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Randomness is ubiquitous and exceedingly useful in computer science. For example,

in sparse recovery, randomized algorithms are more efficient and robust than their determin-

istic counterparts. At the same time, because random sources from the real world are often

biased and defective with limited entropy, high-quality randomness is a precious resource.

This motivates the studies of pseudorandomness and randomness extraction. In this thesis,

we explore the role of randomness in these areas. Our research contributions broadly fall

into two categories: learning structured signals and constructing pseudorandom objects.

Learning a structured signal. One common task in audio signal processing is to com-

press an interval of observation through finding the dominating k frequencies in its Fourier

transform. We study the problem of learning a Fourier-sparse signal from noisy samples,

where [0, T ] is the observation interval and the frequencies can be “off-grid”. Previous meth-

ods for this problem required the gap between frequencies to be above 1/T , which is necessary

to robustly identify individual frequencies. We show that this gap is not necessary to recover

the signal as a whole: for arbitrary k-Fourier-sparse signals under `2 bounded noise, we pro-

vide a learning algorithm with a constant factor growth of the noise and sample complexity

polynomial in k and logarithmic in the bandwidth and signal-to-noise ratio.
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In addition to this, we introduce a general method to avoid a condition number

depending on the signal family F and the distribution D of measurement in the sample

complexity. In particular, for any linear family F with dimension d and any distribution D

over the domain of F, we show that this method provides a robust learning algorithm with

O(d log d) samples. Furthermore, we improve the sample complexity to O(d) via spectral

sparsification (optimal up to a constant factor), which provides the best known result for a

range of linear families such as low degree multivariate polynomials. Next, we generalize this

result to an active learning setting, where we get a large number of unlabeled points from

an unknown distribution and choose a small subset to label. We design a learning algorithm

optimizing both the number of unlabeled points and the number of labels.

Pseudorandomness. Next, we study hash families, which have simple forms in theory

and efficient implementations in practice. The size of a hash family is crucial for many

applications such as derandomization. In this thesis, we study the upper bound on the

size of hash families to fulfill their applications in various problems. We first investigate

the number of hash functions to constitute a randomness extractor, which is equivalent to

the degree of the extractor. We present a general probabilistic method that reduces the

degree of any given strong extractor to almost optimal, at least when outputting few bits.

For various almost universal hash families including Toeplitz matrices, Linear Congruential

Hash, and Multiplicative Universal Hash, this approach significantly improves the upper

bound on the degree of strong extractors in these hash families. Then we consider explicit

hash families and multiple-choice schemes in the classical problems of placing balls into

bins. We construct explicit hash families of almost-polynomial size that derandomizes two

classical multiple-choice schemes, which match the maximum loads of a perfectly random

hash function.
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Chapter 1

Introduction

In this thesis, we study the role of randomness in designing algorithms and construct-

ing pseudorandom objects. Often, randomized algorithms are simpler and faster than their

deterministic counterparts. We explore the advantage of randomized algorithms in providing

more efficient sample complexities and robust guarantees than deterministic algorithms in

learning. On the other hand, both from a theoretic viewpoint and for practical applications,

it is desirable to derandomize them and construct pseudorandom objects such as hash func-

tions using as few random bits as possible. We investigate the following two basic questions

in computer science:

1. A fundamental question in many fields is to efficiently recover a signal from noisy ob-

servations. This problem takes many forms, depending on the measurement model,

the signal structure, and the desired norms. For example, coding theory studies the

recovery of discrete signals in the Hamming distance. In this thesis, we consider con-

tinuous signals that is approximately sparse in the Fourier domain or close to a linear

family such as multivariate low degree polynomials. This is a common form in prac-

tice. For example, the compression of audio and radio signals exploits their sparsity

in the Fourier domain. Often the sample complexity is of more interest than its run-

ning rime, because it is costly to take measurements in practical applications. Also, a

sample of labeled data requires expensive human/oracle annotation in active learning.

This raises a natural question: how can we learn a structured signal from a few noisy

1



queries? In the first half of this thesis, we design several robust learning algorithms

with efficient sample complexity for various families of signals.

2. While randomness is provably necessary for certain tasks in cryptography and dis-

tributed computing, the situation is unclear for randomized algorithms. In the second

half, we consider an important pseudorandom object in derandomization — hash func-

tions, which have wide applications both in practice and theory. For many problems of

derandomization, a key tool is a hash family of small size such that a deterministic al-

gorithm could enumerate all hash functions in this family. In this thesis, we study how

to construct small hash families to fulfill their requirements in building randomness

extractors and the classical problems of placing balls into bins.

Next we discuss the problems studied in this thesis in detail and show how our

methods apply to them. We remark that several techniques developed in this thesis are very

general and apply to many other problems.

1.1 Overview

1.1.1 Continuous Sparse Fourier Transforms.

The Fourier transform is a ubiquitous computational tool in processing a variety of

signals, including audio, image, and video. In many practical applications, the main reason

for using the Fourier transform is that the transformed signal is sparse — it concentrates its

energy on k frequencies for a small number k. The sparse representation in the Fourier basis

exhibits structures that could be exploited to reduce the sample complexity and speed up

the computation of the Fourier transform. For n-point discrete signals, this idea has led to a

number of efficient algorithms on discrete sparse Fourier transforms, which could achieve the

optimal O(k log n
k
) sample complexity [IK14] and O(k log n log n

k
) running time [HIKP12].

2



However, many signals, including audio and radio, are originally from a continuous

domain. Because the standard way to convert a continuous Fourier transform into a discrete

one blows up the sparsity, it is desirable to directly solve the sparse Fourier transform in the

continuous setting for efficiency gains. In this thesis, we study sparse Fourier transforms in

the continuous setting.

Previous work. Let [0, T ] be the observation interval of k-Fourier-sparse signals and F

denote the “bandlimit”, which is the limiting of the frequency domain. This problem, recov-

ering a signal with sparse Fourier transform off the grid (not multiplies of 1/T ), has been a

question of extensive study. All previous research starts with finding the frequencies of the

signal and then recovers the magnitude of each frequencies.

The first algorithm was by Prony in 1795, which worked in the noiseless setting.

Its refinements MUSIC [Sch81] and ESPRIT [RPK86] empirically work better than Prony’s

algorithm with noise. Matrix pencil [BM86] is a method for computing the maximum like-

lihood signal under Gaussian noise and evenly spaced samples. Moitra [Moi15] showed that

it has an poly(k) approximation factor if the frequency gap is at least 1/T .

However, the above results use FT samples, which is analogous to n in the discrete

setting. A variety of works [FL12, BCG+14, TBR15] have studied how to adapt sparse

Fourier techniques from the discrete setting to get sublinear sample complexity; they all rely

on the minimum separation among the frequencies to be at least c/T for c ≥ 1 or even

larger gaps c = Ω(k) and additional assumptions such as i.i.d. Gaussian noise. Price and

Song [PS15] gave the first algorithm with O(1) approximation factor for arbitrary noise,

finding the frequencies when c & log(1/δ), and the signal when c & log(1/δ) + log2 k.

All of the above algorithms are designed to recover the frequencies and show this

yields a good approximation to the overall signal. Such an approach necessitates c ≥ 1:

3



Moitra [Moi15] gave a lower bound, showing that any algorithm finding the frequencies with

approximation factor 2o(k) must require c ≥ 1.

Our contribution. In joint work with Daniel Kane, Eric Price, and Zhao Song [CKPS16],

we design the first sample-efficient algorithm that recovers signals with arbitrary k Fourier

frequencies from noisy samples. In contrast to all previous approaches that require a fre-

quency gap at least 1/T to recover every individual frequency, our algorithm demonstrates

that the gap is not necessary to learn the signal: it outputs a sparse representation in the

Fourier basis for arbitrary k-Fourier-sparse signals under `2 bounded noise. This, for the

first time, provides a strong theoretic guarantee for the learning of k-Fourier-sparse signals

with continuous frequencies.

An important ingredient in our work is the first bound on the condition number
‖f‖2∞
‖f‖22

= O(k4 log3 k) for any k-Fourier-sparse signal f over the interval [0, T ]. In this thesis,

we present an improved condition number O(k3 log2 k). The condition number of k-sparse

signals with 1/T -separated frequencies is O(k) from the Hilbert inequality. However, for

signals with k arbitrary close frequencies, this family is not very well-conditioned — its

condition number is Ω(k2) from degree k − 1 polynomials by a Taylor expansion.

On the other hand, degree k polynomials are the special case of k-Fourier-sparse

signals in the limit of all frequencies close to 0, by a Taylor expansion. This is a regime with

no frequency gap, so previous sparse Fourier results would not apply but our results shows

that poly(k) samples suffices. In this special case, we prove that O(k) samples is enough to

learn any degree k polynomial under noise, which is optimal up to a constant factor. Our

strategy is to query points according to the Chebyshev distribution even though the distance

measurement is the uniform distribution over [0, T ]. A natural question is to generalize this

idea to Fourier-sparse signals and avoid the condition number Ω(k2). This motivates the

follow-up work with Eric Price [CP17].

4



1.1.2 Condition-number Free Query and Active Learning.

In joint work with Price [CP17], we proposed a framework to avoid the condition

number in the sample complexity of learning structured signals. Let F be a family of signals

being learned and D be the distribution to measure the `2 distance between different signals.

We show a strong lower bound on the number of random samples from D to recover a signal in

F: the sample complexity depends on the condition number sup
x∈supp(D)

sup
f∈F
{ |f(x)|2

E
y∼D

[|f(y)|2]
}, which

could be arbitrary large under adversarial distributions.

We consider two alternative models of access to the signal to circumvent the lower

bound. The first model is that we may query the signal where we want, such as in the

problem of sparse Fourier transforms. We show how to improve the condition number by

biasing the choices of queries towards points of high variance. For a large class of families,

this approach significantly saves the number of queries in agnostic learning, including the

family of k-Fourier-sparse signals and any linear family.

For continuous sparse Fourier transforms discussed in Section 1.1.1, we present an

explicit distribution that scales down the condition number from O(k3 log2 k) to O(k log2 k)

through this approach. Because the condition number is at least k for any query strategy,

our estimation O(k log2 k) is almost optimal up to log factors. Based on this, we show that

O(k4 log3 k + k3 log2 k logFT ) samples are sufficient to recover any k-Fourier-sparse signal

with “bandlimit” F on the interval [0, T ], which significantly improves the sample complexity

in the previous work [CKPS16].

For any linear family F of dimension d and any distribution D, we show that this

approach scales down the condition number to d and provides an algorithm with O(d log d)

queries to learn any signal in F under arbitrary noise. The log d factor in the query complex-

ity is due to the fact that the algorithm only uses the distribution with the least condition

number to generate all queries. Then, we improve this query complexity to O(d) by de-

signing a sequence of distributions and generating one query from each distribution. On

5



the other hand, we prove an information lower bound on the number of queries matching

the query complexity of our algorithm up to a constant factor. Hence this work completely

characterizes query access learning of signals from linear families.

The second model of access is active learning, where the algorithm receives a set of

unlabeled points from the unknown distribution D and chooses a subset of these points to

obtain their labels from noisy observations. We design a learning algorithm that optimizes

both the number of labeled and unlabeled examples required to learn a signal from any linear

family F under any unknown distribution D.

Previous work. We notice that the distribution with the least condition number for linear

families described in our work [CP17] is similar to strategies proposed in importance sam-

pling [Owe13], leverage score sampling [DMM08, MI10, Woo14], and graph sparsification

[SS11]. One significant body of work on sampling regression problems uses leverage score

sampling [DMM08, MI10, Mah11, Woo14]. For linear function classes, our sample distribu-

tion with the least condition number can be seen as a continuous limit of the leverage score

sampling distribution, so our analysis of it is similar to previous work. At least in the fixed

design setting, it was previously known that O(d log d+ d/ε) samples suffice [Mah11].

Multiple researchers [BDMI13, SWZ17] have studied switching from leverage score

sampling—which is analogous to the near-linear spectral sparsification of [SS11]—to the

linear-size spectral sparsification of [BSS12]. This improves the sample complexity to O(d/ε),

but the algorithms need to know all the yi as well as the xi before deciding which xi to

sample; this makes them unsuitable for active/query learning settings. Because [BSS12] is

deterministic, this limitation is necessary to ensure the adversary doesn’t concentrate the

noise on the points that will be sampled. Our result uses the alternative linear-size spectral

sparsification of [LS15] to avoid this limitation: we only need the xi to choose O(d/ε) points

that will perform well (on average) regardless of where the adversary places the noise.

6



The above references all consider the fixed design setting, while [SM14] gives a method

for active regression in the random design setting. Their result shows (roughly speaking)

that O((d log d)5/4 + d/ε) samples of labeled data suffice for the desired guarantee. They do

not give a bound on the number of unlabeled examples needed for the algorithm. (Nor do

the previous references, but the question does not make sense in fixed-design settings.)

Less directly comparable to this work is [CKNS15], where the noise distribution (Y |
x) is assumed to be known. This assumption, along with a number of assumptions on the

structure of the distributions, allows for significantly stronger results than are possible in our

agnostic setting. The optimal sampling distribution is quite different, because it depends on

the distribution of the noise as well as the distribution of x.

1.1.3 Existence of Extractors from Simple Hash Families.

Next we consider hash families and their application to construct another pseudoran-

dom object — randomness extractors. In the real world, random sources are often biased

and defective, which rarely satisfy the requirements of its applications in algorithm design,

distributed computing, and cryptography. A randomness extractor is an efficient algorithm

that converts a “weak random source” into an almost uniform distribution. As is standard,

we model a weak random source as a probability distribution with min-entropy.

Definition 1.1.1. The min-entropy of a random variable X is H∞(X) = min
x∈supp(X)

log2
1

Pr[X=x]
.

It is impossible to construct a deterministic randomness extractor for all sources of

min-entropy k [SV86], even if k is as large as n− 1. Therefore a seeded extractor also takes

as input an additional independent uniform random string, called a seed, to guarantee that

the output is close to uniform [NZ96].

Definition 1.1.2. For any d ∈ N+, let Ud denote the uniform distribution over {0, 1}d. For

two random variables W and Z with the same support, let ‖W − Z‖ denote the statistical
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(variation) distance ‖W − Z‖ = max
T⊆supp(W )

∣∣Prw∼W [w ∈ T ]− Prz∼Z [z ∈ T ]
∣∣.

Ext : {0, 1}n × {0, 1}t → {0, 1}m is a (k, ε)-extractor if for any source X with min-

entropy k and an independent uniform distribution Y on {0, 1}t, ‖Ext(X, Y ) − Um‖ ≤ ε. It

is a strong (k, ε)-extractor if in addition, it satisfies
∥∥(Ext(X, Y ), Y

)
−
(
Um, Y

)∥∥ ≤ ε.

We call 2t the degree of Ext, because when Ext is viewed as a bipartite graph on

{0, 1}n ∪ {0, 1}m, its left degree is 2t. Often the degree 2t is of more interest than the seed

length t. For example, when we view an extractor as a hash family H =
{
Ext(·, y)|y ∈

{0, 1}t
}

, the degree 2t corresponds to the size of H.

Minimizing the degree of an extractor is crucial for many applications such as con-

structing optimal samplers and simulating probabilistic algorithms with weak random sources.

It is well known that the optimal degree of (k, ε)-extractors is Θ(n−k
ε2

), where the upper bound

is from the probabilistic method and the lower bound was shown by Radhakrishnan and Ta-

Shma [RT00]. At the same time, explicit constructions [Zuc07] with an optimal degree, even

for constant error, have a variety of applications in theoretical computer science such as hard-

ness of inapproximability [Zuc07] and constructing almost optimal Ramsey graphs [BDT17].

Most known extractors are sophisticated based on error-correcting codes or expander

graphs and complicated to implement in practice. This raises natural questions — are there

simple constructions like linear transformations and even simpler ones of Toeplitz matrices?

Are there extractors with good parameters and efficient implementations? In joint work

with Zuckerman, we answer these questions in the context of the extractor degree. Our

main result indicates the existence of strong extractors of linear transformations and Toeplitz

matrices and extremely efficient strong extractors with degree close to optimal, at least when

outputting few bits.

Our contributions. We present a probabilistic construction to improve the degree of any

given extractor. We consider the following method to improve the degree of any strong
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extractor while keeping almost the same parameters of min entropy and error.

Definition 1.1.3. Given an extractor Ext : {0, 1}n × {0, 1}t → {0, 1}m and a sequence of

seeds (y1, · · · , yD) where each yi ∈ {0, 1}t, we define the restricted extractor Ext(y1,··· ,yD) to

be Ext restricted in the domain {0, 1}n × [D] where Ext(y1,··· ,yD)(x, i) = Ext(x, yi).

Our main result is that given any strong (k, ε)-extractor Ext, most restricted extractors

with a quasi-linear degree Õ( n
ε2

) from Ext are strong (k, 3ε)-extractors for a constant number

of output bits, despite the degree of Ext.

Theorem 1.1.4. There exists a universal constant C such that given any strong (k, ε)-

extractor Ext : {0, 1}n × {0, 1}t → {0, 1}m, for D = C · n·2m
ε2
· log2 n·2m

ε
random seeds

y1, . . . , yD ∈ {0, 1}t, Ext(y1,...,yD) is a strong (k, 3ε)-extractor with probability 0.99.

We state the corollaries of Theorem 1.1.4 for simple extractors of linear transforma-

tions and Toeplitz matrices and hash families with efficient implementations in Chapter 7.

On the other hand, the same statement of Theorem 1.1.4 holds for extractors. In

this case, we observe that the dependency 2m on the degree D of restricted extractors is

necessary to guarantee its error is less than 1/2 on m output bits.

Proposition 1.1.5. There exists a (k, ε)-extractor Ext : {0, 1}n × {0, 1}t → {0, 1}m with

k = 1 and ε = 0 such that any restricted extractor of Ext requires the degree D ≥ 2m−1 to

guarantee its error is less than 1/2.

While the dependency 2m is necessary for the degree of restricted extractors, it may

not be necessary for strong extractors.

Previous work. In a seminal work, Impagliazzo, Levin, and Luby [ILL89] proved the

Leftover Hash Lemma, i.e., all functions from an almost universal hash family constitute a
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strong extractor. In particular, this implies that all linear transformations and all Toeplitz

matrices constitute strong extractors respectively.

Most previous research has focused on linear extractors, whose extractor functions

are linear on the random source for every fixed seed. Because of their simplicity and various

applications such as building blocks of extractors for structured sources [Li16, CL16], there

have been several constructions of linear extractors with small degree. The first nontrivial

progress was due to Trevisan [Tre01], who constructed the first linear extractor with degree

polynomial in n and ε. Based on Trevisan’s work, Shaltiel and Umans [SU05] built linear

extractors with almost linear degree for constant error. Later on, Guruswami, Umans, and

Vadhan [GUV09a] constructed almost optimal linear condensers and vertex-expansion ex-

panders, which are variants of extractors and lead to an extractor with a degree n ·poly(k/ε).

However, the GUV extractor is not linear. Moreover, it is still open whether the degree of

linear extractors could match the degree Θ(n−k
ε2

) of general extractors.

On the other hand, much less is known about extractors consisting of Toeplitz ma-

trices. Prior to this work, even for m = 2 output bits, the best known upper bound on

extractors with Toeplitz matrices was exponential in n by the Leftover Hash Lemma [ILL89]

of all Toeplitz matrices.

At the same time, from a practical point of view, it is desirable to have an extractor

with a small degree that runs fast and is easy to implement. In this work, we consider

efficient extractors from almost universal hash families, which are easier to implement than

error-correcting codes and expander graphs used in most known constructions of extrac-

tors. In Chapter 7, we describe a few notable almost universal hash families with efficient

implementations. Prior to this work, the best known upper bounds on the degree of extrac-

tors from almost universal hash families were the Leftover Hash Lemma [ILL89], which are

exponential in the length of the random source n.

Other work on improving extractors focus on other parameters such as the error and
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number of output bits. Raz et al. [RRV99] showed how to reduce the error and enlarge the

number of output bits of any given extractor by sacrificing the degree.

1.1.4 Hash functions for Multiple-choice Schemes.

We consider explicit hash families for the classical problem of placing balls into bins.

The basic model is to hash n balls into n bins independently and uniformly at random, which

we call the 1-choice scheme. A well-known and useful fact of the 1-choice scheme is that

with high probability, each bin contains at most O( logn
log logn

) balls. By high probability, we

mean probability 1− n−c for an arbitrary constant c.

An alternative variant, which we call Uniform-Greedy, is to provide d ≥ 2 independent

random choices for each ball and place the ball in the bin with the lowest load. In a seminal

work, Azar et al. [ABKU99] showed that the Uniform-Greedy scheme with d independent

random choices guarantees a maximum load of only log logn
log d

+O(1) with high probability for

n balls. Later, Vöcking [Voc03] introduced the Always-Go-Left scheme to further improve

the maximum load to log logn
d log φd

+O(1) for d choices where φd > 1.61 is the constant satisfying

φdd = 1 + φd + · · · + φd−1
d . For convenience, we always use d-choice schemes to denote the

Uniform-Greedy and Always-Go-Left scheme with d ≥ 2 choices.

Traditional analysis of load balancing assumes a perfectly random hash function.

A large body of research is dedicated to the removal of this assumption by designing ex-

plicit hash families using fewer random bits. In the 1-choice scheme, it is well known that

O( logn
log logn

)-wise independent functions guarantee a maximum load of O( logn
log logn

) with high

probability, which reduces the number of random bits to O( log2 n
log logn

). Celis et al. [CRSW13]

designed a hash family with a description of O(log n log log n) random bits that achieves the

same maximum load of O( logn
log logn

) as a perfectly random hash function.

In this thesis, we are interested in the explicit constructions of hash families that

achieve the same maximum loads as a perfectly random hash function in the d-choice schemes.
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More precisely, we study how to derandomize the perfectly random hash function in the

Uniform-Greedy and Always-Go-Left scheme. For these two schemes, O(log n)-wise inde-

pendent hash functions achieve the same maximum loads from Vöcking’s argument [Voc03],

which provides a hash family with Θ(log2 n) random bits. Recently, Reingold et al. [RRW14]

showed that the hash family in [CRSW13] guarantees a maximum load of O(log log n) in the

Uniform-Greedy scheme with O(log n log log n) random bits.

Our results. We construct a hash family with O(log n log log n) random bits based on the

previous work of Celis et al. [CRSW13] and show the following results.

1. This hash family has a maximum load of log logn
log d

+O(1) in the Uniform-Greedy scheme.

2. It has a maximum load of log logn
d log φd

+O(1) in the Always-Go-Left scheme.

The maximum loads of our hash family match the maximum loads of a perfectly random hash

function [ABKU99, Voc03] in the Uniform-Greedy and Always-Go-Left scheme separately.

1.1.5 CSPs with a global cardinality constraint.

A variety of problems in pseudorandomness such as bipartite expanders and dispersers

could be stated as constraint satisfaction problems complying with a global cardinality con-

straint. In a d-ary constraint satisfaction problem (CSP), we are given a set of boolean

variables {x1, x2, · · · , xn} over {±1} and m constraints C1, · · · , Cm, where each constraint

Ci consists of a predicate on at most d variables. A constraint is satisfied if and only if the

assignment of the related variables is in the predicate of the constraint. The task is to find

an assignment to {x1, · · · , xn} so that the greatest (or the least) number of constraints in

{C1, · · · , Cm} are satisfied.

Given a boolean CSP instance I, we can impose a global cardinality constraint∑n
i=1 xi = (1 − 2p)n (we assume that pn is an integer). Such a constraint is called the
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bisection constraint if p = 1/2. For example, the MaxBisection problem is the Max-

Cut problem with the bisection constraint. Constraint satisfaction problems with global

cardinality constraints are natural generalizations of boolean CSPs. Researchers have been

studying approximation algorithms for CSPs with global cardinality constraints for decades,

where the MaxBisection problem [FJ95, Ye01, HZ02, FL06, GMR+11, RT12, ABG13] and

the SmallSet Expansion problem [RS10, RST10, RST12] are two prominent examples.

Adding a global cardinality constraint could strictly enhance the hardness of the

problem. The SmallSet Expansion problem can be viewed as the MinCUT problem

with the cardinality of the selected subset to be ρ|V | (ρ ∈ (0, 1)). While MinCUT ad-

mits a polynomial-time algorithm to find the optimal solution, we do not know a good

approximation algorithm for SmallSet Expansion. Raghavendra and Steurer [RS10] sug-

gested that the SmallSet Expansion problem is where the hardness of the notorious

UniqueGames problem [Kho02] stems from.

We study several problems about CSPs under a global cardinality constraint in this

thesis. The first one is the fixed parameter tractability (FPT) of the CSP above average

under a global cardinality constraint. Specifically, let AV G be the expected number of

constraints satisfied by randomly choosing an assignment to x1, x2, . . . , xn complying with

the global cardinality constraint. We show an efficient algorithm that finds an assignment

(complying with the cardinality constraint) satisfying more than (AV G+t) constraints for an

input parameter t. The second is to approximate the vertex expansion of a bipartite graph.

Our main results are strong integrality gaps in the Lasserre hierarchy and an approximation

algorithm for dispersers and bipartite expanders.

1.2 Organization

We provide some preliminaries and discuss condition numbers in Chapter 2. We also

introduce a few tools in signal recovery of continuous sparse Fourier transform and linear
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families in this chapter.

