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Sedimentation of an ellipsoidal particle in narrow tubes
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Department of Modern Mechanics, University of Science and Technology of China,
Anhui 230026, China

(Received 15 February 2014; accepted 17 April 2014; published online 7 May 2014)

Sedimentation behaviours of an ellipsoidal particle in narrow and infinitely long
tubes are studied by a multi-relaxation-time lattice Boltzmann method (LBM). In the
present study, both circular and square tubes with 12/13 ≤ D/A ≤ 2.5 are considered
with the Galileo number (Ga) up to 150, where D and A are the width of the tube
and the length of major axis of the ellipsoid, respectively. Besides three modes of
motion mentioned in the literature, two novel modes are found for the narrow tubes
in the higher Ga regime: the spiral mode and the vertically inclined mode. Near a
transitional regime, in terms of average settling velocity, it is found that a lighter
ellipsoid may settle faster than a heavier one. The relevant mechanism is revealed.
The behaviour of sedimentation inside the square tubes is similar to that in the circular
tubes. One significant difference is that the translation and rotation of ellipsoid are
finally constrained to a diagonal plane in the square tubes. The other difference
is that the anomalous rolling mode occurs in the square tubes. In this mode, the
ellipsoid rotates as if it is contacting and rolling up one corner of the square tube
when it settles down. Two critical factors that induce this mode are identified: the
geometry of the tube and the inertia of the ellipsoid. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4874606]

I. INTRODUCTION

There are a variety of studies on the motion of non-spherical particles in a viscous fluid.1–4

Jeffery studied the rotational modes of an ellipsoid in Couette flow under Stokes flow conditions.1

Cox investigated the steady motion of a particle of arbitrary shape at small Reynolds numbers (Re)
analytically.5 Russel et al. dealt with the motion of an inertia-less rod-like object falling near a flat
wall in Stokes flow.6 They concluded that the rod undergoes a periodic motion between two parallel
plates. Broday et al. studied the motion of non-neutrally buoyant spheroidal particles in vertical
unbounded shear flows under creeping-flow conditions.3 They found that inertia effect plays an
important role on a particle’s behavior. A detailed review of the study of the motion of non-spherical
particles before 1998 can be found in Ref. 3.

Over the last 30 years, different numerical methods have been developed to study the motion of
particles in a viscous fluid. Brady and Bossis adapted the Stokesian dynamics method for simulating
the motion of many particles in Stokes flow.7 However, this method is only applicable to spherical
particles and it neglects the inertial term. For finite-Reynolds-number flows the Navier-Stokes
equations have to be solved. Sugihara-Seki studied numerically the motions of an inertia-less
elliptical particle in a tube flow using a Finite Element (FE) method.8 Swaminathan et al. studied
the sedimentation of an ellipsoid inside an infinitely long tube at low and intermediate Reynolds
numbers.9 They used an arbitrary Lagrangian-Eulerian (ALE)-based FE method coupled with a
body-fitted moving finite-element mesh. Fictitious domain schemes are also a useful numerical tool
to simulate solid-liquid flow.10

The application of lattice Boltzmann methods (LBMs) to study the motion of non-spherical
particles has been well established.11–13 In the LBM, the Poisson equation is not required to be
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solved. The LBM is an explicit scheme and the code is easy to parallelize. Ding and Aidun used a
LBM to predict the critical Reynolds number when the 2D elliptical cylinder stops rotating in planar
Couette flow.11 The critical Re was confirmed by Zettner and Yoda through an experiment.14 Qi and
Luo studied a prolate and an oblate particulate suspension in a 3D Couette flow by LBM.15 They
identified several rotational modes. These studies all demonstrate that the LBM is a powerful tool
to study particulate movement in fluids.

Using the LBM, Xia et al. studied the sedimentation of non-neutrally buoyant elliptical particle
in a 2D channel with different block ratios at intermediate Re.12 They found five different modes:
the oscillatory mode, the “anomalous” rolling mode, the vertical mode, the inclined mode, and the
horizontal mode. For the anomalous mode, the elliptical particle rotates as if it was contacting and
rolling up one of the walls when it travels down vertically. However, significant differences may
exist between 2D and 3D simulations.16

On the other hand, Swaminathan et al. have carried out 3D studies on the sedimentation of
an ellipsoid inside an circular infinitely long tube at low and intermediate Re.9 In the study, the
oscillatory and inclined modes are found. However, in their simulations, the tube diameter is fixed
to be eight times the lengths of semi-major axis of the ellipsoid. The effect of the tube diameter on
the motion behaviour of the particle is unknown. Whether the other three motion modes found in
2D simulations (the anomalous mode, the vertical mode, and the horizontal mode) will occur in 3D
simulations is unknown. It is also unclear that under what circumstances, these modes may appear,
i.e., the phase-diagram of these modes is unknown.

To better understand the effect of the tube wall and explore the motion mode under different
circumstances, we here investigate the sedimentation of an ellipsoid in both narrow circular and
square tubes for the Re up to 200. Description of the flow problem is give in Sec. II. In Sec. III,
the LBM and the basic equations for the motion of the solid particle are introduced briefly. In
Secs. IV A and IV B, the numerical method is validated. In Secs. V and VI, the results for circular
and square tubes are presented, respectively. Conclusions are addressed in Sec. VII.

