattice Boltzmann method for
the fluid and a finite element method for the plate. When the leading-edge of the
flexible plate is forced to heave sinusoidally, the entire plate starts to move freely as
a result of the fluid-structure interaction. Mechanisms underlying the dynamics of
the plate are elucidated. Three distinct states of the plate motion are identified and
can be described as forward, backward, and irregular. Which state to occur depends
mainly on the heaving amplitude and the bending rigidity of the plate. In the forward
motion regime, analysis of the dynamic behaviors of the flapping flexible plate
indicates that a suitable degree of flexibility can improve the propulsive performance.
Moreover, there exist two kinds of vortex streets in the downstream of the plate
which are normal and deflected wake. Further the forward motion is compared with
the flapping-based locomotion of swimming and flying animals. The results obtained
in the present study are found to be consistent with the relevant observations and
measurements and can provide some physical insights into the understanding of the
propulsive mechanisms of swimming and flying animals. C© 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4832857]

I. INTRODUCTION

Flapping plates are often used to mimic the motions of insect wings and fish fins for locomotion
through fluids. Real wings and fins of animals are flexible1–7 and can get deformed during flapping
motion.6–9 In general, the deformations of the wings or fins are generated by dynamic forces, elastic
forces, and inertial forces due to accelerations. Meanwhile, the deformations also affect many aspects
of the locomotion. To understand the role of flexibility in the flapping-based locomotion adopted by
the swimming and flying animals, it is necessary to carry out relevant studies in detail.

The wings and fins in motion have complex behaviors which mainly depend on the internal
distribution of the compliant components.2, 6 Because the wings lack internal muscles, there exist
no actuators to realize internal control forces.10 Consequently, the wings can deform passively in
response to fluid forces while moving on its own. Similarly, the fins also experience the passive
deformations against external hydrodynamic loads.7 Meanwhile, the mechanical properties relevant
to wings and fins have been studied. For example, Combes and Daniel4, 5 have addressed the
relationship between venation pattern and wing flexibility through measuring the flexural stiffness of
wing and quantifying the wing venation. Alben et al.11 have experimentally examined the mechanical
properties of fin rays that allow the control of fin shape and stiffness in response to external forces.
Such properties of wings and fins have provided a physical basis for establishing a reliable model
for experimental and numerical investigations.

To understand the fundamental principles and potential applications of the flapping-based lo-
comotion of swimming and flying animals, a variety of experimental,12–17 theoretical,18–20 and
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computational21–30 studies have been conducted. In these works, the foil-like structures for mod-
eling wings or fins are essentially rigid and thus the flapping motions of the entire solid struc-
ture are prescribed. Some studies on flapping flexible foils or plates have also been carried out
experimentally31, 32 and numerically33–36 to investigate the effects of flexibility on the dynamic
behaviors of the fluid-solid system.

For animals in a steady state of free flight or swimming, the mean thrust generated balances
the resistance experienced by the surrounding fluid. Thus, it is necessary to study the dynamical
behaviors relevant to the free motion. We should mention that the physical models considered in the
works cited above are an object immersed in a given uniform incoming flow. Wu37 has indicated
that the fluid dynamics of a flow past a stationary object is different from a free moving object in
a stationary fluid. Recently, some efforts have been made to investigate the locomotion of flapping
flexible foils or plates in a stationary fluid. Tytell et al.38 has performed modeling and simulation
of the lamprey swimming in two dimensions. Spagnolie et al.39 and Zhang et al.40 have studied the
dynamics of a heaving plate with passive pitching to understand the role of flexibility in flapping
locomotion. However, since the instantaneous shape of an elastic structure in free motion depends
on the local passive deformation due to the fluid-structure interaction, a model of a flexible wing
moving passively in a stationary viscous fluid is needed for the understanding of the locomotion
behaviors of the flexible wings or fins.

In the present study, we consider a flexible plate with its leading-edge being forced to heave
sinusoidally in a stationary fluid. As a result of fluid-structure interaction, the plate begins to move
freely in the fluid. The coupled motions of the fluid and plate are numerically solved by an immersed
boundary-lattice Boltzmann method for the fluid and by a finite element method for the plate. The
purpose of this study is to achieve an improved understanding of the fundamental mechanisms
relevant to the locomotion of a flapping flexible plate with applications to animal swimming and
flying.

This paper is organized as follows. The physical problem and mathematical formulation are
presented in Sec. II. The numerical method and validation are described in Sec. III. Detailed results
are discussed in Sec. IV and concluding remarks are addressed in Sec. V.

II. PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION

A two-dimensional model of the flapping plate is considered. As shown in Fig. 1, a flexible
plate with length c is immersed in a stationary viscous incompressible fluid. The leading-edge is
forced to heave sinusoidally with amplitude A0 and frequency f in the vertical direction. Similar to
the treatment of the previous studies,33, 35 the forced motion of the leading-edge is described by

h(t) = A0 cos(2π f t). (1)

As a result of the interplay of the internal elasticity, the leading-edge forcing, and the forces exerted
by the surrounding fluid, the plate starts to move freely and passively in the stationary fluid. The
passive pitching angle α can be defined as the angle between the x-axis and the secant connecting
the leading-edge to the trailing-edge. Note that the active pitching angle is zero in our model; it
means that only the leading-edge of the plate is restricted with its vertical motion being prescribed,
the remainder of the plate can move freely in the entire fluid domain.

FIG. 1. Sketch of a model for the locomotion of a flapping flexible plate. When the leading-edge is forced to heave vertically
and sinusoidally, the plate deforms passively and moves freely.
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The plate is assumed to be a two-dimensional thin elastic beam and its dynamics is governed
by the nonlinear partial differential equation41, 42

ρl
∂2 X
∂t2

− ∂

∂s

[
T (s)

∂ X
∂s

]
+ E I

∂4 X
∂s4

= Fs, (2)

where s is the Lagrangian coordinate along the plate, X is the position vector of the plate, ρ l is
the structural linear mass density, T (s) = Eh(| ∂ X

∂s | − 1) is the tension with Eh being the structural
stretching rigidity, and EI is the structural bending rigidity. The plate is subject to the hydrodynamic
load

Fs = [σ ] · n, (3)

where n is the upward norm and [σ ] is the difference in the fluid stress tensor across the plate. The
boundary conditions for the plate are

yL = h(t),
∂ X
∂s

= (1, 0) (4)

at the leading-edge, and

T = 0,
∂2 X
∂s2

= (0, 0),
∂3 X
∂s3

= (0, 0) (5)

at the trailing-edge.
The incompressible Navier-Stokes equations are used to describe the flow dynamics

∂v

∂t
+ v · ∇v = − 1

ρ
∇ p + μ

ρ
∇2v, (6)

∇ · v = 0, (7)

where v is the velocity, p the pressure, ρ the density of the fluid, and μ the dynamic viscosity. The
flow is initially quiescent. The velocity boundary condition for the fluid is imposed on the plate,

v = ∂ X
∂t

. (8)

The reference quantities c, f, and ρ are chosen to non-dimensionalize the above mathematical
formulation. The dimensionless parameters are defined as follows: the heaving amplitude A = A0/c,
the frequency Reynolds number Ref = ρfc2/μ, the linear mass density ratio of the plate and the fluid
M = ρ l/ρc, the bending stiffness K = EI/ρf 2c5, and the stretching stiffness S = Eh/ρf 2c3.

III. NUMERICAL METHOD AND VALIDATION

A. Numerical method

The governing equations of the fluid-plate problem are solved numerically by an immersed
boundary-lattice Boltzmann method for the fluid flow and a finite element method for the motion of
the flexible plate. The immersed boundary (IB) method has been extensively applied to problems
involving moving boundaries immersed in a viscous fluid flow.43, 44 When the IB method is used to
treat flow-structure interaction, a body force f is added into the right hand of Eq. (6). The Lagrangian
interaction force between the fluid and the immersed boundary can be calculated by the feedback
law45–47

Fs(s, t) = α

∫ t

0
[V f (s, t ′) − V s(s, t ′)]dt ′ + β[V f (s, t) − V s(s, t)], (9)

where α and β are free parameters and are selected based on the previous studies48, 49 and V f is the
fluid velocity at the position of the body obtained by interpolation

V f (s, t) =
∫

�

v(x, t)δ(x − X(s, t))dx. (10)
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Then, the Eulerian body force can be calculated as

f (x, t) = −
∫

�

Fs(s, t)δ(x − X(s, t))ds. (11)

The interaction forces Fs(s, t) and f (x, t) obtained by Eqs. (9) and (11) are used in Eqs. (2) and (6),
respectively.