In Chapter 3, we prove the condition number of k-Fourier-sparse signals is in [k2, Õ(k3)]

and show how to scale it down to Õ(k). In Chapter 4, we present the sample-efficient algo-

rithm for continuous sparse Fourier transform. In Chapter 5, we consider a special case of

continuous sparse Fourier transform and present the robust polynomial recovery algorithm.

In Chapter 6, we study how to learn signals from any given linear families. Most of the ma-

terial in these chapters are based on joint work with Kane, Price, and Song [CKPS16, CP17].

We consider hash functions and its applications in Chapters 7 and 8. We show

how to reduce the degree of any extractor and discuss its implications on almost universal

hash families in Chapter 7. We present our hash families that derandomizes multiple-choice

schemes in Chapter 8. Most of the material in these chapters are based on joint work with

Zuckerman and [Che17].

We study problems about CSPs under a global cardinality constraint in Chapters 9 and 10.

We show that they are fixed parameter tractable in Chapter 9. We present the integrality

gaps of approximating dispersers and bipartite expanders in Chapter 10. Most of the material

in these chapters are based on joint work with Zhou [CZ17] and [Che16].
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Chapter 2

Preliminaries

Let [n] = {1, 2, · · · , n}. For convenience, we always use
(
S
d

)
to denote the set of all

subsets of size d in S and
(
S
≤d

)
to denote the set of all subsets of size at most d in S (including

∅). For two subsets S and T , we use S∆T to denote the symmetric difference of S and T .

Let n! denote the product
∏n

i=1 i and n!! =
∏[n−1

2
]

i=0 (n − 2i). We use ~0 (~1 resp.) to

denote the all 0 (1 resp.) vector and 1E to denote the indicator variable of an event E, i.e.

1E = 1 when E is true, and 1E = 0 otherwise.

We use X . Y to denote the inequality X ≤ C · Y for a universal constant C. For

a random variable X on {0, 1}n and a function f from {0, 1}n, let f(X) denote the random

variable f(x) on the image of f when x ∼ X.

Given a distribution D, let ‖f‖D denote the `2 norm in D, i.e., ( E
x∼D

[|f(x)|2])1/2.

Given a sequence S = (t1, . . . , tm) (allowing repetition in S) and corresponding weights

(w1, . . . , wm), let ‖f‖2
S,w denote the weighted `2 norm

∑m
j=1 wj · |f(tj)|2. For convenience, we

omit w if it is a uniform distribution on S, i.e., ‖f‖S =
(
Ei∈[m]

[
|f(ti)|2

])1/2
. For a vector

~v =
(
v(1), . . . , v(m)

)
∈ Cm, let ‖~v‖k denote the Lk norm, i.e.,

(∑
i∈[m] |v(i)|k

)1/k
.

Given a matrix A ∈ Cm×m, let A∗ denote the conjugate transpose A∗(i, j) = A(j, i)

and ‖A‖ denote the operator norm ‖A‖ = max~v 6=~0
‖A~v‖2
‖~v‖2 and λ(A) denote all eigenvalues of

A. Given a self-adjoint matrix A, let λmin(A) and λmax(A) denote the smallest eigenvalue

and the largest eigenvalue of A.

Then we discuss the condition numbers of a family under D.
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2.1 Condition Numbers

Given a family F (not necessarily linear) of signals and a fixed distribution D on the

domain of F, we consider the problem of estimating ‖f‖2
D with high confidence and define

the worst-case condition number and average condition number of F under D.

Let x1, · · · , xm be m random samples from D. The basic way to estimate ‖f‖2
D =

E
x∼D

[
|f(x)|2

]
is 1

m

∑m
i=1 |f(xi)|2. To show that this concentrates, we would like to apply

Chernoff bounds, which depend on the maximum value of summand. In particular, the

concentration depends on the worst-case condition number of F, i.e.,

KF = sup
x∈supp(D)

sup
f∈F

|f(x)|2

‖f‖2
D

.

We consider estimating ‖f‖2
D = E

x∼D

[
|f(x)|2

]
by samples from any other distribution

D′. For any distribution D′ over supp(D), for m samples t1, · · · , tm from D′, we always

assign the weight wi = D(x)
D′(x)·m for each i ∈ [m] such that

E
t1,··· ,tm

[
m∑
i=1

wi · |f(ti)|2
]

=
m∑
i=1

E
ti∼D′

[
D(ti)

D′(ti) ·m
· |f(ti)|2

]
= E

t∼D

[
|f(t)|2

]
= ‖f‖2

D.

When D is clear, we also use f (D′)(x) to denote the weighted function
√

D(x)
D′(x)

· f(x) such

that E
x∼D

[
|f(x)|2

]
= E

x∼D′

[
|f (D′)(x)|2

]
. When F and D are clear, let KD′ denote the condition

number of signals in F from random sampling of D′:

KD′ = sup
x∈supp(D)

sup
f∈F

D(x)

D′(x)
· |f(x)|2

‖f‖2
D

= sup
x∈supp(D)

{
D(x)

D′(x)
· sup
f∈F

|f(x)|2

‖f‖2
D

}
.

Let DF be the distribution minimizing KD′ by making the inner term the same for

every x, i.e.,

DF(x) =
D(x) · supf∈F

|f(x)|2
‖f‖2D

κF
for κF = E

x∼D

[
sup
f∈F

|f(x)|2

‖f‖2
D

]
. (2.1)

For convenience, we call κF the average condition number of F. It is straightforward to verify

the condition number KDF
= κF for F with random samples from DF.
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Claim 2.1.1. For any family F and any distribution D on its domain, let DF be the distri-

bution defined in (2.1) with κF. The condition number KDF
= sup

x

{
sup
f∈F

{ D(x)
DF(x)

· |f(x)|2
‖f‖2D

}}
is

at most κF.

Proof. For any g ∈ F and x in the domain G,

|g(x)|2

‖g‖2
D

· D(x)

DF(x)
=

|g(x)|2
‖g‖2D

·D(x)

supf∈F
|f(x)|2
‖f‖2D

·D(x)/κF
≤ κF.

In this rest of this work, we will use κF to denote the condition number of DF. We

discuss the application of this approach to sparse Fourier transform and linear families in

Chapter 3 and Chapter 6 separately.

2.2 Chernoff Bounds

We state a few versions of the Chernoff bounds for random sampling. We start with

the Chernoff bound for real numbers [Che52].

Lemma 2.2.1. Let X1, X2, · · · , Xn be independent random variables. Assume that 0 ≤ Xi ≤
1 always, for each i ∈ [n]. Let X = X1 +X2 + · · ·+Xn and µ = E[X] =

n∑
i=1

E[Xi]. Then for

any ε > 0,

Pr[X ≥ (1 + ε)µ] ≤ exp(− ε2

2 + ε
µ) and Pr[X ≥ (1− ε)µ] ≤ exp(−ε

2

2
µ).

In this work, we use the following version of the Chernoff bound.

Corollary 2.2.2. Let X1, X2, · · · , Xn be independent random variables in [0, R] with expec-

tation 1. For any ε < 1/2, X =
∑n
i=1 Xi
n

with expectation 1 satisfies

Pr[|X − 1| ≥ ε] ≤ 2 exp(−ε
2

3
· n
R

).
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We state the matrix Chernoff inequality from [Tro12].

Theorem 2.2.3 (Theorem 1.1 of [Tro12]). Consider a finite sequence {Xk} of independent,

random, self-adjoint matrices of dimension d. Assume that each random matrix satisfies

Xk � 0 and λ(Xk) ≤ R.

Define µmin = λmin(
∑

k E[Xk]) and µmax = λmax(
∑

k E[Xk]). Then

Pr

{
λmin(

∑
k

Xk) ≤ (1− δ)µmin

}
≤ d

(
e−δ

(1− δ)1−δ

)µmin/R

for δ ∈ [0, 1], and (2.2)

Pr

{
λmax(

∑
k

Xk) ≥ (1 + δ)µmax

}
≤ d

(
e−δ

(1 + δ)1+δ

)µmax/R

for δ ≥ 0 (2.3)
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Chapter 3

Condition Numbers of Continuous Sparse Fourier

Transform

We study the worst-case and average condition number of k-Fourier-sparse signals

in the continuous setting. Without loss of generality, we set [−1, 1] to be the interval of

observations and F to be the bandlimit of frequencies. In this chapter, we set the family of

k-Fourier-sparse signals as

F =

{
f(x) =

k∑
j=1

vj · e2πifjx
∣∣vj ∈ C, |fj| ≤ F

}
. (3.1)

We consider the uniform distribution over [−1, 1] and define ‖f‖2 =
(

E
x∈[−1,1]

[|f(x)|2]
)1/2

to

denote the energy of a signal f .

We prove lower and upper bounds on the worst-case condition number and average

condition number of F. Our main constribution are two upper bounds on the condition

numbers of F, which are the first result about the condition numbers of sparse Fourier

transform with continuous frequencies.

Theorem 3.0.1. Let F be the family defined in (3.1) given F and k.

KF = sup
f∈F

sup
x∈[−1,1]

|f(x)|2

‖f‖2
2

= O(k3 log3 k).

At the same time, there exists f ∈ F such that sup
x∈[−1,1]

|f(x)|2
‖f‖22

= k2.

Furthermore, we show the average condition number κF is Õ(k).
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Theorem 3.0.2. Given any F and k, let F be the family defined in (3.1).

κF = E
x∈[−1,1]

[
sup
f∈F

|f(x)|2

‖f‖2
2

]
= O(k log2 k).

From Claim 2.1.1 in Chapter 2, we obtain the following corollary. Recall that D(x) =

1/2 for the uniform distribution over [−1, 1].

Corollary 3.0.3. For any k, there exists an explicit distribution DF such that

∀x ∈ [−1, 1], sup
f∈F

{
1

2 ·DF(x)
· |f(x)|2

‖f‖2
2

}
= O(k log2 k).

On the other hand, the average condition number κF = E
x∈[−1,1]

[
sup
f∈F

|f(x)|2
‖f‖22

]
is at least

k, because for any x ∈ [−1, 1], there exists a periodic signal f with |f(x)|2
‖f‖22

= k. This indicates

our estimation of average condition number is almost tight up to log factors.

In the rest of this section, we prove the upper bound of Theorem 3.0.1 in Section 3.1.

Then we prove Theorem 3.0.2 and Corollary 3.0.3 in Section 3.2. For completeness, we show

the lower bound of Theorem 3.0.1 through the approximation of degree k − 1 polynomials

by k-Fourier sparse signals in Section 3.3.

3.1 The Worst-case Condition number of Fourier Sparse Signals

We bound the worst-case condition number of signals in F in this section. We first

state the technical result to prove the upper bound in Theorem 3.0.1.

Theorem 3.1.1. Given any k > 0, there exists d = O(k2 log k) such that for any f(x) =∑k
j=1 vj · e2πifj ·x, any t ∈ R, and any ∆ > 0,

|f(t)|2 ≤ O(k) · (
d∑
j=1

|f(t+ j ·∆|2)
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We finish the proof of Theorem 3.0.1 bounding the worst-case condition number of

KF by the above relation.

Proof of Theorem 3.0.1. Given any f ∈ F, we prove that

|f(t)|2 = O(k3 log2 k)

∫ 1

t

|f(x)|2dx for any t ≤ 0,

which indicates |f(t)|2 = O(k3 log2 k) · E
x∼[−1,1]

[
|f(x)|2

]
. By symmetry, it also implies that

|f(t)|2 = O(k3 log2 k) · E
x∼[−1,1]

[
|f(x)|2

]
for any t ≥ 0.

We use Theorem 3.1.1 on f(t):

1− t
d
· |f(t)|2 ≤ O(k) ·

∫ 1−t
d

∆=0

∑
j∈[d]

|f(t+ j∆)|2d∆

. k
∑
j∈[d]

∫ 1−t
d

∆=0

|f(t+ j∆)|2d∆

. k
∑
j∈[d]

1

j
·
∫ (1−t)j

d

∆′=0

|f(t+ ∆′)|2d∆′

. k
∑
j∈[d]

1

j
·
∫ 1

x=−1

|f(x)|2dx

. k log k ·
∫ 1

x=−1

|f(x)|2dx.

From all discussion above, we have |f(t)|2 . dk log k · E
x∈[−1,1]

[|f(x)|2].

We prove Theorem 3.1.1 in the rest of this section. We first provide a polynomial

interpolation lemma.

Theorem 3.1.2. Given z1, · · · , zk with |z1| = |z2| = · · · = zk = 1, there exists a degree

d = O(k2 log k) polynomial P (z) =
∑d

j=0 c(j) · zj satisfying
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1. P (zi) = 0 for each i ∈ [k].

2. Its coefficients satisfy |c(0)|2 = O(k) ·
(∑d

j=1 |c(j)|2
)
.

We use residual polynomials to prove Theorem 3.1.2.

Lemma 3.1.3. Given z1, · · · , zk, for any integer n, let rn,k(z) =
∑k−1

i=0 r
(i)
n,k · zi denote the

residual polynomial of rn,k ≡ zn mod
∏k

j=1(z−zj). Then each coefficient in rn,k is bounded:

|r(i)
n,k| ≤

(
k−1
i

)
·
(
n
k−1

)
for n ≥ k and |r(i)

n,k| ≤
(
k−1
i

)
·
(|n|+k−1

k−1

)
for n < 0.

For completeness, we provide a proof of Lemma 3.1.3 in Appendix A. We finish the

proof of Theorem 3.1.2 here.

Proof. Let C0 be a large constant and d = 5 · k2 log k. We use P to denote the following

subset of polynomials with bounded coefficients:{
d∑
j=0

αj · 2−j/k · zj
∣∣∣∣α0, . . . , αd ∈ [−C0, C0] ∩ Z

}
.

For each polynomial P (z) =
∑d

j=0 αj · 2−j/k · zj ∈ P, we rewrite P (z) mod
∏k

j=1(z − zj) as

d∑
j=0

αj · 2−j/k ·

(
zj mod

k∏
j=1

(z − zj)

)
=

k−1∑
i=0

(
d∑
j=0

αj · 2−j/k · r(i)
n,k

)
zi.

The coefficient
∑d

j=0 αj · 2−j/k · r
(i)
n,k is bounded by

d∑
j=0

C0 · 2−j/k · 2kjk−1 ≤ d · C0 · 2k · dk ≤ d2k.

We apply the pigeon hole theorem on the (2C0 +1)d polynomials in P after module
∏d

j=1(z−
zj): there exists m > (2C0 + 1)0.9d polynomials P1, · · · , Pm such that each coefficient of

(Pi − Pj) mod
∏k

j=1(z − zj) is d−2k small from the counting

(2C0 + 1)d

(d2k/d−2k)2k
> (2C0 + 1)0.9d.
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Because m > (2C0 + 1)0.9d, there exists j1 ∈ [m] and j2 ∈ [m] \ {j1} such that the lowest

monomial zl with different coefficients in Pj1 and Pj2 satisfies l ≤ 0.1d. Eventually we set

P (z) = z−l ·
(
Pj1(z)−Pj2(z)

)
−
(
z−l mod

k∏
j=1

(z−zj)
)
·
(
Pj1(z)−Pj2(z) mod

k∏
j=1

(z−zj)
)

to satisfy the first property P (z1) = P (z2) = · · · = P (zk) = 0. We prove the second property

in the rest of this proof.

We bound every coefficient in
(
z−l mod

∏k
j=1(z−zj)

)
·
(
Pj1(z)−Pj2(z) mod

∏k
j=1(z−

zj)
)

by k · 2l(l + k)k−1 · d−2k ≤ d · 2ddk−1 · d−2k ≤ d−0.5k. On the other hand, the constant

coefficient in z−l ·
(
Pj1(z)−Pj2(z)

)
is at least 2−l/k ≥ 2−0.1d/k = k−0.5k because zl is the small-

est monomial with different coefficients in Pj1 and Pj2 from P. Thus the constant coefficient

|C(0)|2 of P (z) is at least 0.5 · 2−2l/k.

Next we upper bound the sum of the rest coefficients
∑d

j=1 |C(j)|2 by

d∑
j=1

(2C0 · 2−(l+j)/k + d−0.5k)2 ≤ 2 · 4C2
0

d∑
j=1

2−2(l+j)/k + 2 ·
d∑
j=1

d−0.5k·2 . k · 2−2l/k,

which demonstrates the second property.

Then we finish the proof of Theorem 3.1.1 using the above polynomial interpolation

bound.

Proof of Theorem 3.1.1. Given k frequencies f1, · · · , fk and ∆, we set z1 = e2πif1·∆, · · · , zk =

e2πifk·∆. Let C(0), · · · , C(d) be the coefficients of the degree d polynomial P (z) in Theo-

rem 3.1.2. We have

d∑
j=0

C(j) · f(t+ j ·∆) =
d∑
j=0

C(j)
∑
j′∈[k]

vj′ · e2πifj′ (t+j∆)

=
d∑
j=0

C(j)
∑
j′∈[k]

vj′ · e2πifj′ t · zjj′ =
∑
j′∈[k]

vj′ · e2πifj′ t
d∑
j=0

C(j) · zjj′ = 0.
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Hence for every i ∈ [k],

− C(0) · f(t) =
d∑
j=1

C(j) · f(t+ j ·∆). (3.2)

By Cauchy-Schwartz inequality, we have

|C(0)|2 · |f(t)|2 ≤

(
d∑
j=1

|C(j)|2
)
·

(
d∑
j=1

|f(t+ j ·∆)|2
)
. (3.3)

From the second property of C(0), · · · , C(d) in Theorem 3.1.2, |f(t)|2 ≤ O(k) · (
∑d

j=1 |f(t+

j ·∆|2).

3.2 The Average Condition number of Fourier Sparse Signals

We bound the average condition number of F in this section. The key ingrediant is a

upper bound on |f(t)|2/‖f‖2
2 depending on t.

Lemma 3.2.1. For any t ∈ (−1, 1),

sup
f∈F

|f(t)|2

‖f‖2
2

.
k log k

1− |t|
.

We state the improvement compared to Theorem 3.1.1 bounding the worst-case con-

dition number.

Claim 3.2.2. Given f(x) =
∑k

j=1 vje
2πifj ·x and ∆, there exists l ∈ [2k] such that for any t,

|f(t+ l ·∆)|2 .
∑

j∈[2k]\{l}

|f(t+ j ·∆)|2.

Proof. Given k frequencies f1, · · · , fk and ∆, we set z1 = e2πif1·∆, · · · , zk = e2πifk·∆. Let V

be the linear subspace{(
α(0), . . . , α(2k − 1)

)
∈ C2k

∣∣ 2k−1∑
j=0

α(j) · zji = 0,∀i ∈ [k]

)
.
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Because the dimension of V is k, let α1, · · · , αk ∈ V be k orthogonal coefficient vectors with

unit length ‖αi‖2 = 1. Let l be the coordinate in [2k] with the largest weight
∑k

i=1 |αi(l)|2.

We prove the main technical result.

From the definition of αi, we have∑
j∈[2k]

αi(j) · f(t+ j ·∆) =
∑
j∈[2k]

αi(j)
∑
j′∈[k]

vj′ · e2πifj′ ·(t+j∆)

=
∑
j∈[2k]

αi(j)
∑
j′∈[k]

vj′ · e2πifj′ t · zjj′ =
∑
j′

vj′ · e2πifj′ t
∑
j∈[2k]

αi(j) · zjj′ = 0.

Hence for every i ∈ [k],

− αi(l) · f(t+ l ·∆) =
∑

j∈[2k]\{l}

αi(j) · f(t+ j ·∆). (3.4)

Let A ∈ R[k]×[2k−1] denote the matrix of the coefficients excluding the coordinate l, i.e.,

A =


α1(0) · · · α1(l − 1) α1(l + 1) · · · α1(2k − 1)
α2(0) · · · α2(l − 1) α2(l + 1) · · · α2(2k − 1)

...
...

...
...

...
...

αk(0) · · · αk(l − 1) αk(l + 1) · · · αk(2k − 1)

 .

For the k × k matrix A · A∗, its entry (i, i′) equals∑
j∈[2k]\{l}

αi(j) · αi′(j) = 〈αi, αi′〉 − αi(l) · αi′(l) = 1i=i′ − αi(l) · αi′(l).

Thus the eigenvalues of A · A∗ are bounded by 1 +
∑

i∈[k] |αi(l)|2, which also bounds the

eigenvalues of A∗ · A by 1 +
∑

i∈[k] |αi(l)|2. From (3.4),∑
i∈[k]

|αi(l) · f(t+ l ·∆)|2 ≤ λmax(A∗ · A) ·
∑

j∈[2k]\{l}

|f(t+ j ·∆)|2

⇒
(∑
i∈[k]

|αi(l)|2
)
· |f(t+ l ·∆)|2 ≤ (1 +

∑
i∈[k]

|αi(l)|2) ·
∑

j∈[2k]\{l}

|f(t+ j ·∆)|2.
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Because l = arg maxj∈[2k]

{∑
i∈[k] |αi(j)|2

}
and α1, · · · , αk are unit vectors,

∑
i∈[k] |αi(l)|2 ≥∑k

i=1 ‖αi‖2
2/2k ≥ 1/2. Therefore

|f(t+ l ·∆)|2 ≤ 3
∑

j∈[2k]\{l}

|f(t+ j ·∆)|2.

Corollary 3.2.3. Given f(x) =
∑k

j=1 vje
2πifj ·x, for any ∆ and t,

|f(t)|2 .
2k∑
i=1

|f(t+ i∆)|2 +
2k∑
i=1

|f(t− i∆)|2.

Next we finish the proof of Lemma 3.2.1.

Proof of Lemma 3.2.1. We assume t = 1− ε and integrate ∆ from 0 to ε/2k:

ε/2k · |f(t)|2 .
∫ ε/2k

∆=0

2k∑
i=1

|f(t+ i∆)|2 +
2k∑
i=1

|f(t− i∆)|2d∆

=
∑

i∈[1,...,2k]

∫ ε/2k

∆=0

|f(t+ i∆)|2 + |f(t− i∆)|2d∆

.
∑

i∈[1,...,2k]

1

i
·
∫ ε·i/2k

∆′=0

|f(t+ ∆′)|2d∆′ +
∑

i∈[1,...,2k]

1

i
·
∫ ε·i/2k

∆′=0

|f(t−∆′)|2d∆′

.
∑

i∈[1,...,2k]

1

i
·
∫ ε

∆′=−ε
|f(t+ ∆′)|2d∆′

. log k ·
∫ 1

x=−1

|f(x)|2dx.

From all discussion above, we have |f(1− ε)|2 . k log k
ε
· E
x∈[−1,1]

[|f(x)|2].

Next we finish the proof of Theorem 3.0.2.
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Proof of Theorem 3.0.2. We bound

κ = E
x∈[−1,1]

[sup
f∈F

|f(x)|2

‖f‖2
2

]

=
1

2

∫ 1

x=−1

sup
f∈F

|f(x)|2

‖f‖2
2

dx

.
∫ 1−ε

x=−1+ε

sup
f∈F

|f(x)|2

‖f‖2
2

dx+ ε · k4 log3 k from Theorem 3.0.1

.
∫ 1−ε

x=−1+ε

k log k

1− |x|
dx+ ε · k4 log3 k from Lemma 3.2.1

. k log k · log
1

ε
+ ε · k4 log3 k . k log2 k

by choosing ε = 1
k3 log k

.

We show the distribution DF.

Proof of Corollary 3.0.3. From Claim 2.1.1 in Chapter 2, there exists a constant c = Θ(1)

such that the distribution

DF(x) =

{
c

(1−|x|) log k
, for |x| ≤ 1− 1

k3 log2 k

c · k3 log k, for |x| > 1− 1
k3 log2 k

guarantees for any f(x) =
k∑
j=1

vje
2πifjx, |f(x)|2 · D(x)

DF(x)
= O(k log2 k) · ‖f‖2

D ∀x ∈ [−1, 1].

3.3 Polynomials and Fourier Sparse Signals

We prove that for any ε > 0 and degree k − 1 polynomial p(x), there exists a signal

f ∈ F such that |f(x) − p(x)| ≤ ε for all x ∈ [−1, 1]. Then we show that there exists

a degree k − 1 polynomial p(x) with |p(1)|2
‖p‖22

= k2, which complements the lower bound in

Theorem 3.0.1.

27



Theorem 3.3.1. For any degree k− 1 polynomial p(x) =
∑k−1

j=0 cjx
j and ε > 0, there always

exists τ > 0 and f(x) =
∑k−1

j=0 aje
2πi·(jτ)·x such that

∀x ∈ [−1, 1], |f(x)− p(x)| ≤ ε.

At the same time, we use the Legendre polynomials to show the lower bound.

Theorem 3.3.2. For any k, there exists a degree k − 1 polynomial p(x) such that

|p(1)|2

‖p‖2
2

= k2.

At the same time, for any degree k − 1 polynomial q and x ∈ [−1, 1], |q(x)|2
‖q‖22

≤ k2.

We first prove Theorem 3.3.1 in Section 3.3.1 using the Taylor expansion. Then we

review a few facts about the Legendre polynomials and prove Theorem 3.3.2 in Section 3.3.2.

3.3.1 A Reduction from Polynomials to Fourier Sparse Signals

We prove Theorem 3.3.1 in this section. We first consider the Taylor expansion of a

signal f(x) =
∑k−1

j=0 aje
2πi·(jτ)·x with a small frequency gap τ :

f(x) =
k−1∑
j=0

aj

∞∑
l=0

(2πi · (jτ) · x)l

l!