II. THE PROBLEM DESCRIPTION

The sedimentation of the ellipsoid in infinitely long tubes is illustrated in Figure 1. In the
simulations of both cases, the computational domains all have dimension D, D, and L in the x, y,
and z directions, respectively.

In this flow problem, there are 8 parameters that control the sedimentation of the spheroid:
the tube width D, length of three semi-principal axes a (a = A

2 ), b, and c, density of the particle
ρp, density of the fluid ρ f, kinematic viscosity of the fluid ν, and gravity acceleration g. In our

(a) (b)
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FIG. 1. Geometry of an ellipsoidal particle initially located at the center of (a) a circular tube and (b) a square tube. The
particle is immersed and located in the center of the fine grid, which has dimension D, D, and Lf in the x, y, and z directions,
respectively.
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study only cases with b = c = a
2 are considered. Hence, the non-dimensional parameters are: the

non-dimensional width of the tube D
A , the density ratio �ρ

ρ f
= ρp−ρ f

ρ f
, and the Galileo number or

“Archimedes number.”17 The Galileo number is defined as17–20

Ga =
√

�ρ

ρ f

ga3

ν2
. (1)

In our study,

ga3

ν2
= 1225 (2)

is fixed, so Ga2 = 1225 �ρ

ρ f
; i.e., the density ratio and the Ga are not independent. Hence, there

remain two non-dimensional parameters: D
A and Ga (or �ρ

ρ f
).

The Reynolds number in this problem is defined as Re = Ut A
ν

, where Ut is the average terminal
velocity in the z-direction. As the velocity is unknown a priori, the Reynolds number is not a primary
parameter. In the flow, Ga is a critical control parameter.

In all of our numerical tests, the velocity field is initialized as zero with a uniform pressure field
(p0 = c2

s ρ0). The particle is released from the axis of the tubes (0, 0, zi) with zero velocity, where
zi is slightly larger than L

2 . In our simulations, L ≈ 70a is adopted. The ellipsoid is always kept at
a distance of approximately 35a from the two ends of the computational domain at all times (the
technique is introduced in Sec. III E) so as to minimize the end effects.

The orientation of the ellipsoid particle and the boundary conditions are described in
Secs. III B and III C, respectively.

III. NUMERICAL METHOD

The numerical method used in our study is based on the LBM.11, 21–23 In the present study, the
fluid flow is solved by the Multi-Relaxation-Time (MRT) LBM proposed by Lallemand and Luo24

while the translational and orientational motions of the spheroid are modeled by the Newtonian and
Euler equations, respectively.

A. MRT lattice Boltzmann equation

The MRT-LBM is able to recover the incompressible Navier-Stokes equation macroscopi-
cally.24, 25 There are only two main steps in the code: streaming and collision. For the collision
step,25

| f + (x, t)〉 = | f (x, t)〉 − M−1Ŝ
[|m(x, t)〉 − |m(eq)(x, t)〉] , (3)

and in the streaming step, distribution functions (DF) |f(x, t)〉 in different directions (along ei) at
each computational node propagate to their neighbourhood:

| f (x + ei�t, t + �t)〉 = | f + (x, t)〉, (4)

where the Dirac notation of ket | · 〉 vectors symbolize the column vectors. In our 3D simulations,
the D3Q19 velocity model is used13 and the discrete velocities ei are shown in Figure 2(a).

The collision matrix Ŝ = M · S · M−1 is diagonal with Ŝ25

Ŝ ≡ diag(0, s1, s2, 0, s4, 0, s4, 0, s4, s9, s10, s9, s10, s13, s13, s13, s16, s16, s16). |m(eq)〉 is the equi-
librium value of the moment |m〉. The 19 × 19 matrix M is a linear transformation which is used
to map a vector |f〉 in discrete velocity space to a vector |m〉 in moment space, i.e., |m〉 = M · |f〉, |f〉
= M−1 · |m〉. The matrix M and |m(eq)〉 are all identical to those used in Refs. 13 and 25.

The macro-variables density ρ and momentum jζ are obtained from

ρ = ∑
i

fi , jζ = ∑
i

fi eiζ , (5)

where ζ denotes x, y, or z coordinates. In our simulations, the parameters are chosen as: s1 = 1.19, s2

= s10 = 1.4, s4 = 1.2, s9 = 1
τ

, s13 = s9, and s16 = 1.98. The parameter τ is related to the kinematic
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FIG. 2. (a) D3Q19 velocity model, e1 to e18 represent 18 non-zero components and e0 is a zero component and not labeled;
(b) illustration of “interpolation bounce-back.” The black filled circles are solid nodes, which are inside the surface of the
solid body. The other circles are fluid nodes and the gray filled circles (blue) denote the fluid nodes which have at least one
link with solid nodes (any of the 18 directions).

viscosity of the fluid with ν f = c2
s (τ − 0.5)�t and cs = c√

3
, where c = �x

�t is the lattice speed,
where �x and �t are the lattice spacing and time step in LB simulations, respectively. The pressure
in the flow field can be obtained from p = c2

s ρ.