Due to its relative simplicity and efficiency, the lattice Boltzmann equation (LBE) has been
widely used to simulate complex flows as an alternative to conventional numerical methods for the
Navier-Stokes equations.48, 50–52 The LBE with the BGK model is

fi (x + ei	t, t + 	t) − fi (x, t) = − 1

τ
[ fi (x, t) − f eq

i (x, t)] + 	t Fi , (12)

where τ is the non-dimensional relaxation time associated with fluid viscosity, 	t is the time
increment, and fi (x, t) is the distribution function for particles with velocity ei at position x and
time t. The equilibrium distribution function f eq

i and the forcing term Fi
53, 54 are defined as

f eq
i = ωiρ

[
1 + ei · v

c2
s

+ vv : (ei ei − c2
s I)

2c4
s

]
, (13)

Fi =
(

1 − 1

2τ

)
ωi

[
ei − v

c2
s

+ ei · v

c4
s

ei

]
· f , (14)

where ωi is the weighting factor and cs is the speed of sound. The variables velocity v and mass
density ρ can be obtained by the distribution functions

ρ =
∑

i

fi , (15)

ρv =
∑

i

ei fi + 1

2
f 	t. (16)

A multi-scale analysis performed on the LBE recovers the Navier-Stokes equations. A multi-
block lattice Boltzmann technique55, 56 is employed to solve our problem for improving computa-
tional efficiency.

Equation (2) for the deformable plate is discretized by a finite element method and the motion
of the plate is handled by the corotational scheme.57, 58 In this scheme, a local coordinate system
is envisioned to move with each discrete element, and the element behaves linearly relative to the
moving coordinate system. Consequently, the nonlinearity of the problem goes to the coordinate
transformation.

Based on our careful examinations and validations shown below, the computational domain for
fluid flow is chosen as −64 ≤ x ≤ 64 and −32 ≤ y ≤ 32. The finest lattice spacing is c/128 in the
region close to the plate and the coarsest spacing is c/32 elsewhere. The time step is T/12800 with
T = 1/f being the flapping period. Dirichlet boundary condition v = 0 is used at the top and bottom
boundaries, and Neumann boundary condition ∂v/∂x = 0 is used at the inlet and the outlet. For
the present problem, a finite moving computational domain40, 51, 52 is employed in the x-direction to
allow the plate to move horizontally for a sufficiently long time. Every time the plate travels one
lattice unit on the coarse grid in the horizontal direction, the computational domain is shifted, i.e.,
one layer being added at the inlet and another layer being removed at the outlet.40

B. Validation

To validate the numerical method used in the present study, three typical test cases are considered
here. The first two tests are hovering-wing problems, with one wing being rigid and the other being
flexible. Besides the heaving motion Eq. (1), a pithing motion is also given as α(t) = βsin (2π ft)
with β the angle amplitude. These problems were already studied numerically by Yin and Luo.59

The dimensionless parameters are as follows: β = π /4, A = 1.4, and Ref = 8.53 for the rigid case;
β = 0, A = 1.25, Ref = 19.1, K = 12.77, and M = 1.0 for the flexible case. The lift and drag
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FIG. 2. Lift and drag coefficients from the our simulation (solid line) and from the previous work59 (dashed line) for hovering
of (a) a rigid wing and (b) a flexible wing.

coefficients obtained in our simulation are shown in Fig. 2. It is seen that our calculated results are
in good agreement with the previous study.59

The third test is a problem of free flapping body which has been studied experimentally14 and
numerically.27, 40 The physical model is an elliptic foil being flapped vertically within a viscous
incompressible fluid. Similarly to our case, the foil begins to move freely in the fluid along the
horizontal direction. Here a typical set of parameters is used: the thickness ratio is 0.1, the flapping
amplitude is 0.5, and the mass density ratio is 32. Figure 3 shows the mean horizontal speed during
the steady locomotion on the plot of the movement Reynolds number ReU versus the flapping
Reynolds number ReA. The flapping Reynolds number is defined as ReA = ρfA0c/μ, which is related
to the frequency Reynolds number Ref by ReA = RefA. The movement Reynolds number is defined
as ReU = ρUc/μ, where the propulsive speed U is the horizontal velocity of the foil after it begins
the steady motion. It is identified that our computational results agree well with the previous data.40

In addition, the relevant codes used for the present study have been also validated in our
previous works.48, 49, 56, 60 The numerical method has been applied with success to a wide range of
flows such as the insect normal hovering flight with ground effect,48 hydrodynamic interaction of
elastic filaments,60 and viscous flow past three filaments in side-by-side arrangement.49

IV. RESULTS AND DISCUSSION

In this section, we present some typical results on the dynamics of the flapping flexible plate
and discuss the intrinsic connections between our results and the flapping-based locomotion of
swimming and flying animals. Motivated by the measurements of animal locomotion,61–68 the
governing parameters used in our study are as follows: A = 0.125–1.0, K = 0.1–1000, M = 0.5–4.0,

FIG. 3. Comparison of the present result and previous data40 for the forward Reynolds number ReU versus the flapping
Reynolds number ReA during the steady locomotion for flapping flight of an elliptic foil.
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and Ref = 80–120. Unless otherwise stated, the Reynolds number and the mass density ratio are
Ref = 100 and M = 2.0.