=
∞∑
l=0

(
(2πi · τ)l

l!
·
k−1∑
j=0

aj · jl
)
xl.

Given τ and a polynomial p(x) =
∑k−1

l=0 cl · xl, we consider how to match their coefficients

(2πi · τ)l

l!
·
k−1∑
j=0

aj · jl = cl for every l = 0, . . . , k − 1.
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This is equivalent to

k−1∑
j=0

jl · aj =
cl · l!

(2πi · τ)l
for every l = 0, . . . , k − 1.

Let A denote the k × k Vandermonde matrix
(
jl
)
l,j

. Since det(A) =
∏

i<j(j − i) 6= 0,

(a0, · · · , ak−1)> = A−1 ·
(

cl · l!
(2πi · τ)l

∣∣
l=0,··· ,k−1

)>
satisfying the above equations.

Then we use the property of the Vandermonde matrix A to bound aj ≤
max
l
{cl}·kk

2

τk−1 .

det(A) =
∏

i<j(j − i) ≥ 1. On the other hand, λmax(A) ≤ k · (k − 1)k−1 ≤ kk. Thus

λmin(A) ≥ det(A)
λmax(A)k−1 ≥ k−k(k−1).

From all discussion above, we have

‖(a0, · · · , ak−1)‖2 ≤ λmin(A)−1 ·
∥∥∥∥( cl · l!

(2πi · τ)l
∣∣
l=0,··· ,k−1

)∥∥∥∥
2

.

This indicates

max
i
{ai} ≤ kk(k−1)

kk ·max
l
{cl}

τ k−1
≤

max
l
{cl} · kk

2

τ k−1
.

Given k and the point-wise error ε, we set τ = ε·k−2k2

max
j
{cj} such that the tail in the Taylor

expansion is less than ε for x ∈ [−1, 1]:

∞∑
l=k

(
(2π · τ)l

l!
·
k−1∑
j=0

aj · jl
)
xl ≤

∞∑
l=k

(2π · τ)l

l!
· kmax

j
{aj} · (k − 1)l

≤
∞∑
l=k

k(2π · τ · k)l/l! ·
max
j
{cj} · kk

2

τ k−1

≤
∞∑
l=k

k(2π · k)l/l! ·max
j
{cj} · kk

2 · τ l−k+1 ≤ ε.
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3.3.2 Legendre Polynomials and a Lower Bound

We provide an brief introduction to Legendre polynomials (please see [Dun10] for a

complete introduction).

Definition 3.3.3. Let Ln(x) denote the Legendre polynomials of degree n, the solution to

Legendre’s differential equation:

d

dx

[
(1− x2)

d

dx
Ln(x)

]
+ n(n+ 1)Ln(x) = 0 (3.5)

We will the following two facts about the Legendre polynomials in this work.

Fact 3.3.4. Ln(1) = 1 for any n ≥ 0 in the Legendre polynomials.

Fact 3.3.5. The Legendre polynomials constitute an orthogonal basis with respect to the

inner product on interval [−1, 1]:∫ 1

−1

Lm(x)Ln(x)dx =
2

2n+ 1
δmn

where δmn denotes the Kronecker delta, i.e., it equals to 1 if m = n and to 0 otherwise.

For any polynomial P (x) of degree at most d with complex coefficients, there exists

a set of coefficients from the above properties such that

P (x) =
d∑
i=0

αi · Li(x), where αi ∈ C,∀i ∈ {0, 1, 2, · · · , d}.

Now we finish the proof of Theorem 3.3.2.

Proof of Theorem 3.3.2. We first consider the upper bound. First observe that it is

enough to prove |q(1)|2
‖q‖22

≤ k2 for any degree k − 1 polynomial q due to the definition ‖q‖2
2 =

E
x∼[−1,1]

[
|q(x)|2

]
. For any q, let x∗ = arg max

x∈[−1,1]

|q(x)|2. Then

|q(x∗)|2

E
x∼[−1,x∗]

[
|q(x)|2

] ≤ k2 and
|q(x∗)|2

E
x∼[x∗,1]

[
|q(x)|2

] ≤ k2

30



imply |q(x
∗)|2

‖q‖22
≤ k2.

For any degree k − 1 polynomial q, let q(x) =
∑k−1

j=0 αjLj(x) be its expression in the

Legendre polynomials. Thus q(1) =
∑k−1

j=0 αj and ‖q‖2
2 =

∑k−1
j=0 |αj|2/(2j + 1). From the

Cauchy-Schwartz inequality,

|q(1)|2 ≤

(
k−1∑
j=0

|αj|

)2

≤

(
k−1∑
j=0

|αj|2/(2j + 1)

)
·

(
k−1∑
j=0

2j + 1

)
= k2 · ‖q‖2

2.

On the other hand, there exists q such that the above inequality is tight.
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Chapter 4

Learning Continuous Sparse Fourier Transforms

We follow the notation in the last chapter. Let F be the bandlimit of the frequencies,

[−T, T ] be the interval of observations, and F =
{
f(t) =

∑k
j=1 vj · e2πifjt

∣∣vj ∈ C, |fj| ≤ F
}

be the family of signals. We consider the uniform distribution over [−T, T ] and define

‖f‖2 =
(

E
t∈[−T,T ]

[|f(t)|2]
)1/2

to denote the energy of a signal f .

In this chapter, we study the sample complexity of learning a signal f ∈ F under

noise. Our main result is an sample-efficient algorithm under bounded `2 noise.

Theorem 4.0.1. For any F > 0, T > 0, ε > 0, there exists an algorithm that given any

observation y(t) =
∑k

j=1 vje
2πifjt + g(t) with |fj| ≤ F for each j, takes m = O(k4 log3 k +

k3 log2 k · log FT
ε

) samples t1, . . . , tm and outputs f̃(t) =
∑k

j=1 ṽje
2πif̃jt satisfying

‖f − f̃‖2
2 . ‖g‖2

2 + ε‖f‖2
2 with probability 0.99.

We show our algorithm in Algorithm 1. To prove the correctness of Algorithm 1, we

first state the technical result in this chapter.

Lemma 4.0.2. Let C be a universal constant and Nf = ε

T ·kCk2 · Z ∩ [−F, F ] denote a net

of frequencies given F and T . For any signal f(t) =
∑k

j=1 vje
2πi·fjt, there exists a k-sparse

signal

f ′(t) =
k∑
j=1

v′je
2πif ′j(t) satisfying ‖f − f ′‖2 ≤ ε‖f‖2 with frequencies f ′1, . . . , f

′
k ∈ Nf .
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Algorithm 1 Recover k-sparse FT

1: procedure SparseFT(y, F, T, ε)
2: m← O(k4 log3 k + k3 log2 k log FT

ε
)

3: Sample t1, . . . , tm from DF where DF is the distribution provided in Corollary 3.0.3.
4: Set the corresponding weights (w1, . . . , wm) and S = (t1, . . . , tm)
5: Query y(t1), . . . , y(tm) from the observation y
6: Nf ← ε

T ·kCk2 · Z ∩ [−F, F ] for a constant C
7: for all possible k frequencies f ′1, . . . , f

′
k in Nf do

8: Find h(t) in span{e2πi·f ′1t, . . . , e2πi·f ′kt} minimizing ‖h− y‖S,w
9: Update f̃ = h if ‖h− y‖S,w ≤ ‖f̃ − y‖S,w
10: end for
11: Return f̃ .
12: end procedure

We prove Theorem 4.0.1 here then finish the proof of Lemma 4.0.2 in the rest of this

chapter.

Proof of Theorem 4.0.1. We use Lemma 4.0.2 to rewrite y = f + g = f ′ + g′ where f ′ has

frequencies in Nf and g′ = g + f − f ′ with ‖g′‖2 ≤ ‖g‖2 + ε‖f‖2. Our goal is to recover f ′.

We construct a δ-net with δ = 0.05 for{
h(t) =

2k∑
j=1

vje
2πi·ĥjt

∣∣∣∣‖h‖2 = 1, ĥj ∈ Nf

}
.

We first pick 2k frequencies ĥ1, . . . , ĥ2k in Nf then construct a δ-net (`2-norm) on the linear

subspace span{e2πiĥ1t, . . . , e2πiĥ2kt}. Hence the size of the δ-net is(
4FT ·kCk2

ε

2k

)
· (12/δ)2k ≤ (

4FT · kCk2

ε · δ
)3k.

Now we consider the number of random samples from DF to estimate signals in the δ-

net. Based on the condition number of DF in Theorem 3.0.2 and the Chernoff bound of

Corollary 2.2.2, a union bound over the δ-net indicates

m = O

(
k log2 k

δ2
· log |net|

)
= O

(
k log2 k

δ2
· (k3 log k + k log

FT

εδ
)

)
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random samples from DF would guarantee that for any signal h in the net, ‖h‖2
S,w = (1 ±

δ)‖h‖2
2. From the property of the net, we obtain

for any h(t) =
2k∑
j=1

vje
2πi·ĥjt with ĥj ∈ Nf , ‖h‖2

S,w = (1± 2δ)‖h‖2
2.

Finally, we bound ‖f − f̃‖2 as follows. The expectation of ‖f − f̃‖2 over the random

samples S = (t1, . . . , tm) is at most

‖f − f ′‖2 + ‖f ′ − f̃‖2 ≤ ‖f − f ′‖2 + 1.1‖f ′ − f̃‖S,w

≤ ‖f − f ′‖2 + 1.1(‖f ′ − y‖S,w + ‖y − f̃‖S,w)

≤ ‖f − f ′‖2 + 1.1(‖g′‖S,w + ‖y − f ′‖S,w)

≤ ε‖f‖2 + 2.2(‖g‖2 + ε‖f‖2).

From the Markov inequality, with probability 0.99, ‖f − f̃‖2 . ε‖f‖2 + ‖g‖2.

We sketch the proof of Lemma 4.0.2 here. Given f(t) =
∑k

j=1 vje
2πi·fjt where the

frequencies f1, · · · , fk could be arbitrarily close to each other, we first show how to shift one

frequency fj to f ′j while keep almost the same signal f(t) on [−T, T ].

Lemma 4.0.3. There is a universal constant C0 > 0 such that for any f(t) =
k∑
j=1

vje
2πifjt

and any frequency fk+1, there always exists

f ′(t) =
k−1∑
j=1

v′je
2πifjt + v′k+1e

2πifk+1t

with k coefficients v′1, v
′
2, · · · , v′k−1, v

′
k+1 satisfying

‖f ′ − f‖2 ≤ kC0k2 · (|fk − fk+1|T ) · ‖f‖2

We defer the proof of Lemma 4.0.3 to Section 4.2. Then we separate the frequencies

f1, · · · , fk in f(t) by at least η.
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Lemma 4.0.4. Given F and η, let Nf = ηZ ∩ [−F, F ]. For any k frequencies f1 < f2 <

· · · < fk in [−F, F ], there exists k frequencies f ′1, · · · , f ′k such that min
i∈[k−1]

{f ′i+1− f ′i} ≥ η and

for all i ∈ [k], |f ′i − fi| ≤ kη.

Proof. Given a frequences f , let π(f) denote the first element f ′ in Nf satisfying f ′ ≥ f .

We define the new frequencies f ′i as follows: f ′1 = π(f1) and f ′i = max{f ′i−1 + η, π(fi)} for

i ∈ {2, 3, · · · , k}.

We finish the proof of Lemma 4.0.2 using the above two lemmas.

Proof of Lemma 4.0.2. Let η = ε

5k2T ·kCk2 for C = C0 +1 where C0 is the universal constant

in Lemma 4.0.3. Using Lemma 4.0.4 on frequencies f1, · · · , fk of the signal f , we obtain k

new frequencies f ′1, · · · , f ′k such that their gap is at least η and maxi |fi− f ′i | ≤ kη. Next we

use the hybrid argument to find the signal f ′.

Let f (0)(t) = f(t). For i = 1, · · · , k, we apply Lemma 4.0.3 to shift the frequency fi

to f ′i and obtain

f (i)(t) =
k∑

j=i+1

v
(i)
j e

2πifjt +
i∑

j=1

v
(i)
j e

2πif ′jt s.t. ‖f (i)(t)− f (i−1)(t)‖2 ≤ kC0k2

(|fi − f ′i |T )‖f (i−1)‖2.

At the same time, we bound ‖f (0)(t)‖2 by(
1− kC0k2

(kηT )
)i
‖f (0)(t)‖2 ≤ ‖f (i)(t)‖2 ≤

(
1 + kC0k2

(kηT )
)i
‖f (0)(t)‖2,

which is between (1± 0.1) · ‖f (0)(t)‖2 for η ≤ 1
5k2T
· k−Ck2

with C = C0 + 1.
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At last, we set f ′(t) = f (k)(t) and bound the distance between f ′(t) and f(t) by

‖f (k)(t)− f (0)(t)‖2 ≤
k∑
i=1

‖f (i)(t)− f (i−1)(t)‖2 by triangle inequality

≤
k∑
i=1

kC0k2

(|fi − f ′i |T )‖f (i−1)(t)‖2 by Lemma 4.0.3

≤
k∑
i=1

2kC0k2

(kηT )‖f (i−1)(t)‖2 by max
i
|fi − f ′i | ≤ kη

≤2k · 2kC0k2

(kηT )‖f(t)‖2

≤ε‖f(t)‖2

where the last inequality follows from our choice of η = ε

5k2T ·kCk2 .

In the rest of this chapter, we review a few properties about the determinant of Gram

matrices in Section 4.1 and finish the proof of Lemma 4.0.3 in Section 4.2.

4.1 Gram Matrices of Complex Exponentials

We provide an brief introduction to Gram matrices (please see [Haz01] for a complete

introduction). We use 〈x, y〉 to denote the inner product between vector x and vector y.

Let ~v1, · · · , ~vn be n vectors in an inner product space and span{~v1, · · · , ~vn} be the lin-

ear subspace spanned by these n vectors with coefficients in C, i.e.,

{∑
i∈[n]

αi~vi|∀i ∈ [n], αi ∈ C

}
.

The Gram matrix Gram~v1,··· ,~vn of ~v1, · · · , ~vn is an n×n matrix defined as Gram~v1,··· ,~vn(i, j) =

〈~vi, ~vj〉 for any i ∈ [n] and j ∈ [n].

Fact 4.1.1. det(Gram~v1,··· ,~vn) is the square of the volume of the parallelotope formed by

~v1, · · · , ~vn.

Let Gram~v1,··· ,~vn−1 be the Gram matrix of ~v1, · · · , ~vn−1. Let ~v
‖
n be the projection of
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vn onto the linear subspace span{~v1, · · · , ~vn−1} and ~v⊥n = ~vn − ~v‖n be the part orthogonal to

span{~v1, · · · , ~vn−1}. We use ‖~v‖ to denote the length of ~v in the inner product space, which

is
√
〈~v,~v〉.

Claim 4.1.2.

‖~v⊥n ‖2 =
det(Gram~v1,··· ,~vn−1)

det(Gram~v1,··· ,~vn)
.

Proof.

det(Gram~v1,··· ,~vn) = volume2(~v1, · · · , ~vn) = volume2(~v1, · · · , ~vn−1)·‖~v⊥n ‖2 = det(Gram~v1,··· ,~vn−1)·‖~v⊥n ‖2.

We keep using the notation e2πifjt to denote a vector from [−T, T ] to C and consider

the inner product 〈e2πifit, e2πifjt〉T = 1
2T

∫ T
−T e

2πi(fi−fj)tdt for complex exponential functions.

We bound the determinant of the Gram matrices of e2πif1t, . . . , e2πifkt as follows, which will

extensively used in Section 4.2.

Lemma 4.1.3. There exists a universal constant α > 0 such that, for any T > 0 and real

numbers f1, · · · , fk, the k × k Gram matrix Gramf1,··· ,fk of e2πif1t, e2πif2t, · · · , e2πifkt, whose

(i, j)-entry is

Gramf1,··· ,fk(i, j) = 〈e2πifit, e2πifjt〉T ,

has a determinant between

k−αk
2
∏
i<j

min((|fi − fj|T )2, 1) ≤ det (Gramf1,··· ,fk) ≤ kαk
2
∏
i<j

min((|fi − fj|T )2, 1).

We prove this lemma in Section 4.1.1.
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4.1.1 The Determinant of Gram Matrices of Complex Exponentials

Because we could rescale T to 1 and fi to fi · T , we replace the interval [−T, T ] by

[−1, 1] and prove the following version: for real numbers f1, . . . , fk, let Gf1,...,fk be the matrix

whose (i, j)-entry is ∫ 1

−1

e2πi(fi−fj)tdt.

We plan to prove

det(Gf1,...,fk) = kO(k2)
∏
i<j

min(|fi − fj|2, 1). (4.1)

This indicates

det(Gramf1,··· ,fk) = 2−k ·det(Gf1,...,fk) ∈ [k−αk
2

, kαk
2

]·
∏
i<j

min((|fi−fj|T )2, 1) for some α > 0.

First, we note by the Cauchy-Binet formula that the determinant in (4.1) is equal to∫ 1

−1

∫ 1

−1

. . .

∫ 1

−1

∣∣det([e2πifitj ]i,j)
∣∣2 dt1dt2 . . . dtk. (4.2)

We next need to consider the integrand in the special case when
∑
|fi| ≤ 1/8.

Lemma 4.1.4. If fi ∈ R and tj ∈ R,
∑

i |fi|(maxi |ti|) ≤ 1/8 then

| det([e2πifitj ]i,j)| = Θ

(2π)(
k
2)
∏

i<j |ti − tj||fi − fj|
1!2! · · · k!

 .

Proof. Firstly, by adding a constant to all the tj we can make them non-negative. This

multiplies the determinant by a root of unity, and at most doubles
∑

i |fi|(maxi |ti|).

By continuity, it suffices to consider the ti to all be multiples of 1/N for some large

integer N . By multiplying all the tj by N and all fi by 1/N , we may assume that all of the

tj are non-negative integers with t1 ≤ t2 ≤ . . . ≤ tk.
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Let zi = exp(2πifi). Then our determinant is

det

([
z
tj
i

]
i,j

)
,

which is equal to the Vandermonde determinant times the Schur polynomial sλ(zi) where λ

is the partition λj = tj − (j − 1).

Therefore, this determinant equals∏
i<j

(zi − zj)sλ(z1, z2, . . . , zk).

The absolute value of ∏
i<j

(zi − zj)

is approximately
∏

i<j(2πi)(fi−fj), which has absolute value (2π)(
k
2)
∏

i<j |fi−fj|. We have

left to evaluate the size of the Schur polynomial.

By standard results, sλ is a polynomial in the zi with non-negative coefficients, and

all exponents at most maxj |tj| in each variable. Therefore, the monomials with non-zero

coefficients will all have real part at least 1/2 and absolute value 1 when evaluated at the zi.

Therefore,

|sλ(z1, . . . , zk)| = Θ(|sλ(1, 1, . . . , 1)|).

On the other hand, by the Weyl character formula

sλ(1, 1, . . . , 1) =
∏
i<j

tj − ti
j − i

=

∏
i<j |ti − tj|
1!2! . . . k!

.

This completes the proof.

Next we prove our Theorem when the f have small total variation.
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Lemma 4.1.5. If there exists a f0 so that
∑
|fi − f0| < 1/8, then

det(Gf1,...,fk) = Θ

(
23k(k−1)/2πk(k−1)

∏
i<j |fi − fj|2

(k!)3
∏k−1

n=0(2n)!

)
.

Proof. By translating the fi we can assume that f0 = 0.

By the above we have det(Gf1,...,fk) is

Θ(
(2π)k(k−1)

∏
i<j |fi − fj|2

(1!2! · · · k!)2
)

∫ 1

−1

. . .

∫ 1

−1

∏
i<j

|ti − tj|2dt1 . . . dtk.

We note that by the Cauchy-Binet formula the latter term is the determinant of the matrix

M with Mi,j =
∫ 1

−1
ti+jdt. This is the Graham matrix associated to the polynomials ti for

0 ≤ i ≤ k − 1. Applying Graham-Schmidt (without the renormalization step) to this set

yields the basis Pnαn where αn = 2n(n!)2

(2n)!
is the inverse of the leading term of Pn. This

polynomial has norm α2
n2/(2n+ 1). Therefore, the integral over the ti yields

k−1∏
n=0

2n+1(n!)2

(n+ 1)(2n)!
.

This completes the proof.

Next we extend this result to the case that all the f are within poly(k) of each other.

Claim 4.1.6. If there exists a f0 so that |fi − f0| = poly(k) for all i, then

det(Gf1,...,fk) = kO(k2)
∏
i<j

min(|fi − fj|2, 1).

Proof. We begin by proving the lower bound. We note that for 0 < x < 1,

det(Gf1,...,fk) ≥
∫ x

−x

∫ x

−x
. . .

∫ 1

−1

∣∣det([e2πifitj ]i,j)
∣∣2 dt1dt2 . . . dtk = xk det(Gf1/x,f2/x,...,fk/k).

Taking x = 1/poly(k), we may apply the above Lemma to compute the determinant on the

right hand side, yielding an appropriate lower bound.
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To prove the lower bound, we note that we can divide our fi into clusters, Ci, where for

any i, j in the same cluster |fi−fj| < 1/k and for i and j in different clusters |fi−fj| ≥ 1/k2.

We then note as a property of Graham matrices that

det(Gf1,...,fk) ≤
∏
Ci

det(G{fj∈Ci}) = kO(k2)
∏

i<j, in same cluster

|fi − fj|2 = kO(k2)
∏
i<j

|fi − fj|2.

This completes the proof.

Finally, we are ready to prove our Theorem.

Proof. Let I(t) be the indicator function of the interval [−1, 1].

From Lemma 6.6 in [CKPS16], there is a function h(t) so that for any function f that

is a linear combination of at most k complex exponentials that |h(t)f(t)|2 = Θ(|I(t)f(t)|2)

and so that ĥ is supported on an interval of length poly(k) < kC about the origin.

Note that we can divide our fi into clusters, C, so that for i and j in a cluster

|fi − fj| < kC+1 and for i and j in different clusters |fi − fj| > kC .

Let G̃f1,f2,...,f ′k
be the matrix with (i, j)-entry

∫
R |h(t)|2e(2πi)(fi−fj)tdt.

We claim that for any k′ ≤ k that

det(G̃f1,f2,...,f ′k
) = 2O(k′) det(Gf1,f2,...,f ′k

).

This is because both are Graham determinants, one for the set of functions I(t) exp((2πi)fjt)

and the other for h(t) exp((2πi)fjt). However since any linear combination of the former has

L2 norm a constant multiple of that the same linear combination of the latter, we have that

G̃f1,f2,...,f ′k
= Θ(Gf1,f2,...,f ′k

)

as self-adjoint matrices. This implies the appropriate bound.
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Therefore, we have that

det(Gf1,...,fk) = 2O(k) det(G̃f1,...,fk).

However, note that by the Fourier support of h that∫
R
|h(t)|2e(2πi)(fi−fj)tdt = 0

if |fi − fj| > kC , which happens if i and j are in different clusters. Therefore G̃ is block

diagonal and hence its determinant equals

det(G̃f1,...,fk) =
∏
C

det(G̃{fj∈Ci}) = 2O(k)
∏
C

det(G{fj∈Ci}).

However the Proposition above shows that∏
C

det(G{fj∈Ci}) = kO(k2)
∏
i<j

min(1, |fi − fj|2).

This completes the proof.

4.2 Shifting One Frequencies

We finish the proof of Lemma 4.0.3 in this section. We plan to shift fk to fk+1 and

prove that any vector in span{e2πif1t, · · · , e2πifk−1t, e2πifkt} is close to some vector in the linear

subspace span{e2πif1t, · · · , e2πifk−1t, e2πifk+1t}.

For convenience, we use ~u‖ to denote the projection of vector e2πifkt to the linear

subspace U = span{e2πif1t, · · · , e2πifk−1t} and ~w‖ denote the projection of vector e2πifk+1t to

this linear subspace U . Let ~u⊥ = e2πifkt − ~u‖ and ~w⊥ = e2πifk+1t − ~w‖ be their orthogonal

parts to U separately.

From the definition e2πifkt = ~u‖ + ~u⊥ and ~u‖ ∈ U = span{e2πif1t, · · · , e2πifk−1t}, we

rewrite the linear combination

f(t) =
k∑
j=1

vje
2πifjt =

k−1∑
j=1

αje
2πifjt + vk · ~u⊥
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for some scalars α1, · · · , αk−1.

We substitute ~u⊥ by ~w⊥ in the above linear combination and find a set of new coeffi-

cients. Let ~w⊥ = ~w1 + ~w2 where ~w1 = 〈~u⊥, ~w⊥〉
‖~u⊥‖22

~u⊥ is the projection of ~w⊥ to ~u⊥. Therefore ~w2

is the orthogonal part of the vector e2πifk+1t to V = span{e2πif1t, · · · , e2πifk−1t, e2πifkt}. We

use δ = ‖~w2‖2
‖~w⊥‖2 for convenience.

Notice that the min
β

‖~u⊥−β·~w⊥‖2
‖~u⊥‖2 = δ and β∗ = 〈~u⊥, ~w⊥〉

‖~w⊥‖22
is the optimal choice. Therefore

we set

f ′(t) =
k−1∑
j=1

βje
2πifjt + vk · β∗ · ~w⊥ ∈ span{e2πif1t, · · · , e2πifk−1t, e2πifk+1t}

where the coefficients β1, · · · , βk−1 guarantee that the projection of f ′ onto U is as same as

the projection of f onto U . From the choice of β∗ and the definition of f ′,

‖f(t)− f ′(t)‖2
2 = δ2 · |vk|2 · ‖~u⊥‖2

2 ≤ δ2 · ‖f(t)‖2
2.