B. Rotation and translation of the particle

As shown in Figure 3, the ellipsoid in our study is described by

x ′2

a2
+ y′2

b2
+ z′2

c2
= 1, (6)

where (x′, y′, z′) represents the body-fixed coordinate system and a, b, and c are the radii of three
semi-principal axes in x′, y′, and z′-direction, respectively. The length of the major axis of the ellipsoid
is A = 2a. As shown in Figure 3, the spatial orientation of any body-fixed frame (coordinate system)
can be obtained by a composition of rotations around z′–x ′–z′-axis with Euler angles (ϕ, θ , ψ) from
the space-fixed frame (x, y, z) that initially overlaps the body-fixed frame.13 α, β, and γ are used to
denote the angles between the x′-axis and the space fixed coordinates x, y, and z-axis, respectively,
with cos 2α + cos 2β + cos 2γ = 1.

The translational velocity U(t) of the solid particle is determined by solving Newton’s equation.13

The rotation of the spheroid is determined by Euler equations, which are written as

I · d�(t)

dt
+ �(t) × [I · �(t)] = T(t), (7)

z

y

z

x

x

y

θ

ϕ ψ

o

M

FIG. 3. Schematic diagram of a spheroid with its symmetry axis in x′-direction in fluid. (x, y, z) and (x′, y′, z′) represent the
space-fixed frame and the body-fixed coordinate system, respectively. Line “OM” represents the intersection of the (x, y) and
the (x′, y′) coordinate planes.
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where I is the inertial tensor. In the body-fixed coordinate system, the tensor is diagonal13 and
the principal moments of inertia are Ix ′x ′ = m b2+c2

5 , Iy′ y′ = m a2+c2

5 , and Iz′z′ = m a2+b2

5 , where
m = ρp

4
3πabc is the mass of the suspended particle. � represents angular velocity and T is the

torque exerted on the solid particle in the same coordinate system. Here four quaternion parameters15

are used as generalized coordinates to solve the corresponding system of equations. With the quater-
nion formulation, � in (7) can be solved using a fourth-order accurate Runge-Kutta integration
procedure.13

C. Boundary conditions

As we know, the no-slip boundary condition should be ensured in the particle’s surface and the
tube wall. Here, the fluid-solid coupling in our study is based on the schemes of Refs. 23 and 24.

In Figure 2(b), the computational domain was separated by a solid surface. Some lattice nodes
which inside the surface are solid nodes (filled black circles) and the collision steps are not imple-
mented in these nodes. Outside the surface, there are fluid nodes, which are represented by the gray
filled circles (blue) and black circles. The gray filled circle (blue) denotes the fluid nodes which have
at least one link of the 18 directions (shown in Figure 2(a)) connecting with the solid nodes. Usually
the half-way bounce back is used21, 23 to ensure the no-slip boundary condition. In Figure 2(b), we
can see that after streaming step, there are 6 directions unknown for the lattice node b, i.e., f1(b),
f3(b), f5(b), f7(b), f15(b), f11(b). For the half-way bounce back scheme (or simple bounce back), the
unknown DF that comes from the solid node is set to be the DF in the reverse direction, which is
already known. For example, f1(b) = f2(b).

Here a more accurate curve wall boundary condition24, 26 is applied. In the following, an example
about how to get f7(b) is illustrated in detail and the other DFs can be obtained in the similar way. In
Figure 2(b), suppose the line ab intersects with the solid surface at point p. |bp| denotes the length
of the green line bp. Here a parameter q = |bp|

|ab| is defined to describe the fraction in fluid region
of a grid spacing intersected by the solid surface. After the streaming step, the unknown f7(b) can
be obtained through a second-order interpolation from the surrounding points.24 For example, if
q < 1

2 , f7(b) = q(1 + 2q)f10(a) + (1 − 4q2)f10(b) − q(1 − 2q)f10(c). If the solid surface is moving
with velocity uw, then an extra term wiρ f

e7·uw

c2
s

should be added to f7(b), which takes account of the

moving wall. Here w0 = 1
3 , wi = 1

18 for i = 1, 2, . . . 6, and wi = 1
36 for i = 7, 8, . . . 18. More details

about the “interpolation bounce back” can be found in Ref. 24.
The force on solid boundary nodes is calculated through the momentum exchange scheme24, 27

and the force due to the fluid particle entering and leaving the solid region23 is also considered.
For the boundary conditions, the zero velocity boundary condition is applied at the bottom inlet

boundary.13 For the upper outlet boundary condition, the constant pressure boundary condition is
applied, where the velocity is extrapolated from the inner fluid nodes.13

D. Interaction between wall-particle

When the distance between the particle and the wall is small enough, some repulsive force
models, such as the spring force model28 and the lubrication force model29 are used to prevent
overlapping. The repulsive force is important and it is physical because it mimics the force due to
the collision between solid surfaces. For the above two models, in terms of results, there are almost
no discrepancy between them.12 Here, we have used the spring force model, i.e., the repulsive
force