A. Three states of the plate movement

Based on a series of simulations using a wide range of parameters, we have identified three
typical states of the plate motion due to the fluid-structure interaction: backward motion (BM)
where the plate moves along the x-direction, forward motion (FM) where the plate moves along the
negative x-direction, and irregular motion (IM) where the plate moves back and forth about its initial
position.

The propulsive speed of the plate is addressed first. Figures 4(a)–4(c) show the time history
of the instantaneous propulsive speed u(t), i.e., the x-component of the velocity of the plate mass
center,24 for three typical cases corresponding to the three distinct states of the plate motion. Note
that all of the parameters for the three cases are the same except for the plate rigidity. It is chosen as
K = 0.4, 1.5, and 10 to illustrate the influence of flexibility on the plate movement. In the BM state,
the plate moves towards the trailing-edge with speed u(t) > 0 after it reaches a steady state. In the
FM state, the plate moves towards the leading-edge with speed u(t) < 0. In the IM state, the plate
moves forward and backward randomly with its speed being switched between u(t) > 0 and u(t)
< 0. Further, Figs. 4(d)–4(f) show the power spectrum density (PSD) of the propulsive speed for
the three cases. The power spectra of u(t) in Figs. 4(d) and 4(e) for the BM and FM states exhibit a
single high peak. For the IM state, Fig. 4(f) shows a broadband spectrum, indicating a non-periodic

FIG. 4. Behaviors of the propulsion and deformation of the plate: (a)–(c) the instantaneous propulsive speed u(t), (d)–(f) the
corresponding power spectrum density, and (g)–(i) the envelops of the plate in two flapping cycles (t = 40 − 42) for the three
distinct states with A = 0.25 and [(a), (d), (g)] K = 1.5, [(b), (e), (h)] K = 10.0, and [(c), (f), (i)] K = 0.4, corresponding to
BM, FM, and IM, respectively.
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FIG. 5. The instantaneous vorticity contours for one flapping cycle at the phases 0/4T, 1/4T, 2/4T, and 3/4T from top row to
bottom one for the three distinct states: (a) K = 1.5, (b) K = 10.0, and (c) K = 0.4. Solid lines denote positive values and
dashed lines negative values for the vorticity contours.

behavior of the irregular motion state. Moreover, a similar IM state for the free motion of flapping
rigid body has also been observed numerically25 and experimentally.39

Illustrating the deformation of the plate due to the fluid-structure interaction, Figs. 4(g)–4(i)
show the envelopes of the flexible plate during two flapping cycles. It is seen that the envelopes for
the three motion states are obviously different and are associated with the propulsive performance
of the plate. Another form of envelope will be analyzed in the following section, which is related to
the formation of deflected wake for the FM state.

The corresponding instantaneous vorticity contours for one flapping cycle are shown in
Figs. 5(a)–5(c) to exhibit the vortical structures induced by the plate motion. For the BM and
FM states, the vortex wake occurs on the opposite direction of the plate mean velocity to form
the reverse von Kármán vortex street behind the plate. Actually, the reverse von Kármán vortex
street, which is responsible for thrust production of the flapping plate, has already been observed
experimentally and numerically in flapping rigid foils and swimming fish.16, 25, 38, 69 As the plate
moves at random in the IM state, a jumbled vortex structure is observed around the plate.

Further, an overview of the three distinct motion regions in the K–A plane is shown in Fig. 6.
Note that the FM state covers a majority of the K–A plane while the BM state covers a minority of
the plane. When the heaving amplitude is large enough (say A > 0.80), only the FM and IM states
occur; when the heaving amplitude is small enough (say A < 0.15), only the FM state appears. We
also notice that the critical value of K separating the regions increases as A increases.

FIG. 6. Overview of the three typical motion regions in the K–A plane. Symbols �, �, and ◦ represent the backward, forward,
and irregular motions, respectively. The vertical dotted dashed line represents the frequency ratio f̄ = 1.
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FIG. 7. The mean propulsive speed U versus the bending stiffness K for four typical values of heaving amplitude A.