Eventually, we show an upper bound for δ2 from Claim 4.1.2.

δ2 =
‖~w2‖2

2

‖~w⊥‖2
2

=
det(Grame2πif1t,··· ,e2πifk−1t,e2πifkt,e2πifk+1t)

det(GramV )
/

det(Grame2πif1t,··· ,e2πifk−1t,e2πifk+1t)

det(GramU)
by Claim 4.1.2

≤ k4αk2 ·

k+1∏
i=1

k+1∏
j=1
j 6=i

min(|fi − fj|T, 1)

k∏
i=1

k∏
j=1
j 6=i

min(|fi − fj|T, 1)

·

k−1∏
i=1

k−1∏
j=1
j 6=i

min(|fi − fj|T, 1)

k−1∏
i=1

k−1∏
j=1
j 6=i

min(|fi − fj|T, 1) ·
k−1∏
i=1

min(|fi − fk+1|2T 2, 1)

by Lemma 4.1.3

= k4αk2|fk − fk+1|2T 2
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Chapter 5

Fourier-clustered Signal Recovery

In this chapter, we reduce the recovery of signals f(t), whose frequency representations

f̂ are restricted to a small band [−∆,∆], to the interpolation of low-degree polynomials. We

first show that any such f(t) could be approximated by low degree polynomials. In this

section, we set [−T, T ] to be the interval of observations and use 〈f, g〉 = 1
2T

∫ T
−T f(t)g(t)dt

denote the inner product of two signals f and g such that ‖f‖2
2 = 〈f, f〉.

Theorem 5.0.1. For any ∆ > 0 and any ε > 0, let f(t) =
∑

j∈[k] vje
2πifjt where |fj| ≤ ∆

for each j ∈ [k]. There exists a polynomial P (t) of degree at most

d = O(T∆ + k3 log k + k log 1/ε)

such that

‖P (t)− f(t)‖2
2 ≤ ε‖f‖2

2.

In Chapter 3, Theorem 3.3.1 shows that any degree k − 1 polynomial P (t) could

be approximated by a signal with k-sparse Fourier transform. Theorem 5.0.1 provides an

approximation on the reverse direction. Notice that the dependency ∆T is necessary for a

signal like f(t) = sin(2π ·∆t).

Next we provide an efficient algorithm that recovers polynomials under noise with an

optimal sample complexity (up to a constant factor).

Theorem 5.0.2. For any degree d polynomial P (t) and an arbitrary noise function g(t),

there exists an algorithm that takes O(d) samples from x(t) = P (t) + g(t) over [T, T ] and
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reports a degree d polynomial Q(t) in time O(d3) such that, with probability at least 99/100,

‖P (t)−Q(t)‖2
2 . ‖g(t)‖2

2.

A direct corollary of the above two theorems indicates an efficient algorithm to recover

signals f(t) whose frequencies are restricted to a small band [−∆,∆].

Corollary 5.0.3. For any k > 0, T > 0,∆ > 0, and ε > 0, there exist d = O(T∆+k3 log k+

k log 1/ε) and an efficient algorithm that takes O(d) samples from y(t) = f(x) + g(t), where

f(t) =
∑

j∈[k] vje
2πifjt with |fj| ≤ ∆ and g is an arbitrary noise function, and outputs a

degree d polynomial Q(t) in time O(d3) such that, with probability at least 99/100,

‖f −Q‖2
2 . ‖g‖2

2 + ε‖f‖2
2.

In the rest of this chapter, we prove Theorem 5.0.1 in Section 5.1 and Theorem 5.0.2

in Section 5.2.

5.1 Band-limit Signals to Polynomials

We first prove a special case of Theorem 5.0.2 for k-Fourier-sparse signal with a

frequency gap bounded away from zero. To prove this, we bound the coefficients v1, · · · , vk
in f(t) =

k∑
j=1

vje
2πifjt by its energy ‖f‖2

2.

Lemma 5.1.1. There exists a universal constant c > 0 such that for any f(t) =
k∑
j=1

vje
2πifjt

with frequency gap η = min
i 6=j
|fi − fj|, we have ‖f(t)‖2

2 ≥ k−ck
2 ·min

(
(ηT )2k, 1

)
·
∑k

j=1 |vj|2.

Proof. Let ~vi denote the vector e2πifit and V = {~v1, · · · , ~vk}. Notice that ‖~vi‖2
2 = 〈~vi, ~vi〉 = 1.

For each ~vi, we define ~v
‖
i to be the projection of ~vi into the linear subspace span{V \ ~vi} =

span{~v1, · · · , ~vi−1, ~vi+1, · · · , ~vk} and ~v⊥i = ~vi−~v‖i which is orthogonal to span{V \ ~vi} by the

definition.
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Therefore from the orthogonality,

‖f(t)‖2
2 ≥ max

j∈[k]
{|vj|2 · ‖~v⊥j ‖2

2} ≥
1

k

k∑
j=1

|vj|2 · ‖~v⊥j ‖2
2.

It is enough to estimate ‖~v⊥j ‖2
2 from Claim 4.1.2:

‖~v⊥j ‖2
2 =

det(Gram(V ))

det(Gram(V \ ~vi))
≥ k−2αk2

∏
j 6=i

min ((fj − fi)T, 1)2 ≥ k−2αk2

(ηT )2k−2,

where we use Lemma 4.1.3 to lower bound it in the last step.

We show that for signals with a frequency gap, its Taylor expansion is a good ap-

proximation.

Lemma 5.1.2 (Existence of low degree polynomial). Let f(t) =
k∑
j=1

vje
2πifjt, where ∀j ∈

[k], |fj| ≤ ∆ and min
i 6=j
|fi − fj| ≥ η. There exists a polynomial Q(t) of degree

d = O
(
T∆ + k log 1/(ηT ) + k2 log k + k log(1/ε)

)
such that,

‖Q(t)− f(t)‖2
2 ≤ ε‖f(t)‖2

2. (5.1)

Proof. For each frequency fj, let Qj(t) =
d−1∑
k=0

(2πifjt)
k

k!
be the first d terms in the Taylor

Expansion of e2πifjt. For any t ∈ [−T, T ], we know the difference between Qj(t) and e2πifjt

is at most

|Qj(t)− e2πifjt| ≤ |(2πifjT )d

d!
| ≤ (

2πT∆ · e
d

)d.

We define

Q(t) =
k∑
j=1

vjQj(t)
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and bound the distance between Q and f from the above estimation:

‖Q(t)− f(t)‖2
2 =

1

2T

∫ T

−T
|Q(t)− f(t)|2dt

=
1

2T

∫ T

−T
|

k∑
j=1

vj(Qj(t)− e2πifjt)|2dt

≤2k
k∑
j=1

1

T

∫ T

0

|vj|2 · |Qj(t)− e2πifjt|2dt by triangle inequality

≤k
k∑
j=1

|vj|2 · (
2πT∆ · e

d
)2d by Taylor expansion

On the other hand, from Lemma 5.1.1, we know

‖f(t)‖2
2 ≥ (ηT )2k · k−ck2

∑
j

|vj|2.

Because d = 10 · πe(T∆ + k log 1/(ηT ) + k2 log k + k log(1/ε)) is large enough, we have

k(2πT∆·e
d

)2d ≤ ε(ηT )2k ·k−ck2
, which indicates that ‖Q(t)−f(t)‖2

2 ≤ ε‖f‖2
2 from all discussion

above.

Proof of Theorem 5.0.1. We first use Lemma 4.0.2 on f to obtain f ′ with a frequency

gap η ≥ ε

T ·kCk2 satisfying ‖f − f ′‖2 ≤ ε‖f‖2. Then we use Lemma 5.1.2 on f ′ to obtain

a degree d = O (T∆ + k log 1/(ηT ) + k2 log k + k log(1/ε)) = O (T∆ + k3 log k + k log(1/ε))

polynomial Q satisfying ‖Q− f ′‖2 ≤ ε‖f ′‖2. Hence

‖Q− f‖2 ≤ ‖f − f ′‖2 + ‖f ′ −Q‖2 ≤ 3ε‖f‖2.
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5.2 Robust Polynomial Interpolation

We show how to learn a degree-d polynomial P with n = O(d) samples and prove

Theorem 5.0.2 in this section. By define f̃(t) = f(t/T ), we rescale the interval from [−T, T ]

to [−1, 1] and use ‖f‖2
2 = 1

2

∫ 1

−1
|f(t)|2dt.

Lemma 5.2.1. Let d ∈ N and ε ∈ R+, there exists an efficient algorithm to compute a

partition of [−1, 1] to n = O(d/ε) intervals I1, · · · , In such that for any degree d polynomial

P (t) : R→ C and any n points t1, · · · , tn in the intervals I1, · · · , In respectively, the function

Q(t) defined by

Q(t) = P (tj) if t ∈ Ij

approximates P by

‖Q− P‖2 ≤ ε‖P‖2. (5.2)

One direct corollary from the above lemma is that observing n = O(d/ε) points

each from I1, · · · , In provides a good approximation for all degree d polynomials. Recall

that given a sequence S = (t1, · · · , tm) and corresponding weights (w1, · · · , wm), ‖f‖S,w =

(
∑m

i=1wi · |f(ti)|2)1/2.

Corollary 5.2.2. Let I1, · · · , In be the intervals in the above lemma and wj = |Ij|/2 for

each j ∈ [n]. For any t1, · · · , tn in the intervals I1, · · · , In respectively, let S = (t1, · · · , tn)

with weights (w1, · · · , wn). Then for any degree d polynomial P , we have

‖P‖S,w ∈ [(1− ε)‖P‖2, (1 + ε)‖P‖2] .

We first prove one property of low degree polynomials from the Legendre basis.

Lemma 5.2.3. For any degree d polynomial P (t) : R→ C with derivative P ′(t), we have,∫ 1

−1

(1− t2)|P ′(t)|2dt ≤ 2d2

∫ 1

−1

|P (t)|2dt. (5.3)
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Proof. Given a degree d polynomial P (x), we rewrite P (x) as a linear combination of the

Legendre polynomials:

P (x) =
d∑
i=0

αiLi(x).

We use Fi(x) = (1− x2)L′i(x) for convenience. From the definition of the Legendre polyno-

mials in the Equation (3.5), F ′i (x) = −i(i+ 1) · Li(x) and F ′′i (x) = −i(i+ 1) · L′i(x).

Hence we have∫ −1

1

(1− x2)|P ′(x)|2dx =

∫ −1

1

(1− x2)P ′(x) · P ′(x)dx

=

∫ −1

1

∑
i∈[d]

αiFi(x)

 ·
∑
i∈[d]

αi
−F ′′i (x)

i(i+ 1)

 dx

=

∑
i∈[d]

αiFi(x)

 ·
∑
i∈[d]

αi
−F ′i (x)

i(i+ 1)

∣∣∣∣1
−1

+

∫ −1

1

∑
i∈[d]

αiF
′
i (x)

 ·
∑
i∈[d]

αi
F ′i (x)

i(i+ 1)

 dx

=

∫ −1

1

∑
i∈[d]

αi · i(i+ 1) · Li(x)

 ·
∑
i∈[d]

αi
i(i+ 1) · Li(x)

i(i+ 1)

 dx

=
∑
i∈[d]

|αi|2i(i+ 1)‖Li‖2
2

≤ d(d+ 1)‖P‖2
2

Proof of Lemma 5.2.1. We set m = 10d/ε and show a partition of [−1, 1] into n ≤ 20m

intervals. We define g(t) =
√

1−t2
m

and y0 = 0. Then we choose yi = yi−1 + g(yi−1) for i ∈ N+.

Let l be the first index of y such that yl ≥ 1− 9
m2 . We show l . m.
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Let jk be the first index in the sequence such that yjk ≥ 1− 2−k. Notice that

j2 ≤
3/4√

1−(3/4)2

m

≤ 1.5m

and

yi − yi−1 = g(yi−1) =

√
1− y2

i−1

m
≥
√

1− yi−1

m
.

Then for all k > 2, we have

jk − jk−1 ≤
2−k√

1−y(jk−1)

m

≤ 2−k/2m.

Therefore jk ≤
(
1.5 + (2−3/2 + · · · 2−k/2)

)
m and l ≤ 10m.

Because yl−1 ≤ 1 − 9
m2 , for any j ∈ [l] and any t ∈ [yi−1, yi], we have the following

property:
1− t2

m2
≥ 1

2
·

(1− y2
i−1)

m2
= (yi − yi−1)2/2. (5.4)

Now we set n and partition [−1, 1] into I1, · · · , In as follows:

1. n = 2(l + 1).

2. For j ∈ [l], I2j−1 = [yj−1, yj] and I2j = [−yj,−yj−1].

3. I2l+1 = [yl, 1] and I2l+2 = [−1,−yl].

For any t1, · · · , tn where tj ∈ Ij for each j ∈ [n], we rewrite the LHS of (5.2) as follows:

n−2∑
j=1

∫
Ij

|P (tj)− P (t)|2 dt︸ ︷︷ ︸
A

+

∫
In−1

|P (tn−1)− P (t)|2 dt+

∫
In

|P (tn)− P (t)|2 dt︸ ︷︷ ︸
B

. (5.5)

For A in Equation (5.5), from the Cauchy-Schwarz inequality, we have

n−2∑
j=1

∫
Ij

|P (tj)− P (t)|2 dt =
n−2∑
j=1

∫
Ij

∣∣∣∣∣
∫ t

tj

P ′(y)dy

∣∣∣∣∣
2

dt ≤
n−2∑
j=1

∫
Ij

|t− tj|
∫ t

tj

|P ′(y)|2dydt.
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Algorithm 2 RobustPolynomialLearningFixedInterval

1: procedure RobustPolynomialLearning(y, d)
2: ε← 1/20.
3: Let I1, · · · , In be the intervals in Lemma 5.2.1 of parameters d and ε.
4: Randomly choose tj ∈ Ij for every j ∈ [n]

5: Define S = {t1, · · · , tn} with weight w1 = |I1|
2
, · · · , wn = |In|

2
.

6: Q(t) = arg min
deg(Q)=d

{‖Q− y‖S,w}.

7: Return Q(t).
8: end procedure

Then we swap dt with dy and use Equation (5.4):

n−2∑
j=1

∫
Ij

|P ′(y)|2
∫
t/∈(tj ,y)

|t− tj|dtdy ≤
n−2∑
j=1

∫
Ij

|P ′(t)|2 · |Ij|2dt ≤
n−2∑
j=1

∫
Ij

|P ′(t)|2 2(1− t2)

m2
dt.

We use Lemma 5.2.3 to simplify it by

n−2∑
j=1

∫
Ij

|P (tj)− P (t)|2 dt ≤
∫ 1

−1

|P ′(t)|2 2(1− t2)

m2
dt ≤ 2d2

m2

∫ 1

−1

|P (t)|2dt.

For B in Equation (5.5), notice that |In−1| = |In| = 1−yl ≤ 9m−2 and for j ∈ {n−1, n}

|P (t)− P (tj)|2 ≤ 4 max
t∈[−1,1]

|P (t)|2 ≤ 4(d+ 1)2‖P‖2
2

from the properties of degree-d polynomials, i.e., Theorem 3.3.2. Therefore B in Equation

(5.5) is upper bounded by 2 · 4(d+ 1)2(9m−2)‖P (t)‖2
2.

From all discussion above, ‖Q(t)− P (t)‖2
2 ≤ 99d2

m2 ≤ ε2.

Now we use the above lemma to provide a faster learning algorithm for polynomials on

interval [−1, 1] with noise instead of using the ε-nets argument. We show it in Algorithm 2.

Lemma 5.2.4. For any degree d polynomial P (t) and an arbitrary function g(t), Algo-

rithm RobustPolynomialLearningFixedInterval takes O(d) samples from y(t) =
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P (t) + g(t) over [−1, 1] and reports a degree d polynomial Q(t) in time O(d3) such that,

with probability at least 99/100,

‖P (t)−Q(t)‖2
2 . ‖g(t)‖2

2.

Proof. Notice that n = O(d/ε) = O(d) and find a degree d polynomial Q(t) minimizing

‖y(t) − Q(t)‖S,w is equivalent to calculate the pseudoinverse, which takes O(d3) time. It is

enough to bound the distance between P and Q:

‖P −Q‖2

≤1.09‖P −Q‖S,w by Corollary 5.2.2

=1.09‖y − g −Q‖S,w by y = P + g

≤1.09‖g‖S,w + 1.09‖y −Q‖S,w by triangle inequality

≤1.09‖g‖S,w + 1.09‖y − P‖S,w Q = arg min
degree-d R

‖R− y‖S,w

≤2.2‖g‖S,w

Because E
S

[‖g‖2
S,w] = ‖g‖2

2, we know that ‖P−Q‖2 . ‖g‖2 with probability ≥ .99 by Markov’s

inequality.
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Chapter 6

Query and Active Learning of Linear Families

In Chapter 5, we show that O(d) samples could robustly interpolate degree d polyno-

mials under noisy observations. In this chapter, we generalize this result to any linear family

under any distribution over its support and improve the guarantee of the output.

Let F be a linear family of dimension d and D be a distribution over the domain of

F. Recall that the worst-case condition number and the average condition number are

KF = sup
x∈supp(D)

sup
f∈F

|f(x)|2

‖f‖2
2

and κF = E
x∼D

[
sup
f∈F

|f(x)|2

‖f‖2
2

]
.

We first show that for any linear family F and any distribution D over the support of F, the

average condition number κF = d. For convenience, let 〈f, g〉 = E
x∼D

[f(x)g(x)] denote the

inner product under D and ‖f‖D = ( E
x∼D

[|f(x)|2])1/2 in this chapter.

Lemma 6.0.1. For any linear family F of dimension d,

E
x∼D

sup
h∈F:‖h‖D=1

|h(x)|2 = d

such that DF(x) = D(x) · sup
h∈F:‖h‖D=1

|h(x)|2/d has a condition number KDF
= d. Moreover,

there exists an efficient algorithm to sample x from DF and compute its weight D(x)
DF(x)

.

Based on this condition number d, we use the matrix Chernoff bound to show that

O(d log d) i.i.d. samples from DF suffice to learn F.

However, this approach needs Ω(d log d) samples due to a coupon-collector argument,

because it only samples points from one distribution DF. Next we consider how to improve
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it to O(d) using linear size spectral sparsification [BSS12, LS15]. We need our sample

points to both be sampled non-independently (to avoid coupon-collector issues) but still

fairly randomly (so adversarial noise cannot predict it). A natural approach is to design a

sequence of distributions D1, · · · , Dm (m is not necessarily fixed) then sample xi ∼ Di and

assign a weight wi for xi, where Di+1 could depend on the previous points x1, · · · , xi.

Ideally each KDi would be O(d), but we do not know how to produce such distribu-

tions while still getting linear sample spectral sparsification to guarantee ‖h‖S,w ≈ ‖h‖D for

every h ∈ F. Therefore we use a coefficient αi to control every KDi , and set wi = αi · D(xi)
Di(xi)

instead of D(xi)
mDi(xi)

.

Definition 6.0.2. Given a linear family F and underlying distribution D, let P be a random

sampling procedure that terminates in m iterations (m is not necessarily fixed) and provides

a coefficient αi and a distribution Di to sample xi ∼ Di in every iteration i ∈ [m].

We say P is an ε-well-balanced sampling procedure if it satisfies the following two

properties:

1. Let the weight wi = αi · D(xi)
Di(xi)

. With probability 1− 10−3,

m∑
i=1

wi · |h(xi)|2 ∈
[

3

4
,
5

4

]
· ‖h‖2

D ∀h ∈ F.

2. For a universal constant C, the coefficients always have
∑

i αi ≤
5
4

and αi ·KDi ≤ ε/C.

Intuitively, the first property says that the sampling procedure preserves the signal,

and the second property says that the recovery algorithm does not blow up the noise on

average. For such sampling procedures we consider the weighted ERM f̃ ∈ F minimizing∑
iwi|f̃(xi)− yi|2. We prove that f̃ satisfies the desired guarantee:
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Theorem 6.0.3. Given a linear family F, joint distribution (D, Y ), and ε > 0, let P be an

ε-well-balanced sampling procedure for F and D, and let f = arg min
h∈F

E
(x,y)∼(D,Y )

[|y − h(x)|2]

be the true risk minimizer. Then the weighted ERM f̃ resulting from P satisfies

‖f − f̃‖2
D ≤ ε · E

(x,y)∼(D,Y )
[|y − f(x)|2]

with 99% probability.

Well-balanced sampling procedures. We observe that two standard sampling proce-

dures are well-balanced, so they yield agnostic recovery guarantees by Theorem 6.0.3. The

simplest approach is to set each Di to a fixed distribution D′ and αi = 1/m for all i. For

m = O(KD′ log d+KD′/ε), this gives an ε-well-balanced sampling procedure. These results

appear in Section 6.3.

We get a stronger result of m = O(d/ε) using the randomized BSS algorithm by Lee

and Sun [LS15]. The [LS15] algorithm iteratively chooses points xi from distributions Di.

A term considered in their analysis—the largest increment of eigenvalues—is equivalent to

our KDi . By looking at the potential functions in their proof, we can extract coefficients

αi bounding αiKDi in our setting. This lets us show that the algorithm is a well-balanced

sampling procedure; we do so in Section 6.4.

Next we generalize the above result to active learning, where the algorithm receives

a set of unlabelled points xi from the unknown distribution D and chooses a subset of these

points to receive their labels.

Theorem 6.0.4. Consider any dimension d linear space F of functions from a domain G

to C. Let (D, Y ) be a joint distribution over G× C and f = arg min
h∈F

E
(x,y)∼(D,Y )

[|y − h(x)|2].

Let K = sup
h∈F:h6=0

supx∈G |h(x)|2
‖h‖2D

. For any ε > 0, there exists an efficient algorithm that
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takes O(K log d+K
ε

) unlabeled samples from D and requests O(d
ε
) labels to output f̃ satisfying

E
x∼D

[|f̃(x)− f(x)|2] ≤ ε · E
(x,y)∼(D,Y )

[|y − f(x)|2] with probability ≥ 0.99.

Finally we show two lower bounds on the sample complexity and query complexity

that match our upper bounds.

Lower bound Upper bound

Query complexity Theorem 6.6.1 Ω(d
ε
) Theorem 6.4.2 O(d

ε
)

Sample complexity Theorem 6.6.4 Ω(K log d+ K
ε

) Theorem 6.3.3 O(K log d+ K
ε

)

Table 6.1: Lower bounds and upper bounds in different models

Organization. We organize the rest of this chapter as follows. In Section 6.1, we show the

distribution DF to prove Lemma 6.1.1. Then we discuss the ERM of well-balanced sampling

procedures and prove Theorem 6.0.3 in Section 6.2. In Section 6.3 we analyze the number

of samples required for sampling from an arbitrary distribution D′ to be well-balanced. In

Section 6.4 we show that [LS15] yields a well-balanced linear-sample procedure in the query

setting or in fixed-design active learning. Next we show the active learning algorithm of

Theorem 6.0.4 in Section 6.5. Finally, we prove the lower bounds on the query complexity

and sample complexity in Table 6.1 in Section 6.6.

6.1 Condition Number of Linear families

We use the linearity of F to prove κ = d and describe the distribution DF. Let

{v1, . . . , vd} be any orthonormal basis of F, where inner products are taken under the distri-

bution D.

Lemma 6.1.1. For any linear family F of dimension d and any distribution D,

E
x∼D

sup
h∈F:‖h‖D=1

|h(x)|2 = d
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Algorithm 3 SampleDF

1: procedure GeneratingDF(F = span{v1, . . . , vd}, D)
2: Sample j ∈ [d] uniformly.
3: Sample x from the distribution Wj(x) = |vj(x)|2.
4: Set the weight of x to be d∑d

i=1 |vi(x)|2 .

5: end procedure

such that DF(x) = D(x) · sup
h∈F:‖h‖D=1

|h(x)|2/d has a condition number KDF
= d. Moreover,

there exists an efficient algorithm to sample x from DF and compute its weight D(x)
DF(x)

.

Proof. Given an orthonormal basis v1, . . . , vd of F, for any h ∈ F with ‖h‖D = 1, there exists

c1, . . . , cd such that h(x) = ci·vi(x). Then for any x in the domain, from the Cauchy-Schwartz

inequality,

sup
h

|h(x)|2

‖h‖2
D

= sup
c1,...,cd

|
∑

i∈[d] civi(x)|2∑
i∈[d] |ci|2

=
(
∑

i∈[d] |ci|2) · (
∑

i∈[d] |vi(x)|2)∑
i∈[d] |ci|2

=
∑
i∈[d]

|vi(x)|2.

This is tight because there always exist c1 = v1(x), c2 = v2(x), . . . , cd = vd(x) such that

|
∑
i∈[d]

civi(x)|2 = (
∑
i∈[d]

|ci|2) · (
∑
i∈[d]

|vi(x)|2). Hence

E
x∼D

sup
h∈F:h6=0

|h(x)|2

‖h‖2
D

= E
x∼D

[∑
i∈[d]

|vi(x)|2
]

= d.

By Claim 2.1.1, this indicates KDF
= d. At the same time, this calculation indicates

DF(x) =

D(x) · sup
‖h‖D=1

|h(x)|2

d
=
D(x) ·

∑
i∈[d] |vi(x)|2

d
.