FR =
{

0, if |xs | > s,

C
εw

( |xs |−s
s )2 xs

|xs | , if |xs | < s,
(8)

where s is the threshold distance, εw is the stiffness parameter, C = 4
3πabc(ρp − ρ f )g is the force

scale with g the gravity acceleration, and xs denotes the vector from the point on the wall which is
closest to the ellipsoid to the corresponding point on the ellipsoid.
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To validate our LBM code, the lubrication force formula29 is also used for comparison. The
original formula is proposed for two spheres with radii of Ra and Rb,29

FL =
{

0, λ > s,

−6πρν
R2

a R2
b

(Ra+Rb)2

(
1
λ

− 1
s

)
(va − vb) xa−xb

|xa−xb | , λ ≤ s,
(9)

where xa and xb denote the central positions of the spheres, va and vb are their velocities along
the vector (xb − xa). λ and s are the gap between the spheres and the threshold distance. Here for
the ellipsoidal particle, in this formula Ra = Rb = a is adopted. xa and xb denote the point on the
ellipsoid which is closet to the tube wall and the corresponding point on the tube wall, respectively.
va is the velocity at xa along the vector (xb − xa), and vb = 0.

E. Dynamic multi-block strategy in simulations

To calculate the force acting on the spheroid more accurately, grid refinement is used near the
particle. As shown in Figure 1, in our simulations, usually the fine grid has dimension D, D, and Lf

in the x, y, and z directions, respectively, and is located in the middle of the computational domain.
The particle is immersed and located in the center of the fine grid. Lf is usually taken as 3a.

The coupling scheme between the fine and coarse grids is essentially identical to the multi-
block scheme.30 The only difference is that in our simulations, the refined grid may travel with the
ellipsoid12 and the top and the bottom layers in the coarse grid may be “removed” and “added,”
respectively. Here, 1 lu and 1 ts are used to denote 1 lattice unit (�xf) and 1 time step (�tf)
in fine grid, respectively. The rest of the computational domain is filled with coarse mesh and
the lattice spacing �xc = 2 lu and �tc = 2 ts. Suppose τ f and τ c are the relaxation times in the
fine mesh and coarse mesh, respectively. Due to viscosity consistency, they satisfy the formula
ν = c2

s (τ f − 0.5)�t f = c2
s (τc − 0.5)�tc.30

The vertical position of the ellipsoid z is always kept approximately L
2 in the tube for all time

so as to minimize the end-effects. If z > L
2 + �xc, suppose initially the top and bottom of the

fine grid are overlap with the k1, and k2 horizontal layers of the coarse grid (k1 > k2), where k1, k2 are
the vertical indices of the coarse grid. After several time steps, the particle may sediment a vertical
lattice unit �xc inside the fine grid, the fine grid should shift, i.e., “adding” and “removing” two
layers in the bottom and top of the fine grid, respectively, because �xc = 2�xf. In the implementation,
the top and bottom of the fine grid become overlap with the k1 − 1, and k2 − 1 layers of the coarse
grid.

On the other hand, once z < L
2 , we have to “add” and “remove” one layers (�xc) in the bottom

and top of the coarse grid, respectively. In this way, it seems that the particle “moves” �xc upward
hence the vertical distance between the center of the ellipsoid and the new bottom layer, i.e., the
updated z, is still kept larger than L

2 . In the implementation, the data of the macro-variables and
distribution functions in the coarse grid should “move” upward one layer (�xc).31

To make the simulations more efficient, a parallel code based on Message Passing Interface
(MPI) is compiled. In the parallel code, the coarse grid is divided into several sections vertically;
it means that they are assigned to several Central Processing Units (CPUs) and an extra CPU is in
charge of the fine grid.

IV. VALIDATION

A. Validation I: Migration of a sphere in Poiseuille flows

To validate our LBM code, the migrations of a neutrally buoyant sphere in tube Poiseuille flows
were studied. As we know, many experiments about the migration of spheres, rods, and disks in
Poiseuille flows were carried out extensively.2, 32 Here, our LBM results are compared with those
obtained in experiments.2

In our simulations, y = 0 is the tube axis and y
R = 1 is the wall. The radii of the tube

and the sphere are R = 0.2 cm and r = 0.061 cm, respectively. The sphere is initially put in the
(y, z)-plane. Two cases with initial positions y/R = 0.21 and 0.68 were simulated. The density of
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FIG. 4. Migration trajectories of a neutrally buoyant sphere in Poiseuille flows. Two cases with different initial positions
were simulated and compared with experimental data.2 The spheres are put in the (y, z)-plane and released from y

R = 0.21
(case 1) and y

R = 0.68 (case 2), respectively.

the fluid is 1.05 g/cm3 and μ = ρν = 1.2 g/cm s. The flow rate is Q = 7.11 × 10−2 cm3/s. Because
Q = π R2

2 Um , the corresponding Re = Um R
ν

= 0.198, where Um is the maximum velocity in the axis
of the tube.

To make the simulations more efficient, the multi-block strategy is also used. The fine mesh
size is 68 × 68 × 40, the coarse mesh size is 34 × 34 × 120, and tube length is L = 240 lu. In the
simulations, the relaxation times are set as τ f = 0.9, τ c = 0.7. The radius of the tube is R = 29.5 lu.
To match the Re, in our simulation Um = 8.97 × 10−4 lu/ts and the corresponding pressure drop
between the inlet and outlet is �p = 1.32 × 10−4 mu/lu ts2, where mu means mass unit. In the
simulations 1 lu = 0.00678 cm, 1 ts = 5.36244 × 10−6 s, 1 mu = 3.272 × 10−7 g.