To analyze the dynamical responses of the flapping flexible plate, another important parame-
ter, i.e., the frequency ratio f̄ , is introduced.40, 59, 70 The frequency ratio is defined as f̄ = fn/ f ,
where fn = k2

n/(2πc2)
√

E I/ρl is the frequency of the first natural mode of the flexible plate with
kn = 1.8751.71 Here, the frequency ratio can be expressed as f̄ = k2

n/(2π )
√

K/M . Zhang et al.40 have
used a torsion spring to model the flexibility effect of a flapping rigid plate (i.e., a lumped-torsional-
flexibility model) and have found that the two distinct regions (BM and FM) were determined by this
frequency ratio: the BM region corresponding to f̄ < 1 and the FM region corresponding to f̄ > 1.
We plot the f̄ = 1 line in Fig. 6. It is seen that the line f̄ = 1 does not describe the border between
the FM and BM regions in the A–K plane for the flexible plate. The border separating the FM and
BM regions in the present study is far more complex than the line f̄ = 1. This indicates that the
present problem is inherently more complicated. The model used by Zhang et al.40 was rigid while
the plate in this study is flexible and the fluid-structure interaction involving a deformable body is
in general more complicated.

B. Dynamical behaviors and propulsive properties

The plate motion as a result of the fluid-structure interaction is closely related to the flapping-
based locomotion of swimming and flying animals. The dynamical behaviors and propulsive prop-
erties in the FM region are further investigated in terms of the mean propulsive speed, the propulsive
efficiency, the passive pitching angle, the elastic potential energy of the flexible plate, and the
Strouhal number.

To understand the dynamical responses of the plate due to the fluid-plate interaction, Fig. 7
shows the mean propulsive speed U versus the bending rigidity K for several heaving amplitudes,
where U is obtained by an average in time of u(t) during steady locomotion. It is seen that the profiles
of U are all concave up for different heaving amplitudes. For each amplitude A, the speed U decreases
as K increases first, then reaches a minimum (corresponding to the maximum of the forward speed
|U|), and finally approaches a constant as K increases further. Note that the motion of the flexible
plate tends to the motion of the rigid one at large value of K, e.g., K = 1000. Besides, the speed
U is an increasing function of the amplitude A. We speculate that the existence of the maximum of
the forward speed (denoted by Um) implies the existence of an optimal plate flexibility (denoted by
KU). For comparison, Table I lists KU, Um, and Uc for the four amplitudes, where Uc represents the
forward speed in the rigid case. It is seen that the optimal forward speeds of the flexible plate are

TABLE I. The optimal KU, the corresponding maximum forward speed Um,
and that of the approximate rigid case Uc for different A.

A 0.25 0.50 0.75 1.00
KU 18.0 50.0 80.0 125.0
Um 3.16 5.66 10.82 17.86
Uc 2.46 4.50 6.74 8.60
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FIG. 8. The propulsive efficiency η versus the bending stiffness K.

substantially greater than those of the corresponding rigid plate for several amplitudes, indicating
that the flexibility can remarkably improve the performance of forward propulsion.

As the plate spontaneously propels itself in the horizontal direction in the FM state, the mean
thrust becomes zero.40, 72 Then the Froude propulsive efficiency13, 18 vanishes, which is no longer
suitable for measuring the propulsive efficiency. To characterize the propulsive efficiency of a body
in free motion, the ratio of the kinetic energy of the forward motion of the body and the work done
by the deforming body over one flapping cycle has been employed by Zhang et al.40 and Kern and
Koumoutsakos.26 The amount of the work is computed as a time integral of the power performed by
the surface of the body on the surrounding fluid. Then, the propulsive efficiency for the locomotion
of flexible plate is expressed as26, 40

η =
1
2 MU 2

∫ t0+T
t0

∫ c
0 Fr (s, t) · ∂ X(s,t)

∂t dsdt
, (17)

where Fr (s, t) represents the force on the surrounding fluid by the plate and can be expressed as
Fr (s, t) = −Fs(s, t).

Figure 8 shows the propulsive efficiency η versus the bending stiffness K for four typical
heaving amplitudes. For a given heaving amplitude, the efficiency η first increases to a maximum
and then decreases gradually as K increases. Similarly, there exists an optimal plate flexibility Kη

corresponding to the maximal propulsive efficiency ηm. Table II lists Kη, ηm, and ηc for four typical
values of amplitude A, where ηc represents the efficiency of the rigid case. It is seen that the optimal
efficiency of the flexible plate is greater than that of the rigid plate. Thus, from Figs. 7 and 8 as
well as Tables I and II, we can reasonably conclude that a suitable amount of structure flexibility
can improve the propulsive speed and efficiency and hence is beneficial to animal locomotion in a
viscous fluid.

All of the above results are obtained from simulations using different plate bending modulus
and heaving amplitude but fixed frequency Reynolds number (Ref = 100) and plate linear mass
density (M = 2). To gauge the effects of the parameters Ref and M on the propulsive speed and
efficiency, we further perform some simulations using different values of Ref and M. The typical
results are shown in Fig. 9. It is identified from Figs. 9(a) and 9(b) that the forward speed |U|
decreases with the increases of the mass density M but the propulsive efficiency η increases with M.
The propulsion of the flapping plate is closely related to the reverse von Kármán vortex street which

TABLE II. The optimal Kη , the corresponding maximal propulsive effi-
ciency ηm, and that of the corresponding rigid case ηc for different values
of A.