We present our sampling procedure in Algorithm 3.
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6.2 Recovery Guarantee for Well-Balanced Samples

In this section, we show for well-balanced sampling procedures (per Definition 6.0.2)

that an appropriately weighted ERM approximates the true risk minimizer, and hence the

true signal.

Definition 6.2.1. Given a random sampling procedure P , and a joint distribution (D, Y ),

we define the weighted ERM resulting from P to be the result

f̃ = arg min
h∈F

{
m∑
i=1

wi · |h(xi)− yi|2
}

after we use P to generate random points xi ∼ Di with wi = αi · D(xi)
Di(xi)

for each i, and draw

yi ∼ (Y | xi) for each point xi.

For generality, we first consider points and labels from a joint distribution (D, Y ) and

use f = arg min
h∈F

E
(x,y)∼(D,Y )

[|y − h(x)|2] to denote the truth.

Theorem 6.0.3. Given a linear family F, joint distribution (D, Y ), and ε > 0, let P be an

ε-well-balanced sampling procedure for F and D, and let f = arg min
h∈F

E
(x,y)∼(D,Y )

[|y − h(x)|2]

be the true risk minimizer. Then the weighted ERM f̃ resulting from P satisfies

‖f − f̃‖2
D ≤ ε · E

(x,y)∼(D,Y )
[|y − f(x)|2]

with 99% probability.

Next, we provide a corollary for specific kinds of noise. In the first case, we con-

sider noise functions representing independently mean-zero noise at each position x such as

i.i.d. Gaussian noise. Second, we consider arbitrary noise functions on the domain.

Corollary 6.2.2. Given a linear family F and distribution D, let y(x) = f(x) + g(x) for

f ∈ F and g a randomized function. Let P be an ε-well-balanced sampling procedure for F

and D. With 99% probability, the weighted ERM f̃ resulting from P satisfies
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1. ‖f̃ − f‖2
D ≤ ε ·E

g
[‖g‖2

D], when g(x) is a random function from G to C where each g(x)

is an independent random variable with E
g
[g(x)] = 0.

2. ‖f̃ − f‖D ≤ (1 + ε) · ‖g‖D for any other noise function g.

In the rest of this section, we prove Theorem 6.0.3 in Section 6.2.1 and Corollary 6.2.2

in Section 6.2.2.

6.2.1 Proof of Theorem 6.0.3

We introduce a few more notation in this proof. Given F and the measurement D,

let {v1, . . . , vd} be a fixed orthonormal basis of F, where inner products are taken under

the distribution D, i.e., E
x∼D

[vi(x) · vj(x)] = 1i=j for any i, j ∈ [d]. For any function h ∈ F,

let α(h) denote the coefficients (α(h)1, . . . , α(h)d) under the basis (v1, . . . , vd) such that

h =
∑d

i=1 α(h)i · vi and ‖α(h)‖2 = ‖h‖D.

We characterize the first property in Definition 6.0.2 of well-balanced sampling pro-

cedures as bounding the eigenvalues of A∗ · A, where A is the m × d matrix defined as

A(i, j) =
√
wi · vj(xi).

Lemma 6.2.3. For any ε > 0, given S = (x1, . . . , xm) and their weights (w1, . . . , wm), let

A be the m× d matrix defined as A(i, j) =
√
wi · vj(xi). Then

‖h‖2
S,w ∈ [1± ε] · ‖h‖2

D for every h ∈ F

if and only if the eigenvalues of A∗A are in [1− ε, 1 + ε].

Proof. Notice that

A · α(h) =
(√

w1 · h(x1), . . . ,
√
wm · h(xm)

)
. (6.1)

Because

‖h‖2
S,w =

m∑
i=1

wi|h(xi)|2 = ‖A·α(h)‖2
2 = α(h)∗·(A∗·A)·α(h) ∈ [λmin(A∗·A), λmax(A∗·A)]·‖h‖2

D
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and h is over the linear family F, these two properties are equivalent.

Next we consider the calculation of the weighted ERM f̃ . Given the weights (w1, · · · , wm)

on (x1, . . . , xm) and labels (y1, . . . , ym), let ~yw denote the vector of weighted labels (
√
w1 ·

y1, . . . ,
√
wm ·ym). From (6.1), the empirical distance ‖h−(y1, . . . , ym)‖2

S,w equals ‖A ·α(h)−

~yw‖2
2 for any h ∈ F. The function f̃ minimizing ‖h − (y1, . . . , ym)‖S,w = ‖A · α(h) − ~yw‖2

overall all h ∈ F is the pseudoinverse of A on ~yw, i.e.,

α(f̃) = (A∗ · A)−1 · A∗ · ~yw and f̃ =
d∑
i=1

α(f̃)i · vi.

Finally, we consider the distance between f = arg min
h∈F

{
E

(x,y)∼(D,Y )
[|h(x)− y|2]

}
and f̃ .

For convenience, let ~fw =
(√

w1 ·f(x1), . . . ,
√
wm ·f(wm)

)
. Because f ∈ F, (A∗ ·A)−1 ·A∗ · ~fw =

α(f). This implies

‖f̃ − f‖2
D = ‖α(f̃)− α(f)‖2

2 = ‖(A∗ · A)−1 · A∗ · (~yw − ~fw)‖2
2.

We assume λ
(
(A∗ · A)−1

)
is bounded and consider ‖A∗ · (~yw − ~fw)‖2

2.

Lemma 6.2.4. Let P be an random sampling procedure terminating in m iterations (m is

not necessarily fixed) that in every iteration i, it provides a coefficient αi and a distribution

Di to sample xi ∼ Di. Let the weight wi = αi · D(xi)
Di(xi)

and A ∈ Cm×d denote the matrix

A(i, j) =
√
wi · vj(xi). Then for f = arg min

h∈F
E

(x,y)∼(D,Y )
[|y − h(x)|2],

E
P

[
‖A∗(~yw − ~fS,w)‖2

2

]
≤ sup

P

{ m∑
i=1

αi
}
·max

j

{
αj ·KDj

}
E

(x,y)∼(D,Y )
[|y − f(x)|2],

where KDi is the condition number for samples from Di: KDi = sup
x

{
D(x)
Di(x)

· sup
v∈F

{ |v(x)|2
‖v‖22

}}
.
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Proof. For convenience, let gj denote yj − f(xj) and ~gw ∈ Cm denote the vector

(
√
wj ·

gj|j=1,...,m

)
= ~yw − ~fS,w for j ∈ [m] such that A∗ · (~yw − ~fS,w) = A∗ · ~gw.

E[‖A∗ · ~gw‖2
2] = E

[
d∑
i=1

( m∑
j=1

A∗(i, j)~gw(j)
)2

]

=
d∑
i=1

E

[( m∑
j=1

wjvi(xj) · gj
)2

]
=

d∑
i=1

E

[
m∑
j=1

w2
j · |vi(xj)|2 · |gj|2

]
,

where the last step uses the following fact

E
wj∼Dj

[wjvi(xj) · gj] = E
wj∼Dj

[
αj ·

D(xj)

Dj(xj)
vi(xj)gj

]
= αj · E

xj∼D,yj∼Y (xj)

[
vi(xj)(yj − f(xj))

]
= 0.

We swap i and j:

d∑
i=1

E

[
m∑
j=1

w2
j · |vi(xj)|2 · |gj|2

]
=

m∑
j=1

E

[
d∑
i=1

wj|vi(xj)|2 · wj|gj|2
]

≤
m∑
j=1

sup
xj

{
wj

d∑
i=1

|vi(xj)|2
}
· E
[
wj · |gj|2

]
.

For E [wj · |gj|2], it equals E
xj∼Dj ,yj∼Y (xj)

[
αj · D(xj)

Dj(xj)

∣∣yj − f(xj)
∣∣2] = αj· E

xj∼D,yj∼Y (xj)

[∣∣yj−
f(xj)

∣∣2].
For supxj

{
wj
∑d

i=1 |vi(xj)|2
}

, we bound it as

sup
xj

{
wj

d∑
i=1

|vi(xj)|2
}

= sup
xj

{
αj ·

D(xj)

Dj(xj)

d∑
i=1

|vi(xj)|2
}

= αj sup
xj

{
D(xj)

Dj(xj)
· sup
h∈F

{ |h(xj)|2

‖h‖2
D

}}
= αj·KDj .

We use the fact sup
h∈F

{ |h(xj)|2
‖h‖2D

}
= sup

(a1,...,ad)

{ |∑d
i=1 aivi(xj)|2∑d
i=1 |ai|2

}
=

(
∑d
i=1 |ai|2)(

∑d
i=1 |vi(xj)|2)∑d

i=1 |ai|2
by the

Cauchy-Schwartz inequality. From all discussion above, we have

E[‖A∗·~gw‖2
2] ≤

∑
j

(
αjKDj · αj · E

(x,y)∼(D,Y )
[|y − f(x)|2]

)
≤ (
∑
j

αj) max
j

{
αjKDj

}
· E
(x,y)∼(D,Y )

[|y−f(x)|2].
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We combine all discussion above to prove Theorem 6.0.3.

Proof of Theorem 6.0.3. The first property of P indicates λ(A∗ · A) ∈ [1 − 1/4, 1 + 1/4].

On the other hand, E[‖A∗ · (~yw − ~fw)‖2
2] ≤ ε/C · E

(x,y)∼(D,Y )
[|y − f(x)|2] from Lemma 6.2.4.

Conditioned on the first property, we have E
[
‖(A∗ · A)−1 · A∗ · (~yw − ~fw)‖2

2

]
≤ 2ε/C ·

E
(x,y)∼(D,Y )

[|y − f(x)|2].

By choosing a large constant C, with probability 1− 1
200

,

‖f̃−f‖2
D = ‖(A∗·A)−1·A∗·(~yw−~fw)‖2

2 ≤ λmax

(
(A∗·A)−1

)
·‖A∗·(~yw−~fw)‖2

2 ≤ ε· E
(x,y)∼(D,Y )

[|y−f(x)|2]

from the Markov inequality.

6.2.2 Proof of Corollary 6.2.2

For the first part, let (D, Y ) =
(
D, f(x) + g(x)

)
be our joint distribution of (x, y).

Because the expectation E[g(x)] = 0 for every x ∈ G, arg min
v∈V

E
(x,y)∼(D,Y )

[|y − v(x)|2] = f .

From Theorem 6.0.3, for α(f̃) = (A∗ · A)−1 · A∗ · ~yw and m = O(d/ε),

‖f̃ − f‖2
D = ‖α(f̃)− α(f)‖2

2 ≤ ε · E
(x,y)∼(D,Y )

[|y− f(x)|2] = ε ·E[‖g‖2
D], with probability 0.99.

For the second part, let g‖ be the projection of g(x) to F and g⊥ = g − g‖ be the

orthogonal part to F. Let α(g‖) denote the coefficients of g‖ in the fixed orthonormal basis

(v1, . . . , vd) so that ‖α(g‖)‖2 = ‖g‖‖D. We decompose ~yw = ~fw + ~gw = ~fw + ~g‖w + ~g⊥w.

Therefore

α(f̃) = (A∗A)−1 · A∗ · (~fw + ~g‖w + ~g⊥w) = α(f) + α(g‖) + (AA∗)−1A∗ · ~g⊥w.

The distance ‖f̃ − f‖D = ‖α(f̃)− α(f)‖2 equals

‖(A∗A)−1·A∗·~yw−α(f)‖2 = ‖α(f)+α(g‖)+(A∗A)−1·A∗· ~g⊥w−α(f)‖2 = ‖α(g‖)+(A∗A)−1·A∗· ~g⊥w‖2.
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From Theorem 6.0.3, with probability 0.99, ‖(A∗A)−1 ·A∗ · ~g⊥w‖2 ≤
√
ε · ‖g⊥‖D. Thus

‖(A∗A)−1 · A∗ · ~yw − α(f)‖2 = ‖α(g‖) + (A∗A)−1 · A∗ · ~g⊥w‖2

≤ ‖g‖‖D +
√
ε · ‖g⊥‖D.

Let 1− β denote ‖g‖‖D/‖g‖D such that ‖g⊥‖D/‖g‖D =
√

2β − β2. We rewrite it as(
1− β +

√
ε ·
√

2β − β2
)
‖g‖D ≤ (1−β+

√
ε ·
√

2β)‖g‖D ≤
(

1− (
√
β −

√
ε

2
)2 +

ε

2

)
‖g‖D.

From all discussion above, ‖f̃ − f‖D = ‖α(f̃) − α(f)‖2 = ‖(A∗A)−1 · A∗ · ~yw − α(f)‖2 ≤

(1 + ε)‖g‖D.

6.3 Performance of i.i.d. Distributions

Given the linear family F of dimension d and the measure of distance D, we provide

a distribution DF with a condition number KDF
= d.

Lemma 6.3.1. Given any linear family F of dimension d and any distribution D, there

always exists an explicit distribution DF such that the condition number

KDF
= sup

x

{
sup
h∈F

{ D(x)

DF(x)
· |h(x)|2

‖h‖2
D

}}
= d.

Next, for generality, we bound the number of i.i.d. random samples from an arbitrary

distribution D′ to fulfill the requirements of well-balanced sampling procedures in Defini-

tion 6.0.2.

Lemma 6.3.2. There exists a universal constant C1 such that given any distribution D′

with the same support of D and any ε > 0, the random sampling procedure with m =

C1(KD′ log d+
KD′
ε

) i.i.d. random samples from D′ and coefficients α1 = · · · = αm = 1/m is

an ε-well-balanced sampling procedure.
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By Theorem 6.0.3, we state the following result, which will be used in active learning.

For G = supp(D) and any x ∈ G, let Y (x) denote the conditional distribution (Y |D = x)

and (D′, Y (D′)) denote the distribution that first generates x ∼ D′ then generates y ∼ Y (x).

Theorem 6.3.3. Consider any dimension d linear space F of functions from a domain G

to C. Let (D, Y ) be a joint distribution over G× C, and f = arg min
h∈F

E
(x,y)∼(D,Y )

[|y − h(x)|2].

Let D′ be any distribution on G and KD′ = sup
x

{
sup
h∈F

{ D(x)
D′(x)

· |h(x)|2
‖h‖2D

}}
. The weighted

ERM f̃ resulting from m = O(KD′ log d +
KD′
ε

) random queries of (D′, Y (D′)) with weights

wi = D(xi)
m·D′(xi) for each i ∈ [m] satisfies

‖f̃ − f‖2
D = E

x∼D

[
|f̃(x)− f(x)|2

]
≤ ε · E

(x,y)∼(D,Y )

[
|y − f(x)|2

]
with probability ≥ 0.99.

We show the proof of Lemma 6.3.2 in Section 6.3.1.

6.3.1 Proof of Lemma 6.3.2

We use the matrix Chernoff theorem to prove the first property in Definition 6.0.2.

We still use A to denote the m× d matrix A(i, j) =
√
wi · vj(xi).

Lemma 6.3.4. Let D′ be an arbitrary distribution over G and

KD′ = sup
h∈F:h6=0

sup
x∈G

|h(D′)(x)|2

‖h‖2
D

. (6.2)

There exists an absolute constant C such that for any n ∈ N+, linear family F of dimension

d, ε ∈ (0, 1) and δ ∈ (0, 1), when S = (x1, . . . , xm) are independently from the distribution

D′ with m ≥ C
ε2
·KD′ log d

δ
and wj =

D(xj)

m·D′(xj) for each j ∈ [m], the m × d matrix A(i, j) =
√
wi · vj(xi) satisfies

‖A∗A− I‖ ≤ ε with probability at least 1− δ.
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Proof of Lemma 6.3.4. Let v1, . . . , vd be the orthonormal basis of F in the definition

of matrix A. For any h ∈ F, let α(h) = (α1, . . . , αd) denote the coefficients of h under

v1, . . . , vd such that ‖h‖2
D = ‖α(h)‖2

2. At the same time, for any fixed x, sup
h∈F

|h(D′)(x)|2
‖h‖2D

=

sup
α(h)

|
∑d
i=1 α(h)i·v

(D′)
i (x)|2

‖α(h)‖22
=
∑

i∈[d] |v
(D′)
i (x)|2 by the tightness of the Cauchy Schwartz inequality.

Thus

KD′
def
= sup

x∈G

{
sup

h∈F:h6=0

|h(D′)(x)|2

‖h‖2
D

}
indicates sup

x∈G

∑
i∈[d]

|v(D′)
i (x)|2 ≤ KD′ . (6.3)

For each point xj in S with weight wj =
D(xj)

m·D′(xj) , let Aj denote the jth row of the matrix A. It

is a vector in Cd defined by Aj(i) = A(j, i) =
√
wj ·vi(xj) =

v
(D′)
i (xj)√

m
. So A∗A =

∑m
j=1A

∗
j ·Aj.

For A∗j · Aj, it is always � 0. Notice that the only non-zero eigenvalue of A∗j · Aj is

λ(A∗j · Aj) = Aj · A∗j =
1

m

∑
i∈[d]

|v(D′)
i (xj)|2

 ≤ KD′

m

from (6.3).

At the same time,
∑m

j=1 E[A∗j · Aj] equals the identity matrix of size d × d because

the expectation of the entry (i, i′) in A∗j · Aj is

E
xj∼D′

[A(j, i) · A(j, i′)] = E
xj∼D′

[
v

(D′)
i (xj) · v(D′)

i′ (xj)

m
]

= E
xj∼D′

[
D(x) · vi(xj) · vi′(xj)

m ·D′(xj)
] = E

xj∼D
[
vi(xj) · vi′(xj)

m
] = 1~i=~i′/m.

Now we apply Theorem 2.2.3 on A∗A =
∑m

j=1(A∗j · Aj):

Pr [λ(A∗A) /∈ [1− ε, 1 + ε]] ≤ d

(
e−ε

(1− ε)1−ε

)1/
KD′
m

+ d

(
e−ε

(1 + ε)1+ε

)1/
KD′
m

≤ 2d · e−
ε2· m

KD′
3 ≤ δ given m ≥

6KD′ log d
δ

ε2
.
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Then we finish the proof of Lemma 6.3.2.

Proof of Lemma 6.3.2. Because the coefficient αi = 1/m = Ω(KD′/ε) and
∑

i αi = 1, this

indicates the second property of well-balanced sampling procedures.

Since m = Θ(KD′ log d), by Lemma 6.3.4, we know all eigenvalues of A∗ · A are in

[1−1/4, 1+1/4] with probability 1−10−3. By Lemma 6.2.3, this indicates the first property

of well-balanced sampling procedures.

6.4 A Linear-Sample Algorithm for Known D

We provide a well-balanced sampling procedure with a linear number of random

samples in this section. The procedure requires knowing the underlying distribution D,

which makes it directly useful in the query setting or the “fixed design” active learning

setting, where D can be set to the empirical distribution D0.

Lemma 6.4.1. Given any dimension d linear space F, any distribution D over the do-

main of F, and any ε > 0, there exists an efficient ε-well-balanced sampling procedure that

terminates in O(d/ε) rounds with probability 1− 1
200

.

From Corollary 6.2.2, we obtain the following theorem for the ERM f̃ resulting from

the well-balanced sampling procedure in Lemma 6.4.1.

Theorem 6.4.2. Consider any dimension d linear space F of functions from a domain G

to C and distribution D over G. Let y(x) = f(x) + g(x) be our observed function, where

f ∈ F and g denotes a noise function. For any ε > 0, there exists an efficient algorithm that

observes y(x) at m = O(d
ε
) points and outputs f̃ such that with probability 0.99,
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1. ‖f̃ − f‖2
D ≤ ε ·E

g
[‖g‖2

D], when g(x) is a random function from G to C where each g(x)

is an independent random variable with E
g
[g(x)] = 0.

2. ‖f̃ − f‖D ≤ (1 + ε) · ‖g‖D for any other noise function g.

We show how to extract the coefficients α1, · · · , αm from the randomized BSS algo-

rithm by Lee and Sun [LS15] in Algorithm 4. Given ε, the linear family F, and the distribu-

tion D, we fix γ =
√
ε/C0 for a constant C0 and v1, . . . , vd to be an orthonormal basis of F

in this section. For convenience, we use v(x) to denote the vector
(
v1(x), . . . , vd(x)

)
.

In the rest of this section, we prove Lemma 6.4.1 in Section 6.4.1.

Algorithm 4 A well-balanced sampling procedure based on Randomized BSS

1: procedure RandomizedSamplingBSS(F, D, ε)
2: Find an orthonormal basis v1, . . . , vd of F under D;
3: Set γ =

√
ε/C0 and mid = 4d/γ

1/(1−γ)−1/(1+γ)
;

4: j = 0;B0 = 0;
5: l0 = −2d/γ;u0 = 2d/γ;
6: while uj+1 − lj+1 < 8d/γ do;
7: Φj = Tr(ujI −Bj)

−1 + Tr(Bj − ljI)−1; . The potential function at iteration j.
8: Set the coefficient αj = γ

Φj
· 1

mid
;

9: Set the distribution Dj(x) = D(x) ·
(
v(x)>(ujI − Bj)

−1v(x) + v(x)>(Bj −

ljI)−1v(x)

)
/Φj for v(x) =

(
v1(x), . . . , vd(x)

)
;

10: Sample xj ∼ Dj and set a scale sj = γ
Φj
· D(x)
Dj(x)

;

11: Bj+1 = Bj + sj · v(xj)v(xj)
>;

12: uj+1 = uj + γ
Φj(1−γ)

; lj+1 = lj + γ
Φj(1+γ)

;
13: j = j + 1;
14: end while
15: m = j;
16: Assign the weight wj = sj/mid for each xj;
17: end procedure
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6.4.1 Proof of Lemma 6.4.1

We state a few properties of randomized BSS [BSS12, LS15] that will be used in

this proof. The first property is that matrices B1, . . . , Bm in Procedure RandomizedBSS

always have bounded eigenvalues.

Lemma 6.4.3. [BSS12, LS15] For any j ∈ [m], λ(Bj) ∈ (lj, uj).

Lemma 3.6 and 3.7 of [LS15] shows that with high probability, the while loop in

Procedure RandomizedSamplingBSS finishes within O( d
γ2 ) iterations and guarantees the

last matrix Bm is well-conditioned, i.e., λmax(Bm)
λmin(Bm)

≤ um
lm
≤ 1 +O(γ).

Lemma 6.4.4. [LS15] There exists a constant C such that with probability at least 1− 1
200

,

Procedure RandomizedSamplingBSS takes at most m = C ·d/γ2 random points x1, . . . , xm

and guarantees that um
lm
≤ 1 + 8γ.

We first show that (A∗ · A) is well-conditioned from the definition of A. We prove

that our choice of mid is very close to
∑m

j=1
γ
φj

= um+lm
1

1−γ+ 1
1+γ

≈ um+lm
2

.

Claim 6.4.5. After exiting the while loop in Procedure RandomizedBSS, we always have

1. um − lm ≤ 9d/γ.

2. (1− 0.5γ2

d
) ·
∑m

j=1
γ
φj
≤ mid ≤

∑m
j=1

γ
φj

.

Proof. Let us first bound the last term γ
φm

in the while loop. Since um−1 − lm−1 < 8d/γ,

φm ≥ 2d · 1
4d/γ
≥ γ

2
, which indicates the last term γ

φm
≤ 2. Thus

um − lm ≤ 8d/γ + 2(
1

1− γ
− 1

1 + γ
) ≤ 8d/γ + 5γ.
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From our choice mid = 4d/γ
1/(1−γ)−1/(1+γ)

= 2d(1− γ2)/γ2 and the condition of the while

loop um − lm =
∑m

j=1(γ/φj) · ( 1
1−γ −

1
1+γ

) + 4d/γ ≥ 8d/γ, we know

m∑
j=1

γ

φj
≥ mid = 2d(1− γ2)/γ2.

On the other hand, since um−1 − lm−1 < 8d/γ is in the while loop,
∑m−1

j=1
γ
φj
< mid.

Hence

mid >
m−1∑
j=1

γ

φj
≥

m∑
j=1

γ

φj
− 2 ≥ (1− 0.5γ2/d) · (

m∑
j=1

γ

φj
).

Lemma 6.4.6. Given um
lm
≤ 1 + 8γ, λ(A∗ · A) ∈ (1− 5γ, 1 + 5γ).

Proof. For Bm =
∑m

j=1 sjv(xj)v(xj)
>, λ(Bm) ∈ (lm, um) from Lemma 6.4.3. At the same

time, given wj = sj/mid,

(A∗A) =
m∑
j=1

wjv(xj)v(xj)
> =

1

mid
·
m∑
j=1

sjv(xj)v(xj)
> =

Bm

mid
.

Since mid ∈ [1 − 3γ2

d
, 1] · (

∑m
j=1

γ
φj

) = [1 − 3γ2

d
, 1] · ( um+lm

1
1−γ+ 1

1+γ

) ⊆ [1 − 2γ2, 1 − γ2] · (um+lm
2

)

from Claim 6.4.5, λ(A∗ · A) = λ(Bm)/mid ∈ (lm/mid, um/mid) ⊂ (1 − 5γ, 1 + 5γ) given

um
lm
≤ 1 + 8γ in Lemma 6.4.4.

We finish the proof of Lemma 6.4.1 by combining all discussion above.

Proof of Lemma 6.4.1. From Lemma 6.4.4 and Lemma 6.4.6, m = O(d/γ2) and λ(A∗A) ∈

[1− 1/4, 1 + 1/4] with probability 0.995.