The trajectories of spheres released from the y
R = 0.21 (case 1) and y

R = 0.68 (case 2) and
those measured in Ref. 2 are illustrated in Figure 4. It is shown that the LBM results are in excellent
agreement with the experimental ones. The approach to an equilibrium position roughly midway
between the center and the wall is the well-known Segre-Silberberg effect.

B. Validation II: Sedimentation of an ellipsoid

To further validate our simulation, an ellipsoid sedimentation in a circular tube is simulated
and compared with the cases in Ref. 9. In the simulations, the density of the fluid is 1.0 g/cm3. The
gravity is g = 980 cm/s2, the viscosity of the fluid ν = 0.01 cm2/s, tube diameter D = 0.4 cm. In our
LBM simulation, �ρ

ρ f
= 0.01, the length of the major axis of the ellipsoid A = 0.1 cm is represented

by 52 lu, which means 1 lu = 0.001923 cm. The density of fluid is set to be ρ f = 1 mu/lu3 and
1 mu = 7.112 × 10−9 g. In this particular case τ f = 1.2. Hence, 1 ts represents 8.63 × 10−5 s.

The initial orientation of the particle is (φ0, θ0, ψ0) = (90◦, 90◦, 45◦), which means the
evolution axis is in the (y, z)-plane and angle between x′ axis and x axis is 45◦. The other parameters
are εw = 0.0025, s = 2 lu. The coarse mesh is 108 × 108 × 900; the fine mesh is 56 × 212 ×
86. Noted that �xc = 2�xf so the dimension of the coarse mesh is 216 lu × 216 lu × 1800 lu and
the length of the tube is about L ≈ 70a. The particle is kept in the center of the domain using the
dynamic multi-block strategy.

The results for comparison are shown in Figure 5. y∗, z∗ are the normalized positions in y-axis
and −z-direction (normalized by D/2). It is noted that Ga while not Re is a true control parameter of
the flow. However, Ga is not given in Ref. 9. For comparison purpose, we have to try different �ρ

ρ f
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FIG. 5. Trajectory of the center of ellipsoids when they sediment in a circular tube at various Reynolds number. The centers
of the ellipsoids are initially put in the axis of the tube, with x′-axis inside the (y, z)-plane. The initial orientations are
γ = 45◦. y∗, z∗ are the normalized positions in y-axis and −z-direction (normalized by D/2).

to make the simulated Res close to the Res in their cases.9 Here the cases of Ga = 3.43, 9.78 are
simulated, which have Re = 0.36 and 1.03, respectively.

For the case of Re ≈ 0.31, our result (Re = 0.36) agrees well with that in Ref. 9. In this case, the
particle moves and rotates inside the (y, z)-plane. It is seen that at z∗ ≈ 15, it moves across the axis.
At z∗ ≈ 25, the ellipsoid collides with the wall and then moves towards the axis of the tube. After
it passes through the z-axis again, the spheroid enters the inclined mode (settling off-axis with a
constant inclination to the horizontal). The trajectory of the oscillatory movement in our simulation
is well consistent with the prediction in Ref. 9. This case also demonstrates the spring force model
used in our scheme is effective and the choices of εw = 0.0025, s = 2 lu are reliable.

In the case of Re ≈ 1.0, both trajectories (“LBM Re = 1.03” and “Re = 0.929”) oscillate
for a while and finally reach an almost identical equilibrium y-position. Our LBM simulations are
consistent with the data in Ref. 9.

The grid independence and time-step independence studies are also carried out. It is found that
�x f = 0.00385 cm and �t f = 0.0000986 s are small enough to get accurate result for the above
case Ga = 3.43 (the result is not shown here for brevity). In the following study, �x f = 0.001923 cm
and �t f = 0.0000986 s are adopted.

The effect of the repulsive models on our numerical result is also tested. Cases of an oscillatory
sedimentation inside a circular tube were simulated to investigate the effect. In the cases, the density
ratio ρp

ρ f
= 1.4 (Ga = 22.1); the tube diameter is D = 12

13 A, and A = 52 lu. The initial orientation of
the particle is set as (ϕ0, θ0, ψ0) = (90◦, 90◦, 60◦). The parameters for the repulsive force models
are listed in Table I.

From Figure 6, we can see that for case 1 and case 2, although εw is different (s is fixed to be 2
lu), the trajectories collapse into one curve. Hence, the result is not sensitive to the value of εw. From

TABLE I. Parameters for the repulsive force models (oscillatory mode).

Case εw s (�xf) Repulsive model

Case 1 0.0025 2 Spring force (Eq. (8))
Case 2 0.25 2 Spring force (Eq. (8))
Case 3 0.0025 1 Spring force (Eq. (8))
Case 4 · · · 2 Lubrication force (Eq. (9))
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FIG. 6. Trajectories of four oscillatory cases (parameters listed in Table I) are compared.

the comparison between case 1 and case 3, we can see that the parameter s = 2 lu, or s = 1 lu does
not affect the behaviour mode of the particle although there is a very small discrepancy between
their trajectories (the period of case 3 is slightly larger than that of case 1 but the difference is less
than 1.5%).