A 0.25 0.50 0.75 1.00
Kη 50.0 53.0 60.0 70.0
ηm 0.446 0.468 0.501 0.558
ηc 0.430 0.370 0.338 0.306
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FIG. 9. Propulsive speed U [(a), (c)] and propulsive efficiency η [(b), (d)] versus the linear density ratio M for A = 0.25 and
Ref = 100 in [(a), (b)] and versus the Reynolds number for A = 0.25 and M = 2.0 in [(c), (d)].

is not sensitive to the plate mass density in a certain range. Given the amount of propulsion, the plate
acceleration is inversely proportional to its mass. As a consequence, the terminal forward speed
of the plate decreases as its mass density increases. Moreover, it has been indicated that the mass
plays a stabilizing role in the fluid-flexible-structure system.73 This may imply that a more massive
flexible structure induces less local motion of the structure which causes energy dissipation. Thus,
the decreased total energy consumption due to the reduced energy waste of the fluid-plate system is
therefore beneficial to propulsive efficiency. From Figs. 9(c) and 9(d), it is seen that as Ref increases
the forward speed and efficiency increase, which is associated with the reduction of viscous drag of
the plate for the parameters considered.

As the plate is flexible, it can store elastic potential energy because of the fluid-plate interaction.
The elastic potential energy of the plate is expressed as E p(t) = 1/2K

∫ c
0 |∂2 X/∂s2|2ds.74 Note

that the elastic potential due to stretching is neglected because it is at least one order of magnitude
lower than the bending energy based on our test and previous study.49 Here we use the elastic
potential energy of a cantilever beam denoted by Es

75 to normalize it. Then the normalized elastic
potential energy is represented as Er = Ē p/Es with Ē p = 1/T

∫ T
0 E p(t)dt . Figure 10 shows the

elastic potential energy versus the bending stiffness for several flapping amplitudes. It is identified
that the large value of Er for each amplitude corresponds to the high propulsive efficiency in Fig. 8.

Further, we analyze the passive pitching angle which is related to the deformation of the flexible
plate subject to the fluid-structure interaction. Moreover, the pitching angle is closely associated

FIG. 10. The normalized elastic potential energy Er versus the bending stiffness K.
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FIG. 11. The rms value of passive pitching angle αrms versus the bending stiffness K.

with hydrodynamic performance for an actively forced flapping rigid foil or plate.12, 13, 69 Figure 11
shows the root-mean-square (rms) value of the passive pitching angle α versus the bending rigidity
K for several values of amplitude A. The passive pitching angle is caused by the delayed motion of
the free end of the plate relative to the constrained end, which can be presented by the displacement
in the y-direction. It is seen from Fig. 11 that larger heaving amplitude or smaller bending modulus
(i.e., more flexible) causes more delay at the free end, and therefore results in larger pitching angle.

The kinematics of flapping-based locomotion is usually well described by the Strouhal number
which is defined as St = Aw f/U . Here Aw is the width of the wake which may be taken as the
maximum excursion of the plate trailing-edge or twice of the amplitude, i.e., Aw = 2A.12, 27 As
shown in Fig. 12, the Strouhal numbers of the majority of our simulations fall into the range of
0.2 < St < 0.4, which is consistent with the region of high propulsive efficiency of the flapping-
based locomotion.65, 69 Moreover, the Strouhal number is known to describe a well-defined series of
regimes for vortex growth and shedding of a flapping body, which will be discussed in the following
subsection.

C. Vortical structures of normal and deflected wake

The vortical structure in the wake is related to the propulsive properties of a flapping wing.17, 23

Based on the analysis of vorticity dynamics,76, 77 we have found that the force and power of the
flapping plate are dominated by the attached vorticity and the local vortical structure close to the
plate. Therefore, the vortical structure is further discussed here. As shown in Fig. 5, a reverse von
Kármán vortex street is formed behind the flapping plate in the FM and BM states, and a jumbled
vortical structure is observed around the plate in the IM state.

For the FM region, our simulations reveal two kinds of wakes behind the plate. One is the
normal wake and the other is the deflected wake in which the wake behind the plate is biased with
respect to the symmetric axis of the forced motion of the plate, rather than a normal wake such as
the von Kármán street behind a body.

FIG. 12. The Strouhal number St versus the bending stiffness K.