For αi = γ
Φi
· 1

mid
, we bound

∑m
i=1

γ
Φi
· 1

mid
by 1.25 from the second property of

Claim 6.4.5.
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Then we bound αj ·KDj . We notice that sup
h∈F

|h(x)|2
‖h‖2D

=
∑

i∈[d] |vi(x)|2 for every x ∈ G

because sup
h∈F

|h(x)|2
‖h‖2D

= sup
α(h)

∣∣∑
i α(h)i·vi(x)

∣∣2
‖α(h)‖22

=
∑

i |vi(x)|2 by the Cauchy-Schwartz inequality.

This simplifies KDj to supx{
D(x)
Dj(x)

·
∑d

i=1 |ui(x)|2} and bounds αj ·KDj by

γ

Φj ·mid
· sup

x

{
D(x)

Dj(x)
·

d∑
i=1

|vi(x)|2
}

=
γ

mid
· sup

x

{ ∑d
i=1 |vi(x)|2

v(xj)>(ujI −Bj)−1v(xj) + v(xj)>(Bj − ljI)−1v(xj)

}

≤ γ

mid
· sup

x

{ ∑d
i=1 |vi(x)|2

λmin

(
(ujI −Bj)−1

)
· ‖v(xj)‖2

2 + λmin

(
(Bj − ljI)−1

)
· ‖v(xj)‖2

2

}
≤ γ

mid
· 1

1/(uj − lj) + 1/(uj − lj)

=
γ

mid
· uj − lj

2
(apply the first property of Claim 6.4.5)

≤4.5 · d
mid

≤ 3γ2 = 3ε/C2
0 .

By choosing C0 large enough, this satisfies the second property of well-balanced sampling

procedures. At the same time, by Lemma 6.2.3, Algorithm 4 also satisfies the first property

of well-balanced sampling procedures.

6.5 Active Learning

In this section, we investigate the case where we do not know the distribution D

of x and only receive random samples from D. We finish the proof of Theorem 6.0.4 that

bounds the number of unlabeled samples by the condition number of D and the number of

labeled samples by dim(F) to find the truth through D. In the end of this section, we state

a corollary for specific kinds of noise.

Theorem 6.0.4. Consider any dimension d linear space F of functions from a domain G
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to C. Let (D, Y ) be a joint distribution over G× C and f = arg min
h∈F

E
(x,y)∼(D,Y )

[|y − h(x)|2].

Let K = sup
h∈F:h6=0

supx∈G |h(x)|2
‖h‖2D

. For any ε > 0, there exists an efficient algorithm that

takes O(K log d+K
ε

) unlabeled samples from D and requests O(d
ε
) labels to output f̃ satisfying

E
x∼D

[|f̃(x)− f(x)|2] ≤ ε · E
(x,y)∼(D,Y )

[|y − f(x)|2] with probability ≥ 0.99.

For generality, we bound the number of labels using any well-balanced sampling pro-

cedure, such that Theorem 6.0.4 follows from this lemma with the linear sample procedure

in Lemma 6.4.1.

Lemma 6.5.1. Consider any dimension d linear space F of functions from a domain G to

C. Let (D, Y ) be a joint distribution over G× C and f = arg min
h∈F

E
(x,y)∼(D,Y )

[|y − h(x)|2].

Let K = sup
h∈F:h6=0

supx∈G |h(x)|2
‖h‖2D

and P be a well-balanced sampling procedure terminating

in mp(ε) rounds with probability 1 − 10−3 for any linear family F, measurement D, and ε.

For any ε > 0, Algorithm 5 takes O(K log d+ K
ε

) unlabeled samples from D and requests at

most mp(ε/8) labels to output f̃ satisfying

E
x∼D

[|f̃(x)− f(x)|2] ≤ ε · E
(x,y)∼(D,Y )

[|y − f(x)|2] with probability ≥ 1− 1

200
.

Algorithm 5 first takes m0 = O(K log d+K/ε) unlabeled samples and defines a distri-

bution D0 to be the uniform distribution on these m0 samples. Then it uses D0 to simulate

D in P , i.e., it outputs the ERM resulting from the well-balanced sampling procedure P

with the linear family F, the measurement D0, and ε
8
.

Algorithm 5 Regression over an unknown distribution D

1: procedure RegressionUnknownDistribution(ε,F, D, P )
2: Set C to be a large constant and m0 = C · (K log d+K/ε) .
3: Take m0 unlabeled samples x1, . . . , xm0 from D.
4: Let D0 be the uniform distribution over (x1, . . . , xm0).
5: Output the ERM f̃ resulting from P with parameters F, D0, ε/8.
6: end procedure
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Proof. We still use ‖f‖D′ to denote
√

E
x∼D′

[|f(x)|2] andD1 to denote the weighted distribution

generated by Procedure P given F, D0, ε. By Lemma 6.3.2 with D and the property of P ,

with probability at least 1− 2 · 10−3,

‖h‖2
D0

= (1± 1/4) · ‖h‖2
D and ‖h‖2

D1
= (1± 1/4) · ‖h‖2

D0
for every h ∈ F. (6.4)

We assume (6.4) holds in the rest of this proof.

Let yi denote a random label of xi from Y (xi) for each i ∈ [m0] including the unlabeled

samples in the algorithm and the labeled samples in Step 5 of Algorithm 5. Let f ′ be the

weighted ERM of (x1, · · · , xm) and (y1, · · · , ym) over D0, i.e.,

f ′ = arg min
h∈F

E
xi∼D0,yi∼Y (xi)

[
|yi − h(xi)|2

]
. (6.5)

Given Property (6.4) and Lemma 6.3.2, E
(x1,y1),...,(xm0 ,ym0 )

[‖f ′−f‖2
D] ≤ 2K

m0
· E
(x,y)∼(D,Y )

[|y−f(x)|2]

from the proof of Theorem 6.0.3. Let the constant in m0 be large enough such that from the

Markov inequality, with probability 1− 10−3,

‖f ′ − f‖2
D ≤

ε

8
· E

(x,y)∼(D,Y )
[|y − f(x)|2].

In the rest of this proof, we plan to show that the weighted ERM f̃ resulting from P

with measurement D0 guarantees ‖f̃ − f ′‖2
D0

. E
(x,y)∼(D,Y )

[|y − f(x)|2] with high probability.

Given Property (6.4) and the guarantee of Procedure P , we have E
P

[‖f̃ − f ′‖2
D0

] ≤ 2ε
C
·

E
x∼D0

[|yi − f ′(xi)|2] from the proof of Theorem 6.0.3. Next we bound the right hand side

E
xi∼D0

[|yi − f ′(xi)|2] by E
(x,y)∼(D,Y )

[|y − f(x)|2] over the randomness of (x1, y1), . . . , (xm0 , ym0):

E
(x1,y1),...,(xm0 ,ym0 )

[
E

xi∼D0

[
|yi − f ′(xi)|2

]]
≤ E

(x1,y1),...,(xm0 ,ym0 )

[
2 E
xi∼D0

[
|yi − f(xi)|2

]
+ 2‖f − f ′‖2

D0

]
≤2 E

(x,y)∼(D,Y )

[
|y − f(x)|2

]
+ 3 E

(x1,y1),...,(xm0 ,ym0 )

[
‖f − f ′‖2

D

]
from (6.4)
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Hence E
(x1,y1),...,(xm0 ,ym0 )

[
E
P

[‖f̃ − f ′‖2
D0

]
]
≤ 2ε

C
·
(
2 + 3 · 2K

m0

)
· E

(x,y)∼(D,Y )
[|y − f(x)|2].

Since C is a large constant, from the Markov inequality, with probability 1− 2 · 10−3

over (x1, y1), . . . , (xm0 , ym0) and P ,

‖f̃ − f ′‖2
D0
≤ ε

4
· E

(x,y)∼(D,Y )

[
|y − f(x)|2

]
.

From all discussion above, we have

‖f̃−f‖2
D ≤ 2‖f̃−f ′‖2

D+2‖f ′−f‖2
D ≤ 3‖f̃−f ′‖2

D0
+
ε

4
· E
(x,y)∼(D,Y )

[|y−f(x)|2] ≤ ε· E
(x,y)∼(D,Y )

[|y−f(x)|2]

We apply Corollary 6.2.2 to obtain the following result.

Corollary 6.5.2. Let F be a family of functions from a domain G to C with dimension d

and D be a distribution over G with bounded condition number K = sup
h∈F:h6=0

supx∈G |h(x)|2
‖h‖2D

. Let

y(x) = f(x) + g(x) be our observation with f ∈ F.

For any ε > 0, there exists an efficient algorithm that takes O(K log d+ K
ε

) unlabeled

samples from D and require O(d
ε
) labels to output f̃ such that with probability 0.99,

1. ‖f̃−f‖2
D ≤ ε ·E[‖g‖2

D], when g is a random function where each g(x) is an independent

random variable with E[g(x)] = 0.

2. ‖f̃ − f‖D ≤ (1 + ε) · ‖g‖D otherwise.

6.6 Lower Bounds

We present two lower bounds on the number of samples in this section. We first prove

a lower bound for query complexity based on the dimension d. Then we prove a lower bound

for the sample complexity based on the condition number of the sampling distribution.
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Theorem 6.6.1. For any d and any ε < 1
10

, there exist a distribution D and a linear family

F of functions with dimension d such that for the i.i.d. Gaussian noise g(x) = N(0, 1
ε
),

any algorithm which observes y(x) = f(x) + g(x) for f ∈ F with ‖f‖D = 1 and outputs f̃

satisfying ‖f − f̃‖D ≤ 0.1 with probability ≥ 3
4
, needs at least m ≥ 0.8d

ε
queries.

Notice that this lower bound matches the upper bound in Theorem 6.4.2. In the rest

of this section, we focus on the proof of Theorem 6.6.1. Let F = {f : [d] → R} and D be

the uniform distribution over [d]. We first construct a packing set M of F.

Claim 6.6.2. There exists a subset M = {f1, . . . , fn} ⊆ F with the following properties:

1. ‖fi‖D = 1 for each fi ∈M.

2. ‖fi‖∞ ≤ 1 for each fi ∈M.

3. ‖fi − fj‖D > 0.2 for distinct fi, fj in M.

4. n ≥ 20.7d.

Proof. We construct M from U =
{
f : [d] → {±1}

}
in Procedure ConstructM. Notice

that |U | = 2d before the while loop. At the same time, Procedure ConstructM removes

at most
(

d
≤0.01d

)
≤ 20.3d functions every time because ‖g − h‖D < 0.2 indicates Pr[g(x) 6=

h(x)] ≤ (0.2)2/4 = 0.01. Thus n ≥ 2d/20.3d ≥ 20.7d.

Algorithm 6 Construct M

1: procedure ConstructM(d)
2: Set n = 0 and U =

{
f : [d]→ {±1}

}
.

3: while U 6= ∅ do
4: Choose any h ∈ U and remove all functions h′ ∈ U with ‖h− h′‖D < 0.2.
5: n = n+ 1 and fn = h.
6: end while
7: Return M = {f1, . . . , fn}.
8: end procedure
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We state the Shannon-Hartley theorem in information theory to finish the proof of

Theorem 6.6.1.

Theorem 6.6.3 (The Shannon-Hartley Theorem [Har28, Sha49]). Let S be a real-valued

random variable with E[S2] = τ 2 and T ∼ N(0, σ2). The mutual information I(S;S + T ) ≤
1
2

log(1 + τ2

σ2 ).

Proof of Theorem 6.6.1. Because of Yao’s minimax principle, we assume A is a determin-

istic algorithm given the i.i.d. Gaussian noise. Let I(f̃ ; fj) denote the mutual information

of a random function fj ∈ M and A’s output f̃ given m observations (x1, y1), . . . , (xm, ym)

with yi = fj(xi) + N(0, 1
ε
). When the output f̃ satisfies ‖f̃ − fj‖D ≤ 0.1, fj is the clos-

est function to f̃ in M from the third property of M. From Fano’s inequality [Fan61],

H(fj|f̃) ≤ H(1
4
) + log(|M|−1)

4
. This indicates

I(fj; f̃) = H(fj)−H(fj|f̃) ≥ log |M| − 1− log(|M| − 1)/4 ≥ 0.7 log |M| ≥ 0.4d.

At the same time, by the data processing inequality, the algorithm A makes m queries(
x1, . . . , xm

)
and sees

(
y1, . . . , ym

)
, which indicates

I(f̃ ; fj) ≤ I

((
y1, . . . , ym

)
; fj

)
=

m∑
i=1

I

(
yi; fj(xi)

∣∣y1, · · · , yi−1

)
. (6.6)

For the query xi, let Di,j denote the distribution of fj ∈ M in the algorithm A given the

first i− 1 observations
(
x1, y1

)
, . . . ,

(
xi−1, yi−1

)
. We apply Theorem 6.6.3 on Di,j such that

it bounds
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I

(
yi = fj(xi) +N(0,

1

ε
); fj(xi)

∣∣y1, · · · , yi−1

)
≤1

2
log

1 +

E
f∼Di,j

[f(xi)
2]

1/ε


≤1

2
log

1 +

max
f∈M

[f(xi)
2]

1/ε


=

1

2
log
(
1 + ε

)
≤ ε

2
,

where we apply the second property of M in the second step to bound f(x)2 for any f ∈M.

Hence we bound
∑m

i=1 I(yi; fj|y1, · · · , yi−1) by m · ε
2
. This implies

0.4d ≤ m · ε
2
⇒ m ≥ 0.8d

ε
.

Next we consider the sample complexity of linear regression.

Theorem 6.6.4. For any K, d, and ε > 0, there exist a distribution D, a linear family of

functions F with dimension d whose condition number sup
h∈F:h6=0

{
sup
x∈G

|h(x)|2
‖h‖2D

}
equals K, and a

noise function g orthogonal to V such that any algorithm observing y(x) = f(x) + g(x) of

f ∈ F needs at least Ω(K log d + K
ε

) samples from D to output f̃ satisfying ‖f̃ − f‖D ≤

0.1
√
ε · ‖g‖D with probability 3

4
.

Proof. We fix K to be an integer and set the domain of functions in F to be [K]. We choose

D to be the uniform distribution over [K]. Let F denote the family of functions
{
f : [K]→

C|f(d+1) = f(d+2) = · · · = f(K) = 0
}

. Its condition number sup
h∈F:h6=0

{
sup
x∈G

|h(x)|2
‖h‖2D

}
equals K.

h(x) = 1x=1 provides the lower bound ≥ K. At the same time, |h(x)|2
‖h‖2D

= |h(x)|2∑K
i=1 |h(x)|2/K ≤ K

indicates the upper bound ≤ K.
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We first consider the case K log d ≥ K
ε

. Let g = 0 such that g is orthogonal to

V . Notice that ‖f̃ − f‖D ≤ 0.1
√
ε · ‖g‖D indicates f̃(x) = f(x) for every x ∈ [d]. Hence

the algorithm needs to sample f(x) for every x ∈ [d] when sampling from D: the uniform

distribution over [K]. From the lower bound of the coupon collector problem, this takes at

least Ω(K log d) samples from D.

Otherwise, we prove that the algorithm needs Ω(K/ε) samples. Without loss of

generality, we assume E
x∼[d]

[
|f(x)|2

]
= 1 for the truth f in y. Let g(x) = N(0, 1/ε) for each

x ∈ [d]. From Theorem 6.6.1, to find f̃ satisfying E
x∼[d]

[
|f̃(x)−f(x)|2

]
≤ 0.1 E

x∼[d]

[
|f(x)|2

]
, the

algorithm needs at least Ω(d/ε) queries of x ∈ [d]. Hence it needs Ω(K/ε) random samples

from D, the uniform distribution over [K].
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Chapter 7

Existence of Extractors in Simple Hash Families

We study randomness extractors consisting of hash families in this section. Recall

that the min-entropy of a random variable X is

H∞(X) = min
x∈supp(X)

log2

1

Pr[X = x]
.

For convenience, we provide the definition of extractors and strong extractors here.

Definition 7.0.1. For any d ∈ N+, let Ud denote the uniform distribution over {0, 1}d. For

two random variables W and Z with the same support, let ‖W − Z‖ denote the statistical

(variation) distance

‖W − Z‖ = max
T⊆supp(W )

∣∣ Pr
w∼W

[w ∈ T ]− Pr
z∼Z

[z ∈ T ]
∣∣.

A function Ext : {0, 1}n × {0, 1}t → {0, 1}m is a (k, ε)-extractor if for every source X with

min-entropy k and an independent uniform distribution Y on {0, 1}t,

‖Ext(X, Y )− Um‖ ≤ ε.

It is a strong (k, ε)-extractor if in addition, it satisfies
∥∥(Ext(X, Y ), Y

)
−
(
Um, Y

)∥∥ ≤ ε.

Given an extractor Ext : {0, 1}n × {0, 1}t → {0, 1}m, we sample a few seeds from

{0, 1}t and consider the new extractor, called a restricted extractor, constituted by these

seeds.
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Definition 1.1.3. Given an extractor Ext : {0, 1}n × {0, 1}t → {0, 1}m and a sequence of

seeds (y1, · · · , yD) where each yi ∈ {0, 1}t, we define the restricted extractor Ext(y1,··· ,yD) to

be Ext restricted in the domain {0, 1}n × [D] where Ext(y1,··· ,yD)(x, i) = Ext(x, yi).

In this chapter, we prove that given any (k, ε)-extractor Ext, most restricted extractors

with a quasi-linear degree Õ( n
ε2

) from Ext are (k, 3ε)-extractors for a constant number of

output bits, despite the degree of Ext.

Theorem 1.1.4. There exists a universal constant C such that given any strong (k, ε)-

extractor Ext : {0, 1}n × {0, 1}t → {0, 1}m, for D = C · n·2m
ε2
· log2 n·2m

ε
random seeds

y1, . . . , yD ∈ {0, 1}t, Ext(y1,...,yD) is a strong (k, 3ε)-extractor with probability 0.99.

At the same time, the same statement of Theorem 1.1.4 holds for extractors. But

in this case, the dependency 2m on the degree D of restricted extractors is necessary to

guarantee its error is less than 1/2 on m output bits.

Proposition 1.1.5. There exists a (k, ε)-extractor Ext : {0, 1}n × {0, 1}t → {0, 1}m with

k = 1 and ε = 0 such that any restricted extractor of Ext requires the degree D ≥ 2m−1 to

guarantee its error is less than 1/2.

Though the dependency 2m is necessary for extractors in the above proposition, it

may not be necessary for strong extractors.

Applications of Theorem 1.1.4. In a seminal work, Impagliazzo, Levin, and Luby

[ILL89] proved the Leftover Hash Lemma, i.e., all functions from an almost-universal hash

family constitute a strong extractor. We first define universal hash families and almost

universal hash families.
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Definition 7.0.2 (Universal hash families by Carter and Wegman [CW79]). Let H be a

family of functions mapping {0, 1}n to {0, 1}m. H is universal if

∀x, y ∈ {0, 1}n(x 6= y), Pr
h∼H

[h(x) = h(y)] ≤ 2−m.

Moreover, we say H is almost universal if,

∀x, y ∈ {0, 1}n(x 6= y), Pr
h∼H

[h(x) = h(y)] ≤ 2−m + 2−n.

We discuss several applications of Theorem 1.1.4 based on the Leftover Hash Lemma

[ILL89] on almost universal hash families.

Lemma 7.0.3 (Leftover Hash Lemma [ILL89]). For any n and m, let H be a family of

T hash functions {h1, · · · , hT} mapping [2n] to [2m] such that for any distinct x and y,

Pr
h∼H

[h(x) = h(y)] ≤ 2−n + 2−m. Then Ext : {0, 1}n × [T ] → {0, 1}m defined as Ext(x, y) =

hy(x) is a strong (k, ε)-extractor for any k and ε satisfying k ≥ m+ 2 log 1
ε
.

For completeness, we provide a proof of the Leftover Hash Lemma in Appendix B.

Plugging the extractors of all linear transformations and Toeplitz matrices [ILL89]

in Theorem 1.1.4, our result indicates that most extractors constituted by a quasi-linear

number Õ( n
ε2

) of linear transformations or Toeplitz matrices keep the nearly same parameters

of the min-entropy and error, for a constant number of output bits. We treat the subset

{0, 1, 2, · · · , 2n − 1} the same as {0, 1}n and Fn2 in this work.

Corollary 7.0.4. There exists a universal constant C such that for any integers n,m, k,

and ε > 0 with k ≥ m + 2 log 1
ε
, Ext(A1,...,AD) with D = C · n·2m

ε2
· log2 n·2m

ε
random matrices

A1, . . . , AD ∈ Fm×n2 , mapping from Fn2 × [D] to Fm2 as Ext(A1,...,AD)(x, i) = Ai · x, is a strong

(k, 3ε)-extractor with probability 0.99.

Moreover, the same holds for D random Toeplitz matrices A1, . . . , AD ∈ Fn×m2 .
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Next we consider extractors from almost-universal hash families, which have efficient

implementations and wide applications in practice. We describe a few examples of almost-

universal hash families with efficient implementations.

1. Linear Congruential Hash by Carter and Wegman [CW79]: for any n and m, let p be

a prime > 2n and H1 =
{
ha,b|a, b ∈ {0, 1, · · · , p − 1}

}
be the hash family defined as

ha,b(x) =
(
(ax+ b) mod p

)
mod 2m for every x ∈ {0, 1, · · · , 2n − 1}.

2. Multiplicative Universal Hash by Dietzfelbinger et al. [DHKP97] and Woelfel [Woe99]:

for any n and m, let H2 =
{
ha,b|a ∈ {1, 3, 5, · · · , 2n − 1}, b ∈ {0, 1, · · · , 2n−m − 1

}
be

the hash family mapping {0, 1, · · · , 2n − 1} to {0, 1, · · · , 2m − 1} that first calculates

ax + b modulo 2n then takes the high order m bits as the hash value, i.e., ha,b(x) =(
(ax + b) mod 2n

)
div 2n−m. In C-code, this hash function could be implemented as

ha,b(x) = (a ∗ x+ b) >> (n−m) when n = 64.

3. Shift Register Hash by Vazirani [Vaz87]: let p be a prime such that 2 is a generator mod-

ulo p and a(i) denote the ith shift of a string a ∈ Fn2 , i.e., a(i) = ai+1ai+2 · · · ana1 · · · ai.
For n = p − 1 and any m ≤ n, let H3 =

{
ha|a ∈ Fp2

}
be the hash family mapping

Fn2 to Fm2 as
(
〈a, 1 ◦ x〉, 〈a(1), 1 ◦ x〉, · · · , 〈am−1, 1 ◦ x〉

)
, where 〈w, z〉 denotes the inner

product of w, z ∈ Fp2 in F2.

Because all these hash families are almost-universal, by the Leftover Hash Lemma

[ILL89], Ext(x, y) = hy(x) is a strong extractor for all hash functions hy in one family.

Plugging these extractors in Theorem 1.1.4, we obtain extractors of almost optimal degrees

with efficient implementations.

Corollary 7.0.5. Let H be any almost-universal hash family mapping {0, 1}n to {0, 1}m.

There exists a universal constant C such that for any integer k and ε > 0 with k ≥ m+2 log 1
ε
,

Ext(h1,...,hD) with D = C · n·2m
ε2
· log2 n·2m

ε
random hash functions h1, · · · , hD ∼ H, defined as

Ext(h1,··· ,hD)(x, i) = hi(x), is a strong (k, 3ε)-extractor with probability 0.99.
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Organization. In the rest of this chapter, we provide a few basic tools and Lemmas in

Section 7.1. Then we prove Theorem 1.1.4 for extractors and Proposition 1.1.5 in Section 7.2.

Finally, we prove Theorem 1.1.4 for strong extractors in Section 7.3.

7.1 Tools

Given a subset Λ ∈ {0, 1}n, we consider the flat random source of the uniform distri-

bution over Λ, whose min-entropy is − log2
1
|Λ| = log2 |Λ|. Because any random source with

min-entropy k is a linear combination of flat random sources of min-entropy k, we focus on

flat random sources in the rest of this work.

We always use N(0, 1) to denote the standard Gaussian random variable and use the

following concentration bound on Gaussian random variables [LT91].

Lemma 7.1.1. Given any n Gaussian random variables G1, · · · , Gn (not necessarily inde-

pendent) where each Gi has expectation 0 and variance σ2
i ,

E
[

max
i∈[n]
|Gi|

]
.
√

log n ·max
i∈[n]

{
σi
}
.

Let S be a subset of events, X a random variable, and f any function from S×supp(X)

to R+. We state the standard symmetrization and Gaussianization [LT91, RW14] that

transform bounding max
Λ∈S

∑n
j=1 f(Λ, xi) of n independent random variables x1, · · · , xn ∼ X

to a Gaussian process.

Theorem 7.1.2. For any integer n and n independent random samples x1, · · · , xn from X,

E
x1∼X,··· ,xn∼X

[
max
Λ∈S

n∑
j=1

f(Λ, xi)

]
≤ max

Λ∈S
E
x

[
n∑
j=1

f(Λ, xj)

]
+
√

2π·E
x

[
E

g∼N(0,1)n

[
max
Λ∈S

∣∣∣∣∣
n∑
j=1

f(Λ, xj)gj

∣∣∣∣∣
]]

.

The first term max
Λ∈S

E
x

[∑n
j=1 f(Λ, xj)

]
is the largest expectation over all events Λ, and

the second term is to bound the deviation of every event from its expectation simultaneously.