It is also seen that the trajectories of case 3 and case 4, which using the spring force and the
lubrication force, respectively, agree very well. Hence, the results presented are almost independent
of the detail of the repulsive modeling.

V. SEDIMENTATION OF AN ELLIPSOID INSIDE A CIRCULAR TUBE

Through many simulations with different D/A and density ratio (or Ga), we observed several
modes of motion. Although usually the initial orientation of the particle is (ϕ0, θ0, ψ0) = (90◦,
90◦, 60◦), we found that the modes are all independent of the initial orientation based on limited
observation.

A. Modes in the circular tube

Figure 7 shows the snapshots of several typical modes in our simulations. The density ratio and
D
A in each case are also given in the caption. The results presented here are for the situation when
the initial transient (which depends on the initial position and orientation) dies out, and the particle
trajectory reaches steady state or time periodic solution.

As shown in Figure 7(a) for the spiral mode, the particle spirals around the axis of the tube. The
x′-axis seems to rotate around the z-axis but the angle γ is almost a constant. In the (x, y)-plane, the
projection of the trajectory of the spheroid center is a circle.

Figure 7(b) shows the oscillatory mode, the spheroid “wiggles” down the tube. When the particle
approaches the left and right sides, it rotates counterclockwise and clockwise, respectively, due to
the torque exerted by flow field.9 The direction of rotation in this mode is referred to as “reverse-
contact” rolling,9 which means the particle rotates as if it is rolling up the side wall near the closet
contact33 when it is settling down. It is called “anomalous rotating” because it is obviously different
from the behaviour of the particle when it contacts with the inclined wall under gravity without
surrounding fluids (“normal rotating” or “regular rolling”).33 This mode looks like leaves falling in
air.18 However, leaves falling in air are different from the present mode because the object’s rolling
direction is different.

Figure 7(c) shows the inclined mode. The particle may settle off-axis with a constant inclination
to the horizontal and the x′-axis is inside an axisymmetric plane. The orientation is very close to
horizontal orientation in tubes with D

A > 1. When D
A < 1, the inclined mode may also appear but

the orientation is close to a vertical state due to confinement of the tube (vertically inclined). When
the ellipsoid sediments under the inclined mode, it may also collide with the wall simultaneously
(Figure 7(d)). That means the particle settles down under inclined mode with oscillations (inclined
mode II).
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FIG. 7. Snapshots of typical modes. (a) Spiral mode ( D
A = 12

13 , Ga = 70.0), the particle settles spirally, the inner circular

tube (green) with radius r is drawn to guide the eye. (b) Oscillatory mode ( D
A = 16

13 , Ga = 9.9), trajectory of the ellipsoid is

always inside an axis symmetric plane; (c) inclined mode ( D
A = 5

2 , Ga = 7.0), the ellipsoid settles off-axis with a constant
inclination to the horizontal; (d) inclined mode II (with oscillation, D

A = 2, Ga = 6.1); (e) horizontal mode ( D
A = 20

13 ,

Ga = 35.0); (f) horizontal mode II (with oscillation, D
A = 16

13 , Ga = 55.3). Different colors shown in (a)–(f) represent the
spheroid position at different time. The dashed vertical lines in (a)–(f) denote the axes of the circular tubes.

Figure 7(e) shows the horizontal mode. The sedimentation is symmetric with respect to the tube
axis. For higher Re, due to periodic hydrodynamic force, as shown in Figure 7(f), the particle may
also sediment symmetrically with oscillation (horizontal mode II).

In the following, the characteristics of the spiral and vertically inclined mode will be described
in detail.

B. Spiral mode and vertically inclined mode

The spiral mode and vertically inclined mode only appear when D
A < 1, i.e., the diameter of the

tube is less than the major axis of the ellipsoid. For the spiral mode, the position, orientation, and
velocities as functions of normalized time are shown in Figure 8. The length, time, and velocities
are normalized by D

2 ,
√

A/g, and
√

g A, respectively. In Figure 8(a), the radial distance between the

center of the ellipsoid and axis of tube, i.e., r =
√

x2 + y2, is also shown. It is almost a constant.
Hence, in the (x, y)-plane, the projection of the trajectory of the spheroid center is a circle. In this
mode, the angle between x′ and z, i.e., γ , is almost a constant. From Figure 8(c), it is seen that in
this mode the sedimentation velocity is almost a constant.

It is noted that the period of the spiral mode is smaller than that in the oscillatory mode. For
example, the normalized periods of cases D

A = 12
13 , Ga = 35.0 (oscillatory mode), and Ga = 70.0

(spiral mode) are 7.84 and 2.05, respectively.
When Ga is higher, the vertically inclined mode may appear. The position and orientation

as functions of normalized time in the case of �ρ

ρ f
= 17 (Ga = 144.3) are shown in Figure 9.

The position of the particle and the orientation all reach constant values after the normalized time
t∗ = 53, indicating that the ellipsoid enters the equilibrium state. The snapshot of the particle is
shown in Figure 9(c). It is noted that when the particle enters the periodic spiral mode or the steady
vertically inclined mode, the ellipsoid will not contact with the wall of the tube any more.