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

218.104.71.166 On: Wed, 04 Dec 2013 09:08:17



121901-12 Hua, Zhu, and Lu Phys. Fluids 25, 121901 (2013)

FIG. 13. (a)–(c) Envelopes of the flexible plate in one flapping cycle (t/T = 40 − 41) and (d)–(f) the corresponding
instantaneous vorticity contours at t/T = 40 for A = 0.25 and K = [(a), (d)] 2.8, [(b), (e)] 7, and [(c), (f)] 10. Solid lines
denote positive values and dashed lines denote negative values. The envelopes of the plate are plotted in the frame moving
with the leading-edge in the horizontal direction.

To demonstrate the wake structure and the plate deformation, Fig. 13 shows the envelopes of the
flexible plate in one flapping cycle and the instantaneous vorticity contours for three typical cases
with A = 0.25 and K = 2.8, 7, and 10. As the mean forward speed given in Fig. 7 increases with the
K from 2.8 to 10 at A = 0.25, the longitudinal distance between two neighboring vortical structures
increases as shown in Fig. 13. For K = 7 which lies in the deflected wake region, it is seen from
Fig. 13(b) that the wake is upwardly deflected in the downstream. Further, our simulations reveal that
the initial heaving direction of the plate leading-edge decides the deflected direction, i.e., upward
or downward in the downstream. A non-zero mean lift is generated because of the deflection of the
reverse von Kármán vortex street. For comparison, the mean lift coefficient is calculated as follows:
C̄L = 1.456 for K = 7 for the deflected wake and C̄L = 0.012 for K = 10 for the normal wake.

It is natural to inquire whether the wake deflection is caused by the deflection in the motion of
the flapping plate. To address this issue, the envelopes of the flapping flexible plate for one flapping
cycle are shown in Fig. 13, where the x-position of the leading-edge is shifted to the same position.
It is interesting to notice that the envelope for the deflected wake case is still nearly symmetric
with respect to the axis of plate motion, just looking like the case of the normal wake. Actually,
deflected vortex streets behind a flapping rigid foil with symmetric motion in a uniform flow have
been observed experimentally16, 17, 78 and numerically.78, 79 Therefore, it is reasonable to expect that
the wake deflection of symmetric plate flapping motion may account for the generation of the mean
lift and thrust in the flapping-based locomotion of animals.

To have a better understanding of the deflected vortex street, Fig. 14 shows the time history of
the propulsive speed in one flapping cycle and the corresponding PSD for the three typical cases
shown in Fig. 13. As expected, the non-dimensional frequency corresponding to the peak in the PSD
is f = 2 for K = 2.8 and 10, while a subharmonic frequency f = 1 occurs for K = 7. It means that the
plate travels a different distance in the two half-cycles of a whole cycle in the case of K = 7. This
further results in the inequality in the longitudinal distance between the two neighboring vortical
structures. Note that such a longitudinal distance disparity is absent in the case of normal wake.
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FIG. 14. Time history of propulsive speed u(t) in one flapping cycle and the corresponding PSD for A = 0.25 and K = [(a),
(d)] 2.8, [(b), (e)] 7, and [(c), (f)] 10.

Here we can calculate the distance difference by Ld = |(∫ T/2
0 udt − ∫ T

T/2 udt)/(
∫ T

0 udt)| × 100%.
The results are Ld = 0.88% for K = 7 and Ld = 0.0037% for K = 10. Although the disparity is small,
the distance difference of the deflected wake is significantly greater than that of the normal wake,
resulting in the deflected evolution of the vortices in the downstream of the flapping plate.

To summarize our findings on the two kinds of wakes, Fig. 15 shows an overview of the normal
and deflected wake regions in the A–K plane. Note that the range of the bending rigidity K for the
deflected wake is around 7 (the frequency ratio f̄ is around 1) which is much lower than the range
of K ∼ O(102) for the optimal propulsive speed and efficiency.

D. Comparison with the flapping-based locomotion of animals

The flapping-based locomotion is often utilized by swimming and flying animals.1–3, 80 Based
on the above results, we further discuss how quantities such as the bending stiffness K, the passive
pitching angle αrms, and the Strouhal number St are related to animal locomotion.

We first discuss the connection of the bending rigidity K and the flapping-based locomotion.
Based on experimental data for some swimming and flying animals,62, 68, 70, 81 we can estimate the

FIG. 15. Overview of the normal and deflected wakes in the FM region based on some typical cases simulated in this
study. Symbols � and � represent the normal and deflected wakes, respectively. Dashed lines represent approximately the
boundaries between the two kinds of wakes. Dashed dotted lines denote different values of the frequency ratio f̄ .
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bending stiffness of tail-fins or wings, e.g., K � 25–230 for the tail-fin of a goldfish (Carassius
auratus), 67 for the wing of a crane fly (Tipula obsoleta), and 49 for the wing of a dragonfly
(Aeschna juncea). For comparison, as shown in Figs. 7 and 8, the large forward speeds and high
propulsive efficiencies correspond to the range of K � 30–200. This is in good agreement with the
values obtained above for the real tail-fins and wings.