For completeness, we provide a proof of Theorem 7.1.2 in Appendix B.
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We state the Beck-Fiala theorem in the discrepancy theory [Cha00].

Theorem 7.1.3. [Beck-Fiala theorem] Given a universe [n] and a collection of subsets

S1, · · · , Sl such that each element i ∈ [n] appears in at most d subsets, there exists an

assignment χ : [n]→ {±1} such that for each subset Sj, |
∑

i∈Sj χ(i)| < 2d.

7.2 Restricted Extractors

We study restricted extractors in this section and prove Theorem 1.1.4 for extractors.

The main result in this section is that most sequences of Õ(n·2
m

ε2
) seeds from any given ex-

tractor constitute a restricted extractor with nearly the same parameters of min entropy and

error. On the other hand, we show that for certain extractors, the degree of its restrictions

is Ω(2m) to guarantee any constant error.

We first consider the upper bound on the degree of restricted extractors for all entropy-

k flat sources fooling one fixed statistical test.

Lemma 7.2.1. Let Ext : {0, 1}n×{0, 1}t → {0, 1}m be an (k, ε)-extractor and D = C · n·log2 n
ε

ε2

for a universal constant C. Given any subset T ⊆ {0, 1}m, for D independently random seeds

y1, · · · , yD in {0, 1}t,

E
y1,··· ,yD

[
max

Λ:|Λ|=2k

D∑
i=1

Pr
[
Ext(Λ, yi) ∈ T

]]
≤ D ·

(
|T |
2m

+ 2ε

)
. (7.1)

Proof. We symmetrize and Gaussianize the L.H.S. of (7.1) by Theorem 7.1.2:

E
y1,··· ,yD

[
max

Λ:|Λ|=2k

D∑
i=1

Pr
[
Ext(Λ, yi) ∈ T

]]
(7.2)

≤max
Λ

E
y1,··· ,yD

[
D∑
i=1

Pr
[
Ext(Λ, yi) ∈ T

]]
+
√

2π E
y1,··· ,yD

[
E

g∼N(0,1)D

[
max

Λ

∣∣∣∣ D∑
i=1

Pr
[
Ext(Λ, yi) ∈ T

]
· gi
∣∣∣∣
]]

.

(7.3)
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Because Ext is an extractor for entropy k sources with error ε, the first term

max
|Λ|=2k

E
y1,··· ,yD

[
D∑
i=1

Pr
[
Ext(Λ, yi) ∈ T

]
] ≤ D · ( |T |

2m
+ ε).

The technical result is a bound on the Gaussian process for any y1, · · · , yD.

Claim 7.2.2. For any y1, · · · , yD, E
g∼N(0,1)D

[
max

Λ:|Λ|=2k

∣∣∣∣∑D
i=1 Pr

[
Ext(Λ, yi) ∈ T

]
· gi
∣∣∣∣] ≤ C0 ·

√
nD · logD for some universal constant C0.

We defer the proof of Claim 7.2.2 to Section 7.2.1.

By choosing the constant C large enough, for D = C
n log2 n

ε

ε2
, we can ensure that

C0

√
nD · logD ≤ εD

5
. This bounds (7.3) by D · ( |T |

2m
+ ε) + εD.

Next, we show that a restricted extractor is good with high probability. To do this,

we provide a concentration bound on max
|Λ|=2k

{∑D
i=1 Pr

[
Ext(Λ, yi) ∈ T

]}
. We prove that

a restricted extractor with D random seeds achieves the guarantee in Lemma 7.2.1 with

probability 1− δ after enlarging D by a factor of Õ(log 1
δ
).

Lemma 7.2.3. For any δ > 0, let D = C ′ · n·log 1
δ

ε2
· log2 n·log 1

δ

ε
for a universal constant C ′.

Given any (k, ε)-extractor Ext : {0, 1}n × {0, 1}t → {0, 1}m and any subset T ⊆ {0, 1}m, for

D independently random seeds y1, · · · , yD in {0, 1}t,

Pr
y1,··· ,yD

[
max

Λ:|Λ|=2k

{
D∑
i=1

Pr
[
Ext(Λ, yi) ∈ T

]
− D · |T |

2m

}
≤ D · 3ε

]
≥ 1− δ.

We defer the proof of Lemma 7.2.3 to Section 7.2.2. Finally we state the result about

extractors.

Theorem 7.2.4. Let Ext : {0, 1}n × {0, 1}t → {0, 1}m be a (k, ε)-extractor and D =

C · n·(log 1
δ

+2m)

ε2
·log2 n·(log 1

δ
+2m)

ε
for a universal constant C. For a random sequence (y1, · · · , yD)

where each yi ∼ {0, 1}t, the restricted extractor Ext(y1,··· ,yD) is a (k, 2ε)-extractor with proba-

bility 1− δ.
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Proof. We choose the error probability to be δ
22m in Lemma 7.2.3 and apply a union bound

over all possible statistical tests T in {0, 1}m.

For extractors, we show that 2m dependence in the degree is necessary.

Claim 7.2.5. There exists a (k = 1, ε = 0)-extractor Ext such that for any constant ε′ ≤ 1/2

and k′ > 0, any restriction Ext(y1,··· ,yD) requires D = Ω(2m) to be an (k′, ε′)-extractor.

Proof. Let us consider the extractor Ext : {0, 1}n×{0, 1}m → {0, 1}m defined as Ext(x, y) =

y. From the definition, it is an (k = 1, ε = 0)-extractor. On the other hand, Ext(y1, · · · , yD)

is an (k′, 0.5)-extractor only if D ≥ 0.5 · 2m.

However, this lower bound may not be necessary for strong extractors.

7.2.1 The Chaining Argument Fooling one test

Given y1, · · · , yD and T , for any subset Λ, we use ~p(Λ) to denote the vector

(
Pr
[
Ext(Λ, y1) ∈

T
]
, · · · ,Pr

[
Ext(Λ, yD) ∈ T

])
. Let t = 10 be a fixed parameter in this proof.

We rewrite the Gaussian process

E
g∼N(0,1)D

[
max

Λ∈({0,1}
n

2k )

∣∣∣∣ D∑
i=1

Pr
[
Ext(Λ, yi) ∈ T

]
· gi
∣∣∣∣
]

= E
g∼N(0,1)D

[
max

Λ∈({0,1}
n

2k )

∣∣〈~p(Λ), g〉
∣∣] .

We construct a sequence of subsets Ft−1,Ft, · · · ,Fk of vectors in RD and a sequence

of maps πj :
({0,1}n

2k

)
→ Fj for each j from t − 1 to k. We first set Fk to be the subset

of all vectors in the Gaussian process, i.e., Fk =
{
~p(Λ)

∣∣Λ ∈ ({0,1}m
2k

)}
and πk(Λ) = ~p(Λ).

For convenience, we set Ft−1 = {~0} and πt−1(Λ) = ~0 for any Λ ∈
({0,1}n

2k

)
and specify Fj

and πj for j ∈ [t, k − 1] later. For any ~p(Λ) in the Gaussian process, we use the equation
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~p(Λ) =
∑t

j=k πj
(
Λ
)
− πj−1

(
Λ
)

to rewrite it:

E
g∼N(0,1)n

[
max

Λ∈({0,1}
n

2k )

∣∣〈~p(Λ), g〉
∣∣] = E

g

[
max

Λ∈({0,1}
n

2k )

∣∣∣∣
〈

t∑
j=k

πj
(
Λ
)
− πj−1

(
Λ
)
, g

〉∣∣∣∣
]

(7.4)

= E
g

[
max

Λ∈({0,1}
n

2k )

t∑
j=k

∣∣∣∣ 〈πj(Λ)− πj−1

(
Λ
)
, g
〉 ∣∣∣∣
]

(7.5)

=
t∑

j=k

E
g

[
max

Λ∈({0,1}
n

2k )

∣∣∣∣ 〈πj(Λ)− πj−1

(
Λ
)
, g
〉 ∣∣∣∣
]

(7.6)

.
t∑

j=k

√
log(|Fj| · |Fj−1|) · max

Λ∈({0,1}
n

2k )

∥∥πj(Λ)− πj−1

(
Λ
)∥∥

2
.

(7.7)

Here (7.7) follows from the union bound over Gaussian random variables — Lemma 7.1.1.

In the rest of this proof, we provide upper bounds on
∥∥πj(Λ)− πj−1

(
Λ
)∥∥

2
and |Fj| to finish

the calculation of (7.7).

Two upper bounds for
∥∥πj(Λ)− πj−1

(
Λ
)∥∥

2
. We provide two methods to bound

∥∥πj(Λ)− πj−1

(
Λ
)∥∥

2

in (7.7). In this proof, for any map πj and Λ, we always choose the map πj(Λ) = p(Λ′) for

some subset Λ′.

Claim 7.2.6. Given |Λ0| ≥ D2, there always exists Λ1 ⊆ Λ0 with size |Λ1| ∈
[
|Λ0|/2 −

2D, |Λ0|/2 + 2D
]

such that

‖~p(Λ0)− ~p(Λ1)‖2 ≤ 6D1.5/|Λ0|.

Proof. We plan to use the Beck-Fiala Theorem 7.1.3 to find Λ1 given Λ0. Let the ground set

be Λ0 and the collection of subsets be Si =

{
α ∈ Λ0

∣∣∣∣Ext(α, yi) ∈ T} for each i ∈ [D]

and SD+1 = Λ0. Because the degree is at most D + 1, Theorem 7.1.3 implies an as-

signment χ : Λ0 → {±1} satisfying that for each Si, |
∑

α∈Si χ(α)| < 2(D + 1). We set

Λ1 =

{
α ∈ Λ0

∣∣∣∣χ(α) = 1

}
.
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Because |
∑

α∈Λ0
χ(α)| < 2(D + 1),

∣∣Λ1 − |Λ0|
2

∣∣ < (D + 1) ≤ 2D. At the same time,

for each i ∈ [D] and Si,

∣∣∣∣{α ∈ Λ1

∣∣∣∣Ext(α, yi) ∈ T}∣∣∣∣− |Si|2
< (D + 1).

To finish the proof, we prove
∣∣Pr[Ext(Λ0, yi) ∈ T ]− Pr[Ext(Λ1, yi) ∈ T ]

∣∣ ≤ 6D
|Λ0| .∣∣Pr[Ext(Λ0, yi) ∈ T ]− Pr[Ext(Λ1, yi) ∈ T ]

∣∣
=

∣∣∣∣∣∣∣∣
|Si|
|Λ0|
−

∣∣∣∣{α ∈ Λ1

∣∣∣∣Ext(α, yi) ∈ T}∣∣∣∣
|Λ1|

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
|Si|
|Λ0|
−

∣∣∣∣{α ∈ Λ1

∣∣∣∣Ext(α, yi) ∈ T}∣∣∣∣
|Λ0|/2

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
∣∣∣∣{α ∈ Λ1

∣∣∣∣Ext(α, yi) ∈ T}∣∣∣∣
|Λ0|/2

−

∣∣∣∣{α ∈ Λ1

∣∣∣∣Ext(α, yi) ∈ T}∣∣∣∣
|Λ1|

∣∣∣∣∣∣∣∣
<

2(D + 1)

|Λ0|
+

∣∣∣∣{α ∈ Λ1

∣∣∣∣Ext(α, yi) ∈ T}∣∣∣∣ ·
∣∣∣∣|Λ0|/2− |Λ1|

∣∣∣∣
|Λ0|/2 · |Λ1|

<
2(D + 1)

|Λ0|
+

(D + 1)

|Λ0|/2
≤ 6D

|Λ0|
.

From the definition of ~p(Λ0) =

(
Pr
[
Ext(Λ0, y1) ∈ T

]
, · · · ,Pr

[
Ext(Λ0, yD) ∈ T

])
, this

implies ‖~p(Λ0)− ~p(Λ1)‖2 ≤ 6D1.5/|Λ0|.

Next we provide an alternative bound for Λ0 with a small size using the probabilistic

method.

Claim 7.2.7. Given any Λ0 of size at least 100, there always exists Λ1 ⊆ Λ0 with size

|Λ1| ∈
[
|Λ0|/2−

√
|Λ0|, |Λ0|/2 +

√
|Λ0|

]
such that

‖~p(Λ0)− ~p(Λ1)‖2 ≤ 6
√
D/|Λ0|.

Proof. We first show the existence of Λ1 with the following two properties:

87



1. |Λ1| ∈
[
|Λ0|/2−

√
|Λ0|, |Λ0|/2 +

√
|Λ0|

]
.

2.
∑

i∈[D]

(∣∣∣∣{α ∈ Λ1

∣∣Ext(α, yi) ∈ T}∣∣∣∣− ∣∣∣∣{α ∈ Λ0

∣∣Ext(α, yi) ∈ T}∣∣∣∣/2)2

≤ D · |Λ0|.

We pick each element α ∈ Λ0 to Λ1 randomly and independently with probability 1/2. For

the first property, E
Λ1

[(
|Λ1| − |Λ0|/2

)2
]

= |Λ0|/4 implies it holds with probability at least

3/4.

At the same time,

E
Λ1

∑
i∈[D]

(∣∣∣∣{α ∈ Λ1

∣∣Ext(α, yi) ∈ T}∣∣∣∣− ∣∣∣∣{α ∈ Λ0

∣∣Ext(α, yi) ∈ T}∣∣∣∣/2)2


=
∑
i∈[D]

∣∣∣∣{α ∈ Λ0

∣∣Ext(α, yi) ∈ T}∣∣∣∣/4
implies the second property holds with probability at least 3/4. Therefore there exists Λ1

satisfying both properties.
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Now let us bound ‖~p(Λ0)− ~p(Λ1)‖2:∑
i∈[D]

(Pr[Ext(Λ0, yi) ∈ T ]− Pr[Ext(Λ1, yi) ∈ T ])2

≤2
∑
i∈[D]


∣∣∣∣{α ∈ Λ0

∣∣Ext(α, yi) ∈ T}∣∣∣∣
|Λ0|

−

∣∣∣∣{α ∈ Λ1

∣∣Ext(α, yi) ∈ T}∣∣∣∣
|Λ0|/2


2

+ 2
∑
i∈[D]


∣∣∣∣{α ∈ Λ1

∣∣Ext(α, yi) ∈ T}∣∣∣∣
|Λ0|/2

−

∣∣∣∣{α ∈ Λ1

∣∣Ext(α, yi) ∈ T}∣∣∣∣
|Λ1|


2

≤ 8

|Λ0|2
∑
i∈[D]

(∣∣∣∣{α ∈ Λ0

∣∣Ext(α, yi) ∈ T}∣∣∣∣/2− ∣∣∣∣{α ∈ Λ1

∣∣Ext(α, yi) ∈ T}∣∣∣∣)2

+2
∑
i∈[D]

∣∣∣∣{α ∈ Λ1

∣∣Ext(α, yi) ∈ T}∣∣∣∣2 · ( |Λ1| − |Λ0|/2
|Λ1| · |Λ0|/2

)2

≤ 8D

|Λ0|
+ 2

∑
i∈[D]

|Λ0|
|Λ0|2/4

≤ 16D/|Λ0|.

Constructions of Fj. We construct Fk−1, · · · ,Ft to fit in with Claim 7.2.6 and 7.2.7. We

define two parameters s(j)l and s(j)u on the order of 2j for each Fj such that

Fj =

{
~p(Λ)

∣∣∣∣Λ ∈ ({0, 1}ns(j)l

)
∪
(
{0, 1}n

s(j)l + 1

)
∪ · · · ∪

(
{0, 1}n

s(j)u

)}
.

We start with s(k)l = s(k)u = 2k and define s(j)l and s(j)u from j = k − 1 to t.

1. j > 2 logD+ 8: we define s(j)l = s(j+1)l
2
− 2D and s(j)u = s(j+1)u

2
+ 2D. In this proof,

we bound 2j − 4D ≤ s(j)l ≤ s(j)u ≤ 2j + 4D.
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2. j ≤ 2 logD+8: we define s(j)l = s(j+1)l
2
−
√
s(j + 1)l and s(j)u = s(j+1)u

2
+
√
s(j + 1)u.

We bound 0.8·2j ≤ s(j)l ≤ s(j)u ≤ 1.4·2j by induction. The base case is j > 2 logD+8,

which is proved above. Because 2D is always less than
√
s(j + 1)l for j > 2 logD+ 8,

s(j)l
2j

=

j∏
i=k−1

2s(i)l
s(i+ 1)l

≥
j∏

i=k−1

(1− 2√
s(i+ 1)l

) ≥ 1−
j∑

i=k−1

2√
s(i+ 1)l

.

By induction,
∑j

i=k−1
2√

s(i+1)l
≤
∑t

i=k−1
2√

0.8·2j
≤ 0.2 given t = 10. Similarly,

s(j)u
2j

=

j∏
i=k−1

2s(i)u
s(i+ 1)u

≤
j∏

i=k−1

(1 +
2√

s(i+ 1)u
).

By induction,
∑j

i=k−1
2√

s(i+1)u
≤
∑t

i=k−1
2√

1.4·2j
≤ 0.2 given t = 10, which implies

s(j)u
2j
≤ 1.4.

Constructions of πj. Next we define πj from j = k to j = t by induction. The base case

is j = k such that πj(Λ) = ~p(Λ) for any Λ of size 2k. Given Λ and πj(Λ) ∈ Fj, we define

πj−1(Λ) using Claim 7.2.6 or 7.2.7. From the definition of Fj, πj(Λ) = ~p(Λj) for some Λj

with size in [s(j)l, s(j)u].

For j > 2 logD + 8, we apply Claim 7.2.6 on Λj to find Λj−1 of size |Λj−1| ∈ [|Λj| −

2D, |Λj|+ 2D] satisfying ‖~p(Λj)− ~p(Λj−1)‖2 ≤ 6D1.5/|Λj|.

For j ≤ 2 logD + 8, we apply Claim 7.2.7 on Λj to find Λj−1 of size |Λj−1| ∈ [|Λj| −√
|Λj|, |Λj|+

√
|Λj|] satisfying ‖~p(Λj)− ~p(Λj−1)‖2 ≤ 6

√
D/|Λj|.

Thus |Λj−1| is always in [s(j − 1)l, s(j − 1)u], which indicates ~p(Λj−1) is in Fj−1. We

set πj−1(Λ) = ~p(Λj−1).

To finish this proof, we plug 0.8·2j ≤ s(j)l ≤ s(j)u ≤ 1.4·2j and |Fj| =
∑s(j)u

i=s(j)l

(
2n

i

)
≤
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(s(j)u − s(j)l + 1) ·
(

2n

s(j)u

)
≤ 2j · 2n·2j ≤ 22n·2j into (7.7).

t∑
j=k

√
log(|Fj| · |Fj−1|) · max

Λ∈({0,1}
n

2k )

∥∥πj(Λ)− πj−1

(
Λ
)∥∥

2

≤
2 logD+9∑
j=k

√
4n · 2j · 6D1.5/s(j)l +

t∑
j=2 logD+8

√
4n · 2j · 6

√
D/s(j)l

.
2 logD+9∑
j=k

√
n · 2j ·D1.5/2j +

t∑
j=2 logD+8

√
n · 2j ·

√
D/2j

≤
2 logD+9∑
j=k

√
nD · D

2j/2
+

t∑
j=2 logD+8

√
nD

. logD ·
√
nD.

7.2.2 Larger Degree with High Confidence

We finish the proof of Lemma 7.2.3 in this section. Given (y1, · · · , yD) ∈ {0, 1}t×D

and T , we consider the error vector in R(2n

2k):

Err(y1, · · · , yD) =

(
D∑
i=1

(
Pr[Ext(Λ, yi) ∈ T ]− T

2m
))

Λ∈({0,1}
n

2k )

.

Because max
Λ:|Λ|=2k

∑D
i=1

(
Pr
[
Ext(Λ, yi) ∈ T

]
− |T |

2m

)
≤ ‖Err(y1, · · · , yD)‖∞, we will prove

Pr
y1,··· ,yD

[‖Err(y1, · · · , yD)‖∞ ≥ 3εD] ≤ δ for D = C ′ ·
n · log 1

δ

ε2
· log2 n · log 1

δ

ε
. (7.8)

Since Err(y1, · · · , yD) = Err(y1, ∅, · · · , ∅) + Err(∅, y2, ∅, · · · , ∅) + · · · + Err(∅, · · · , ∅, yD), we

plan to apply a concentration bound to prove (7.8).

Our main tool is a concentration inequality of Ledoux and Talagrand [LT91] for

symmetric vectors. For convenience, we use the following version for any Banach space from

Rudelson and Vershynin, which is stated as Theorem 3.8 in [RV08].
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Theorem 7.2.8. Given a Banach space with norm ‖ · ‖, let Y1, · · · , Ym be independent and

symmetric random vectors taking values in it with ‖Yj‖ ≤ r for all j ∈ [m]. There exists an

absolute constant C1 such that for any integers l ≥ q, and any t > 0, the random variable

‖
∑m

j=1 Yj‖ satisfies

Pr
Y1,··· ,Ym

[
‖

m∑
j=1

Yj‖ ≥ 8q E
[
‖

m∑
j=1

Yj‖
]

+ 2r · l + t

]
≤ (

C1

q
)l + 2 exp(− t2

256q E[‖
∑m

j=1 Yj‖]2
).

To apply this theorem for symmetric random vectors, we symmetrize our goal Err(y1, · · · , yD)

as follows. Given a subset T ⊆ {0, 1}m and 2D seeds (y1, · · · , yD) and (z1, · · · , zD), we define

a vector ∆y,z from
({0,1}n

2k

)
to R:

∆y,z(Λ) =
D∑
i=1

(Pr[Ext(Λ, yi) ∈ T ]− Pr[Ext(Λ, zi) ∈ T ])

We use the `∞ norm in this section:

‖∆y,z‖∞ = max
Λ∈({0,1}

n

2k )
|∆y,z(Λ)|.

Next we use the following Lemma to bridge Theorem 7.2.8 for symmetric random vectors

and our goal (7.8).

Lemma 7.2.9. When we generate y = (y1, · · · , yD) and z = (z1, · · · , zD) independently from

the uniform distribution of {0, 1}D×t, for Err(y) over the random choices y = (y1, · · · , yD),

Pr
y

[
‖Err(y)‖∞ ≥ 2E

y
[‖Err(y)‖∞] + δ

]
≤ 2 · Pr

y,z
[‖∆y,z‖∞ ≥ δ] .

Proof. Let Z and Z ′ be independent identically distributed non-negative random variables.

We use the following fact from [RV08]

Pr
[
Z ≥ 2E[Z] + δ

]
≤ 2 Pr

[
Z − Z ′ ≥ δ

]
. (7.9)
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The reason is that

Pr
Z

[Z ≥ 2E[Z] + δ] ≤ Pr
Z,Z′

[Z − Z ′ ≥ δ|Z ′ ≤ 2E[Z]]

≤
Pr
[
Z − Z ′ ≥ δ ∧ Z ′ ≤ 2E[Z]

]
PrZ′

[
Z ′ ≤ 2E[Z ′]

] ≤
Pr
[
Z − Z ′ ≥ δ

]
1/2

.

By plugging Z = ‖Err(y)‖∞ in (7.9),

Pr
y

[
‖Err(y)‖∞ ≥ 2E

y
[‖Err(y)‖∞] + δ

]
≤ 2 Pr

y,z
[‖Err(y)‖∞ − ‖Err(z)‖∞ ≥ δ] .

Then, for any y = (y1, · · · , yD) and z = (z1, · · · , zD), we bound ‖Err(y)‖∞ − ‖Err(z)‖∞ by

max
Λ∈({0,1}

n

2k )


∣∣∣∣ ∑
i∈[D]

Pr
[
Ext(Λ, yi) ∈ T

]
− D · |T |

2m

∣∣∣∣
− max

Λ∈({0,1}
n

2k )


∣∣∣∣ ∑
i∈[D]

Pr
[
Ext(Λ, zi) ∈ T

]
− D · |T |

2m

∣∣∣∣


≤ max
Λ∈({0,1}

n

2k )


∣∣∣∣ ∑
i∈[D]

Pr
[
Ext(Λ, yi) ∈ T

]
− D · |T |

2m

∣∣∣∣− ∣∣∣∣ ∑
i∈[D]

Pr
[
Ext(Λ, zi) ∈ T

]
− D · |T |

2m

∣∣∣∣


≤ max
Λ∈({0,1}

n

2k )


∣∣∣∣
∑
i∈[D]

Pr
[
Ext(Λ, yi) ∈ T

]
− D · |T |

2m

−
∑
i∈[D]

Pr
[
Ext(Λ, zi) ∈ T

]
− D · |T |

2m

∣∣∣∣


= max
Λ∈({0,1}

n

2k )


∣∣∣∣ ∑
i∈[D]

Pr
[
Ext(Λ, yi) ∈ T

]
−
∑
i∈[D]

Pr
[
Ext(Λ, zi) ∈ T

]∣∣∣∣
 = ‖∆y,z‖∞

From the discussion above, we have

Pr
y

[
‖Err(y)‖∞ ≥ 2E

y
[‖Err(y)‖∞] + δ

]
≤2 Pr

y,z
[‖∆y,z‖∞ ≥ δ] .