C. Phase diagram of D /A-Ga

Figure 10 shows the mode distribution in the (D/A, Ga)-plane. It is identified that there exist
several regions for D > A. The oscillatory mode usually occurs in the lower Ga region. At higher Ga,
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FIG. 8. Spiral mode when an ellipsoid settles in a circular tube ( D
A = 12

13 , Ga = 70.0 ). (a) The normalized x and y positions
of the center of ellipsoid, (b) the orientation of the x′-axis, and (c) the velocities (Vx , Vy , Vz) of the ellipsoid as functions of
time.

the horizontal mode, in which the ellipsoid sediments along the axis, is dominant. Horizontal mode
II may occur at Ga ∼O(102) and in narrow tubes ( D

A ∼ 1.2). At an intermediate Ga, the inclined
mode appears. Inclined mode II approximately occurs on the border between the oscillatory mode
and the inclined mode, which means that it appears at relatively lower Ga than the normal inclined
mode. For D < A, besides the oscillatory mode in lower Ga, the spiral mode and the vertically
inclined mode occurs at higher Ga ( D

A = 12
13 , �ρ

ρ f
> 8.0). In this inclined mode, the x′-axis is almost

vertical.
The Re as a function of �ρ

ρ f
(or Ga2

1225 ) for circular tubes is shown in Figure 11. At lower Re,

the flow is dominated by viscous effect and Re ≈ Ga2 (i.e., Re ≈ �ρ

ρ f
). At higher Re, the flow is

dominated by inertial effect, Re ≈ Ga (i.e., Re ≈ (�ρ

ρ f
)

1
2 ).

Figure 10 shows that there is a small overlap region for cases of D
A = 16

13 at Re ≈ 30 although the
overlap region is limited in a very small region. The smaller region means that the lighter ellipsoid
(a lower �ρ

ρ f
) settles in oscillatory mode faster than the heavier one in the inclined mode. That is

also clearly shown in the curve of D
A = 16

13 at Re ≈ 30 in Figure 11(b). This can be explained as
follows. In the inclined mode (D > A), the orientation of the particle is always almost horizontal,
thus it experiences a relatively larger drag force coefficient. By contrast, in the oscillatory mode, its
orientation changes periodically from vertical to almost-horizontal. When the orientation is close to
the vertical state, it experiences a smaller drag force. Hence, the average drag force coefficient may
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FIG. 9. Vertically inclined mode when an ellipsoid sediments in a circular tube ( D
A = 12

13 , Ga = 144.3). (a) The normalized
x and y positions of the center of ellipsoid, (b) the orientation of the x′-axis, (c) the snapshot of the ellipsoid in steady state,
the contour of the pressure is drawn in the surface of the ellipsoid.

FIG. 10. Phase space of D/A − Ga showing the regions leading to different modes. (a) Circular tubes and (b) square tubes.
Black dot lines represent the cases D = A. The dashed lines (red) roughly mark the boundaries of different flow regimes.

FIG. 11. (a) Terminal Re as a function of �ρ
ρ f

(or Ga2

1225 ) and (b) zoom in view of cases D
A = 16

13 .
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be smaller than that in the inclined mode; the average sediment velocity in the oscillatory mode is
larger. Hence, a lighter particle settles faster than a heavier one in this tube.

VI. SEDIMENTATION OF AN ELLIPSOID INSIDE A SQUARE TUBE

A. Phase-diagram

The mode distribution for square tubes on the (D/A, Ga)-plane is shown in Figure 10(b). It
is seen that the mode distribution pattern for square tubes is similar to that for circular tubes but
there are two significant differences between Figures 10(b) and 10(a). One is that a new mode: the
anomalous rolling mode, occurs in cases of D

A = 20
13 , 22

13 , and 26
13 and Ga ∼ O(1). The anomalous

rolling mode seems to be a transitional mode between the oscillatory mode and the inclined mode. It
occurs when the tube width D

A ≥ 20
13 and Ga ∼ O(1). The other is that in all these modes, the ellipsoid

eventually moves in a specific plane, i.e., the diagonal plane of the square tube. The diagonal plane
seems to be globally stable. The anomalous rolling mode was also observed in 2D study of elliptical
particle sedimentation inside a channel.12 However, as far as we know, no one has reported it in 3D
simulations before. In the following, we will discuss the mode in detail.

B. Anomalous mode

From the phase diagram, it is observed that the anomalous mode occurs in square tubes with
20
13 ≤ D

A ≤ 2 and Ga ∼ O(1). For narrower tubes, no such mode exists.
To illustrate the motion of the ellipsoid clearly, snapshots of eight different orientations during

one period are shown in Figure 12. The contours of the pressure are also drawn on the surface of the
particle. The bottom and the upper of the particle experience higher and lower pressure, respectively.
The ellipsoid is contacting the front left corner and rolling counterclockwise as it settles down. The
ellipsoid periodically contacts one corner and then approaches but does not move across the z-axis.
The ellipsoid always only rotates in one direction (clockwise or counterclockwise).