Then we address the pitching angle αrms. From Figs. 7, 8, and 11, the range of αrms = 5◦–25◦

is associated with the large forward speed and high propulsive efficiency. Fish64 filmed the cruise
swimming of bottlenose dolphins (Tursiops truncatus) and identified the angle between the tangent
of the flukes’ path and the axis of the flukes. He identified that the maximum angle of attack of the
flukes ranged between 5◦ and 30◦. To mimic the locomotion of tail-fins in swimming animals,13, 69 a
harmonically oscillating foil in uniform flow was investigated experimentally and the pitching angle
with optimum propulsive performance was found to be within 15◦–25◦. Our numerical results are
consistent with these data.

Finally we analyze the relationship between the Strouhal number St and the animal locomotion.
Usually, St is referred to as an appropriate parameter governing propulsive performance. Based
on investigations of 42 species (birds, bats, insects, sharks, bony fish, and dolphins) in the cruise
state, Taylor et al.65 statistically estimated that St lies in the interval 0.2 < St < 0.4. In this range,
the cruise of the flying and swimming animals driven by the wing or tail is likely to have high
propulsive efficiency. For a flapping foil in a uniform flow, the efficiency is higher than the range
of 0.2 < St < 0.4.12, 13, 69 For comparison, our present numerical results in Fig. 12 indicate that the
high propulsive efficiencies occur approximately when St = 0.2–0.4. In addition, St is also known
to govern a well-defined series of regimes for vortex growth and shedding of a flapping wing. When
St = 0.2–0.4, a reverse von Kármán vortex street is formed in the wake, which is related to the thrust
production in the animal locomotion.

V. CONCLUDING REMARKS

The locomotion of a flapping flexible plate in a stationary viscous fluid has been studied by the
immersed boundary-lattice Boltzmann method and the finite element method for numerical solutions
of the coupled motions of the fluid and plate. Numerous simulations using a wide range of parameters
are performed and various mechanisms governing the dynamics of the flapping flexible plate are
investigated. Here we briefly summarize the results relevant to the flapping-based locomotion of
swimming and flying animals.

We have found three distinct dynamic states of the plate motion, i.e., forward, backward, and
irregular. Which state to occur mainly depends on the heaving amplitude and the bending rigidity of
the plate. The diagram of the three states is obtained on the K–A plane. It is noticed that the region of
the forward state covers a majority of the K–A plane while the region of the backward state covers a
minority of the plane. When the heaving amplitude is large enough, only the forward and backward
states appear; when the amplitude is small enough, only the forward state occurs.

The dynamical behaviors and propulsive properties of the flapping flexible plate in the forward
motion regime have been investigated in detail. The study of the effect of the bending stiffness K on
the propulsion of the plate indicates that a suitable degree of flexibility can improve the propulsive
performance in terms of larger forward speed and higher propulsive efficiency. The elastic potential
energy of the flexible plate is closely related to its propulsive properties. Moreover, it is obtained
that larger heaving amplitude or smaller bending modulus causes more delay in the motion of the
free end of the plate, therefore results in larger pitching angle which affects the dynamical behaviors
of the flexible plate.

The vortical structure in the wake is investigated since it affects the motion and deformation of
the plate. Both normal and deflected wakes are identified in the forward motion regime. Because
of the deflection of the reverse von Kármán vortex street, the mean lift and thrust on the plate are
generated. The Strouhal number St is a parameter governing a well-defined series of regimes for
vortex growth and shedding of a flapping wing. When St = 0.2–0.4, corresponding to the range
adopted by the swimming and flying animals, a reverse von Kármán vortex street occurs, which is
associated with the thrust generation in animal locomotion. Moreover, the force and power of the
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flapping plate mainly depend on the attached vorticity and the local vortical structure close to the
plate.

Further, we have discussed the relationships between our computational results and animal’s
flapping-based locomotion in terms of the bending stiffness K, the passive pitching angle αrms,
and the Strouhal number St. The comparison and discussion indicate that our numerical results
are consistent with those of the observations and measurements of swimming and flying animals.
Therefore, our computational studies have provided some physical insights into the understanding of
the propulsive mechanisms of the flapping wings and fins. Nevertheless, the flow involved in animal
locomotion is far more complex and diverse than the flow involved in the flapping of a flexible plate
considered here. Detailed investigation of viscous flows around flexible bodies in three dimensions
is still needed in future work.
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