The position and the orientation of the ellipsoid and the torque acting on the ellipsoid are shown
in Figures 13(a) and 13(b), respectively. The labels “a” to “h” denote the eight snapshots at different
times in Figure 12. The particle experiences a periodic torque which makes it tumble periodically.
At point “a,” the ellipsoid is almost horizontal. After point “a,” the particle approaches the front
left corner, before t = 4000, the particle experiences a positive torque which makes it rotate coun-
terclockwise. After t = 4000, a small negative torque acts on the particle, which may be related to

FIG. 12. Anomalous mode in a square tube ( D
A = 20

13 , �ρ
ρ f

= 0.03). The evolution axis of the ellipsoid (x′) is always inside the

diagonal plane of the tube. Eight snapshots at different time in a period are shown in (a)–(h). From (a) to (h), the corresponding
normalized times are 3858, 4078, 4102, 4127, 4151, 4176, 4200, and 4249, respectively (refer to Figure 13).
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FIG. 13. Anomalous mode in a square tube (case in Figure 12). (a) The normalized x and orientation of ellipsoid and (b) the
torque acting on the ellipsoid as a function of time. The torque is in the direction (1, 1, 0) in the space fixed coordinates and
normalized by 4

3 πabc(ρp − ρ f )ga.

the shear stress force acting on the particle. At t ≈ 4050 (point “b”), the gap between the particle
and the walls is close enough and the repulsive force is activated, which induces a large positive
torque on the particle. Hence, there is a sharp increment in the torque curve at that time. After that,
the ellipsoid becomes vertical gradually (from “b” to “d”) and the torque decreases to zero. From
“d” to “g” (leaving the corner and approaching the axis of the tube), although the torque acting
on the particle is negative, it rotates counterclockwise continuously due to the inertia. At the state
“h,” the negative torque becomes weak and the particle is very close to the horizontal orientation
(γ = 84.7◦ at point “h”). Due to inertia effect again, the particle continuously rotates counterclock-
wise and across the horizontal orientation at time t ≈ 4320. This is the end of this period and then
another period will begin. Hence, the inertia of the ellipsoid plays an important role in inducing the
anomalous mode.

The effects of geometry and density on the angle γ a when it moves across the axis of the tube are
shown in Table II. For the square tubes, before the oscillatory mode translates to the anomalous mode,
the maximum (γ a)ms are approximately 88◦ (almost horizontal) for tubes with D

A = 20
13 and 26

13 . It is a
favorable orientation which may induce the anomalous mode. For a slightly higher rotational inertia
(slightly larger ρp), the ellipsoid may rotate through the horizontal orientation and the anomalous
mode appears. On the contrary, for narrow tubes D

A ≤ 16
13 , (γ a)m is not close to 90◦ enough of the

time and the anomalous mode does not occur.
From Table II, we can also see the effect of inertia. For example, in the square tube with D

A = 20
13 ,

and a lower inertia (�ρ

ρ f
= 0.02), we have an oscillatory mode. However, a slightly higher inertia

TABLE II. The effect of geometry and density of particle on γ a, which is the angle between the x′- and z-axis when it moves
across the axis of the tube (Osc., Inc., and Ano. denote the oscillatory, inclined, and anomalous modes, respectively).

Tube type D/A �ρ
ρ f

Mode γ a D/A �ρ
ρ f

Mode γ a D/A �ρ
ρ f

Mode γ a

Square 16
13 0.08 Osc. 76.3◦ 20

13 0.01 Osc. 83.6◦ 26
13 · · · · · · · · ·

16
13 0.15 Osc. 79.7◦ 20

13 0.015 Osc. 84.6◦ 26
13 0.001 Osc. 85.3◦

16
13 0.18 Osc. 80.7◦ 20

13 0.02 Osc. 87.6◦ 26
13 0.002 Osc. 87.5◦

16
13 0.22 Inc. · · · 20

13 0.025 Ano. · · · 26
13 0.003 Ano. · · ·
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(�ρ

ρ f
= 0.025) makes the particle rotate across the horizontal orientation when it approaches the

z-axis and the motion mode shifts to the anomalous mode.
For circular tubes, we carried out systematic simulations but the anomalous mode is not found.

One possible reason is that the combination of the inertial and geometric effects is not so perfect as
that in square tubes to allow this mode to appear.

VII. CONCLUSION

The sedimentation of a ellipsoid inside both circular and square tubes has been studied numer-
ically. The phase diagram of the flow regimes as functions of the tube diameter and Re (or density
ratio) are obtained. For the circular tubes D < A, the spiral and vertically inclined modes are ob-
served. Near transitional regimes (oscillatory mode changing to inclined mode), for a circular tube
D
A = 16

13 , the average sedimentation velocity of a lighter particle may be larger than that of a heavier
one. The possible reason is revealed. For square tubes, the ellipsoid may adopt the anomalous mode,
which usually occurs inside tubes with D > 1.4A) and Re ∼ O(1). Two critical factors that result in
this mode are identified: one is the geometry of the tube, the other is the inertia of the particle.

Based on limited observation, it seems that all modes are independent of the initial orientation
or location. It is an open question whether there exist modes of settling that depend on the initial
configuration. We will carry out the study in the near future.
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