Proof of Lemma 7.2.3. From Lemma 7.2.9, it is enough to use Theorem 7.2.8 to show a

concentration bound on ∆y,z. We first bound E[‖Erry‖∞] and E[‖∆y,z‖∞]. Notice that the
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proofs of Theorem 7.1.2 and Lemma 7.2.1 indicate

E [‖Erry‖∞] =E

[
max

Λ:|Λ|=2k

∣∣∣∣∣
D∑
i=1

(
Pr
[
Ext(Λ, yi) ∈ T

]
− |T |

2m

)∣∣∣∣∣
]

≤E
[

max
Λ:|Λ|=2k

{∣∣∣∣ D∑
i=1

Pr
[
Ext(Λ, yi) ∈ T

]
− E

y′

[
D∑
i=1

Pr
[
Ext(Λ, y′i) ∈ T

]] ∣∣∣∣
+

∣∣∣∣Ey′
[

D∑
i=1

Pr
[
Ext(Λ, y′i) ∈ T

]]
− D · |T |

2m

∣∣∣∣}]

≤
√

2π E
y

[
E

g∼N(0,1)n

[
max

Λ∈({0,1}
n

2k )

D∑
i=1

Pr[Ext(Λ, yi) ∈ T ] · gi

]]
+ ε ·D by Claim B.1

≤C2

√
nD · logD + εD. by Claim 7.2.2

Similarly,

E[‖∆y,z‖∞] = E
y,z

[
max

Λ∈({0,1}
n

2k )

∣∣∣∣ D∑
i=1

(Pr[Ext(Λ, yi) ∈ T ]− Pr[Ext(Λ, zi) ∈ T ])

∣∣∣∣
]

≤
√

2π E
y

[
E

g∼N(0,1)n

[
max

Λ∈({0,1}
n

2k )

D∑
i=1

Pr[Ext(Λ, yi) ∈ T ] · gi

]]
by Claim B.1

≤ C2

√
nD · logD by Claim 7.2.2

Now we rewrite ∆y,z(Λ) =
∑D

i=1 (Pr[Ext(Λ, yi) ∈ T ]− Pr[Ext(Λ, zi) ∈ T ]) as the sum-

mation of D symmetric and independent random variables

∆yi,zi(Λ) = (Pr[Ext(Λ, yi) ∈ T ]− Pr[Ext(Λ, zi) ∈ T ])

for Λ ∈
({0,1}n

2k

)
. Next we bound each term

r = max
yi,zi

{
‖∆yi,zi‖∞

}
= max

yi,zi,Λ∈({0,1}
n

2k )

∣∣∣∣Pr[Ext(Λ, yi) ∈ T ]− Pr[Ext(Λ, zi) ∈ T ]

∣∣∣∣ ≤ 1.

We choose the parameters q = 2C1 = Θ(1), l = log 1
δ
≤ εD/10, t = εD/3 and plug

them in Theorem 7.2.8 to bound

Pr
[
‖∆y,z‖∞ ≥ 8q · C2

√
nD · logD + 2r · l + t

]
≤ 2−l + 2e

− t2

256q E[‖∆y,z‖∞]2 ≤ 3δ
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while 8q · C2

√
nD · logD + 2r · l + t ≤ 0.8εD.

Since E[‖Err(y)‖∞] ≤ 1.1εD, we have Pr[‖Err(y)‖∞ ≥ 3 · εD] ≤ 3δ.

7.3 Restricted Strong Extractors

We extend our techniques to strong extractors in this section.

Theorem 7.3.1. Let D = C · n·2m
ε2
· (log n

ε
+ m)2 for a universal constant C and Ext :

{0, 1}n×{0, 1}t → {0, 1}m be any strong (k, ε)-extractor. For D independently random seeds

y1, · · · , yD, Ext(y1,··· ,yD) is a strong extractor for entropy k sources with expected error 2ε.

Similar to Lemma 7.2.3, when we enlarge the degree by a factor of Õ(log 1
δ
), we

improve the guarantee to a high probability 1− δ instead of an expected error.

Corollary 7.3.2. For any δ > 0, let D = C · n·2
m log 1

δ

ε2
· log2 n·2m log 1

δ

ε
for a universal constant

C. Given any strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}t → {0, 1}m, for D independently

random seeds y1, · · · , yD, Ext(y1,··· ,yD) is a strong (k, 3ε)-extractor with probability at least

1− δ.

The proof of Theorem 7.3.1 follows the same outline of the proof of Lemma 7.2.1 with

different parameters. We apply a chaining argument to bound the L1 error of all entropy k

sources Λ:

max
|Λ|=2k


D∑
i=1

 ∑
α∈{0,1}m

|Pr[Ext(Λ, yi) = α]− 2−m|

 ,

instead of bounding the error over all statistical tests in degree D strong extractors.

Proof of Theorem 7.3.1. We plan to show

E
y1,··· ,yD

 max
Λ∈({0,1}

n

2k )

D∑
i=1

∑
α∈{0,1}m

∣∣∣Pr
x∼Λ

[Ext0(x, yi) = α]− 2−m
∣∣∣
 ≤ 4εD. (7.10)
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For convenience, we use Pr[Ext0(Λ, yi) = α] to denote Prx∼Λ[Ext0(x, yi) = α] and Erry(Λ) to

denote the error of the seed y and subset Λ , i.e., Erry(Λ) =
∑

α∈{0,1}m

∣∣Pr[Ext0(Λ, y) = α]−2−m
∣∣.

We use these notations to rewrite (7.10) as

E
y1,··· ,yD

[
max

Λ∈({0,1}
n

2k )

D∑
i=1

Erryi(Λ)

]
.

Then we symmetrize and Gaussianize it by Theorem 7.1.2:

E
y

[
max

Λ∈({0,1}
n

2k )

D∑
i=1

Erryi(Λ)

]
≤ max

Λ∈({0,1}
n

2k )
E
y

[
D∑
i=1

Erryi(Λ)

]
+
√

2πE
y

[
E
g

[
max

Λ∈({0,1}
n

2k )

∣∣ D∑
i=1

Erryi(Λ) · gi
∣∣]] .

(7.11)

Because Ext0 is a strong extractor, the first term E
y1,··· ,yD

[∑D
i=1 Erryi(Λ)

]
is at most 2εD for

any Λ of size 2k.

To bound the second term in (7.11), we fix the seeds y1, · · · , yD and bound the

Gaussian process.

Claim 7.3.3. For any seeds y1, · · · , yD, E
g

[
max

Λ∈({0,1}
n

2k )

∣∣∣∣ ∑
i∈[D]

Erryi(Λ) · gi
∣∣∣∣
]
≤ C0(logD+m)

√
nD · 2m

for a constant C0.

We defer the proof of this claim to Section 7.3.1. We finish the proof by bounding

(7.10) as follows:

E
y1,··· ,yD

[
max

Λ∈({0,1}
n

2k )

D∑
i=1

Erryi(Λ)

]

≤
√

2π · E
y1,··· ,yD

{
E
g

[
max

Λ∈({0,1}
n

2k )

∣∣∣∣∣∑
i

Erryi(Λ) · gi

∣∣∣∣∣
]}

+ εD

≤
√

2π · C0(logD +m)
√
nD · 2m +D · ε.

We choose D = 10C2
0 ·

n(log n
ε

+m)2·2m

ε2
such that

E
y1,··· ,yD

[
max

Λ∈({0,1}
n

2k )

D∑
i=1

Erryi(Λ)

]
≤ 4εD.
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This indicates the error of the strong linear extractor constituted by A1, · · · , AD is 2ε in

statistical distance.

Bottleneck of the chaining argument. In our proof of Theorem 7.3.1, we use the follow-

ing relaxation to bound the distance of two vectors in the Gaussian process P corresponding

to two subsets Λ and Λ′:∥∥∥(‖Ext(Λ, yi)− Um‖1

∣∣
i=1,··· ,D

)
−
(
‖Ext(Λ′, yi)− Um‖1

∣∣
i=1,··· ,D

)∥∥∥2

2
(7.12)

=
D∑
i=1

(‖Ext(Λ, yi)− Um‖1 − ‖Ext(Λ′, yi)− Um‖1)
2

(7.13)

≤
D∑
i=1

(‖Ext(Λ, yi)− Ext(Λ′, yi)‖1)2. (7.14)

The shortcoming of our approach is that the subset chaining argument provides a tight

analysis on (7.14) but not (7.12).

We show that the Gaussian process under the distance (7.14) is Ω(
√

2m) from the

Sudakov minoration. For example, let us consider the distance of the first coordinate

‖Ext(Λ, y1)−Ext(Λ′, y1)‖1. Because of the existence of random codes with constant rate and

linear distance, there exists l = exp(2m) subsets T1, · · · , Tl in {0, 1}m such that |Ti \ Tj| =

Ω(2m) for any i 6= j. Let Λ1, · · · ,Λl be the inverse images of T1, · · · , Tl in Ext(·, y1). Then

‖Ext(Λi, y1)−Ext(Λj, y1)‖1 = Ω(1) for any i 6= j from the distance of the code, which indicates

the Gaussian process is Ω(2m) from the Sudakov minoration for the distance (7.14).

7.3.1 The Chaining Argument of Strong Extractors

We prove Claim 7.3.3 in this section. We fix a parameter t = 8 in this proof.

Recall that y1, · · · , yD are fixed in this section, we use Err(Λ) to denote the vector

(Erry1(Λ), · · · ,ErryD(Λ)). We rewrite the Gaussian process as
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E
g

 max
Λ∈(2n

2k)

∣∣∣∣∣∣
∑
i∈[D]

Erryi(Λ) · gi

∣∣∣∣∣∣
 = E

g

[
max

Λ∈(2n

2k)

∣∣∣∣〈Err(Λ), g
〉∣∣∣∣
]
.

We define a sequence of subsets Ft−1,Ft,Ft+1, · · · ,Fk of vectors in RD where Ft−1 =

{~0}, |Fi| = poly(
(

2n

2i

)
), and Fk =

{
Err(Λ)

∣∣Λ ∈ ({0,1}n
2k

)}
. For each i from t to k, we construct

a map πi : Fk → Fi, except that πk is the identity map and πt−1(v) = ~0 for any v. For any

vector v ∈ Fk,

v =
t∑

j=k

πj(v)− πj−1(v).

We plug these notations into the Gaussian process:

E
g

[
max

Λ∈(2n

2k)

∣∣∣∣〈Err(Λ), g
〉∣∣∣∣
]

= E
g

[
max
v∈Fk

∣∣∣∣〈v, g〉∣∣∣∣] (7.15)

= E
g

[
max
v∈Fk

∣∣∣∣〈 t∑
j=k

πj(v)− πj−1(v), g
〉∣∣∣∣
]

(7.16)

≤ E
g

[
max
v∈Fk

t∑
j=k

∣∣∣∣〈πj(v)− πj−1(v), g
〉∣∣∣∣
]

(7.17)

≤
t∑

j=k

E
g

[
max
v∈Fk

∣∣∣∣〈πj(v)− πj−1(v), g
〉∣∣∣∣] (7.18)

.
t∑

j=k

√
log |Fj| · |Fj−1| ·max

v
‖πj(v)− πj−1(v)‖2. (7.19)

We first construct Fj from j = k to j = t then define their maps πk−1, · · · , πt. To

construct Fj, we will specify two parameters s(j)l = s(j)u = Θ(2j) for the size of Λ such

that

Fj =

{
Err(Λ)

∣∣Λ ∈ ({0, 1}n
s(j)l

)
∪
(
{0, 1}n

s(j)l + 1

)
· · · ∪

(
{0, 1}n

s(j)u

)}
.
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Notice that the size of each subset Fj is bounded by

|Fj| ≤
(

2n

s(j)l

)
+ · · ·+

(
2n

s(j)u

)
.

The base case is s(k)l = s(k)u = 2k and Fk =
{
Err(Λ)

∣∣Λ ∈ ({0,1}n
2k

)}
.

Construction of Fj for j > 4 logD + m: s(j)l = s(j + 1)l/2 − 2D and s(j)u = s(j +

1)u/2 + 2D. We bound s(j)l ≥ 2j − 4D and s(j)u ≤ 2j + 4D for all j > 4 logD +m.

Construction of Fj for j ≤ 4 logD + m: s(j)l = s(j + 1)l/2 −
√
s(j + 1)l and s(j)u =

s(j + 1)u/2 +
√
s(j + 1)u. We bound s(j)l ≥ 0.8 · 2j because s(t)l/2

t =
∏t

j=k−1
2s(j)l
s(j+1)l

is at

least

(1− 2√
s(t+ 1)l

)·(1− 2√
s(t+ 2)l

) · · · (1− 2√
s(k)l

) ≥ 1−
k∑

j=t+1

2√
s(j)l

≥ 1−
k∑

j=t+1

2√
0.8 · 2j

≥ 0.8.

Similarly, we bound s(j)u ≤ 1.4 · 2j because

(1+
2√

s(t+ 1)u
)·(1+

2√
s(t+ 2)u

) · · · (1+
2√
s(k)u

) ≤ 1+2
k∑

j=t+1

2√
s(j)u

≤ 1+2
k∑

j=t+1

2√
1.4 · 2j

≤ 1.4.

Construction of πj: we construct the map πj from j = k − 1 to j = t and bound

‖πj+1(v) − πj(v)‖2 for each v ∈ Fk in (7.19). We first use the Beck-Fiala Theorem in the

discrepancy method to construct πj with j > 4 logD + m then use a randomized argument

to construct πj with j ≤ 4 logD +m.

Claim 7.3.4. Given Λ ≥ D4 and D seeds y1, · · · , yD, there always exists Λ′ ⊆ Λ with size

|Λ′| ∈
[
|Λ|/2− 2D, |Λ|/2 + 2D

]
such that

‖Err(Λ)− Err(Λ′)‖2 ≤ 6D1.5 · 2m/|Λ|.
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Proof. We plan to use the Beck-Fiala Theorem from the discrepancy method. We define the

ground set S = Λ and m = 2m ·D + 1 subsets T1, · · · , Tm to be

T(i−1)2m+α =
{
x ∈ Λ

∣∣Ext(x, yi) = α
}

for each α ∈ [0, · · · , 2m − 1] and i ∈ [D]

and the last Tm = S = Λ. Notice that the degree of every element x ∈ Λ is D + 1.

From the Beck-Fiala Theorem, there always exists χ : Λ→ {±1} such that

for any i ∈ [m], |
∑
x∈Ti

χ(x)| < 2D + 2.

We choose Λ′ = {x|χ(x) = 1}. From the guarantee of Tm, we know |Λ′| ∈
[
|Λ|/2± (D+ 1)

]
.

Next we consider ‖Err(Λ)− Err(Λ′)‖2.

We fix α ∈ {0, 1}m and i ∈ [D] and bound (Pr[Ext(Λ, yi) = α]− Pr[Ext(Λ′, yi) = α])2

as follows.

(Pr[Ext(Λ, yi) = α]− Pr[Ext(Λ′, yi) = α])2

≤2

(
Pr[Ext(Λ, yi) = α]− |{x ∈ Λ′|Ext(x, yi) = α}|

|Λ|/2

)2

+ 2

(
|{x ∈ Λ′|Ext(x, yi) = α}|

|Λ|/2
− Pr[Ext(Λ′, yi) = α]

)2

≤2

(
|{x ∈ Λ|Ext(x, yi) = α}| − 2|{x ∈ Λ′|Ext(x, yi) = α}|

|Λ|

)2

+ 2

(
|{x ∈ Λ′|Ext(x, yi) = α}| · ( 1

|Λ|/2
− 1

|Λ′|
)

)2

≤2(
3D

|Λ|
)2 + 2

(
|{x ∈ Λ′|Ext(x, yi) = α}| · |Λ|/2− |Λ|

′

|Λ|/2 · |Λ′|

)2

≤18D2

|Λ|2
+ 2(

2D

|Λ|/2
)2 = 26D2/|Λ|2.
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We bound ‖Err(Λ)− Err(Λ′)‖2
2 using the above inequality.

‖Err(Λ)− Err(Λ′)‖2
2 =

D∑
i=1

 ∑
α∈{0,1}m

|Pr[Ext(Λ, yi) = α]− 2−m| − |Pr[Ext(Λ′, yi) = α]− 2−m|

2

≤
D∑
i=1

 ∑
α∈{0,1}m

|Pr[Ext(Λ, yi) = α]− Pr[Ext(Λ′, yi) = α]|

2

≤ 2m
D∑
i=1

∑
α∈{0,1}m

(Pr[Ext(Λ, yi) = α]− Pr[Ext(Λ′, yi) = α])
2

≤ 26D3 · 22m/|Λ|2.

Claim 7.3.5. Given any Λ of size at least 100, there always exists Λ′ ⊆ Λ with size |Λ′| ∈[
|Λ|/2−

√
|Λ|, |Λ|/2 +

√
|Λ|
]

such that

‖Err(Λ)− Err(Λ′)‖2 ≤ 6
√
D · 2m/|Λ|.

Proof. We show the existence of Λ′ by the probabilistic method of picking each element in

Λ to Λ′ with probability 1/2. Because E[|Λ′|] = |Λ|
2

and E[(|Λ′| − |Λ|
2

)2] = |Λ|
4

, Λ′ satisfies

|Λ′| ∈
[ |Λ|

2
−
√
|Λ|, |Λ|

2
+
√
|Λ|
]

with probability at least 3/4 from the Chebyshev inequality.

(7.20)

Next we consider

E
Λ′

∑
i∈[D]

∑
α∈{0,1}m

(∣∣{x ∈ Λ′|Ext(x, yi) = α}
∣∣− ∣∣{x ∈ Λ|Ext(x, yi) = α}

∣∣/2)2


=
∑
i∈[D]

∑
α∈{0,1}m

E
Λ′

[(∣∣{x ∈ Λ′|Ext(x, yi) = α}
∣∣− ∣∣{x ∈ Λ|Ext(x, yi) = α}

∣∣/2)2
]

=
∑
i∈[D]

∑
α∈{0,1}m

∣∣{x ∈ Λ|Ext(x, yi) = α}
∣∣/4 = D · |Λ|/4.
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With probability 3/4,∑
i∈[D]

∑
α∈{0,1}m

(∣∣{x ∈ Λ|Ext(x, yi) = α}
∣∣/2− ∣∣{x ∈ Λ′|Ext(x, yi) = α}

∣∣)2 ≤ D · |Λ|. (7.21)

We set Λ′ to be a subset satisfying equations (7.20) and (7.21) and consider ‖Err(Λ)−

Err(Λ′)‖2.

We fix α ∈ {0, 1}m and i ∈ [D] and bound (Pr[Ext(Λ, yi) = α]− Pr[Ext(Λ′, yi) = α])2

as follows.

(Pr[Ext(Λ, yi) = α]− Pr[Ext(Λ′, yi) = α])2

≤2

(
Pr[Ext(Λ, yi) = α]− |{x ∈ Λ′|Ext(x, yi) = α}|

|Λ|/2

)2

+ 2

(
|{x ∈ Λ′|Ext(x, yi) = α}|

|Λ|/2
− Pr[Ext(Λ′, yi) = α]

)2

≤2

(
|{x ∈ Λ|Ext(x, yi) = α}| − 2|{x ∈ Λ′|Ext(x, yi) = α}|

|Λ|

)2

+ 2

(
|{x ∈ Λ′|Ext(x, yi) = α}| · ( 1

|Λ|/2
− 1

|Λ′|
)

)2

≤8

(∣∣{x ∈ Λ|Ext(x, yi) = α}|/2− |{x ∈ Λ′|Ext(x, yi) = α}
∣∣)2

|Λ|2
+ 20

|{x ∈ Λ′|Ext(x, yi) = α}|
|Λ|2

,

(*)

where we use the property (7.20) in the last step to bound the second term. Next we
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bound ‖Err(Λ)− Err(Λ′)‖2
2 base on the above inquality:

‖Err(Λ)− Err(Λ′)‖2
2 =

D∑
i=1

 ∑
α∈{0,1}m

|Pr[Ext(Λ, yi) = α]− 2−m| − |Pr[Ext(Λ′, yi) = α]− 2−m|

2

≤
D∑
i=1

 ∑
α∈{0,1}m

|Pr[Ext(Λ, yi) = α]− Pr[Ext(Λ′, yi) = α]|

2

≤ 2m
D∑
i=1

∑
α∈{0,1}m

(Pr[Ext(Λ, yi) = α]− Pr[Ext(Λ′, yi) = α])
2

next apply (*)

≤ 8 · 2m
∑
i,α

(∣∣{x ∈ Λ|Ext(x, yi) = α}|/2− |{x ∈ Λ′|Ext(x, yi) = α}
∣∣)2

|Λ|2

+ 20 · 2m
∑
i,α

|{x ∈ Λ′|Ext(x, yi) = α}|
|Λ|2

≤ 8 · 2m2D · |Λ|
|Λ|2

+ 20 · 2mD · |Λ|
|Λ|2

≤ 36D · 2m

|Λ|
.

Now we define our map πj : Fk → Fj from j = k to t by induction. The base case πk

is the identity map. Then we define πj−1 given πj.

For j > 4 logD+m, given Λ ∈
({0,1}n

2k

)
, let v = πj

(
Err(Λ)

)
be the vector in Fj. From

the definition of Fj, there exists Λj of size between [s(j)l, s(j)u] such that v = Err(Λj). Let

Λj−1 be the subset satisfying the guarantee in Claim 7.3.4 for Λj. We set πj−1

(
Err(Λ)

)
=

Err(Λj−1).

Similarly, for j ≤ 4 logD +m, given u = Err(Λ) and πj(u) = Err(Λj) for Λ of size 2k,

we define πj−1(u) = Err(Λj−1) where Λj−1 is the subset satisfying the guarantee in Claim 7.3.5

for Λj.
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To finish the calculation of (7.19), we bound |Fj| by

|Fj| ≤
(

2n

s(j)l

)
+ · · ·+

(
2n

s(j)u

)
≤ 2 · 2j ·

(
2n

1.8 · 2j

)
≤ 22n2j .

From the all discussion above, we bound the Gaussian process in (7.19) as

E
g

[
max

Λ∈(2n

2k)

∣∣∣∣〈|Pj(Λ)− 2−m ·~1|, g
〉∣∣∣∣
]
.

t∑
j=k

√
log |Fj| · |Fj−1| ·max

v
‖πj(v)− πj−1(v)‖2

≤
4 logD+m∑

j=k

√
2n · 2j · (10D1.5 · 2m−j)

+
t∑

j=4 logD+m

√
2n · 2j · 10

√
D · 2m−j

.
4 logD+m∑

j=k

√
n · (D1.5 · 2m)

2j/2
+

t∑
j=4 logD+m

√
2nD · 2m

.
√
n · (D1.5 · 2m)

D2 · 2m/2
+ (4 logD +m) ·

√
2nD · 2m

.(4 logD +m) ·
√

2nD · 2m.
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Chapter 8

Hash Functions for Multiple-Choice Schemes

We present explicit constructions of hash families that guarantee the same maximum

loads as a perfectly random hash function in the multiple-choice schemes. We construct our

hash families based on the hash family of Celis et al. [CRSW13] for the 1-choice scheme,

which is O(log log n)-wise independent over n bins and “almost” O(log n)-wise independent

over a fraction of poly(log n) bins.

We first show our hash family guarantees a maximum load of log logn
log d

+ O(1) in the

Uniform-Greedy scheme [ABKU99, Voc03] with d choices. We use U to denote the pool of

balls and consider placing m = O(n) balls into n bins here. Without loss of generality, we

always assume |U | = poly(n) and d is a constant at least 2 in this work.

Theorem 8.0.1 (Informal version of Theorem 8.4.1). For any m = O(n), any constants c

and d, there exists a hash family with O(log n log log n) random bits such that given any m

balls in U , with probability at least 1−n−c, the max-load of the Uniform-Greedy scheme with

d independent choices of h is log logn
log d

+O(1).

Our hash family has an evaluation time O
(
(log log n)4

)
in the RAM model based

on the algorithm designed by Meka et al. [MRRR14] for the hash family of Celis et

al. [CRSW13].

Then we show this hash family guarantees a load balancing of log logn
d log φd

+ O(1) in the

Always-Go-Left scheme [Voc03] with d choices. The Always-Go-Left scheme [Voc03] is an

asymmetric allocation scheme that partitions the n bins into d groups with equal size and
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uses an unfair tie-breaking mechanism. Its allocation process provides d independent choices

for each ball from the d groups separately and always chooses the left-most bin with the

least load for each ball. We defer the formal description of the Always-Go-Left scheme to

Section 8.5. Notice that the constant φd in equation φdd = 1 + φd + · · · + φd−1
d satisfies

1.61 < φ2 < φ3 < φ4 < · · · < φd < 2. Compared to the Uniform-Greedy scheme, the Always-

Go-Left scheme [Voc03] improves the maximum load exponentially with regard to d. Even

for d = 2, the Always-Go-Left scheme improves the maximum load from log log n+O(1) to

0.7 log log n+O(1).

Theorem 8.0.2 (Informal version of Theorem 8.5.3). For any m = O(n), any constants c

and d, there exists a hash family with O(log n log log n) random bits such that given any m

balls in U , with probability at least 1−n−c, the max-load of the Always-Go-Left scheme with

d independent choices of h is log logn
d log φd

+O(1).

At the same time, from the lower bound log logn
d log φd

−O(1) on the maximum load of any

random d-choice scheme shown by Vöcking [Voc03], the maximum load of our hash family

is optimal for d-choice schemes up to the low order term of constants.

Finally, we show our hash family guarantees the same maximum load as a perfectly

random hash function in the 1-choice scheme for m = n · poly(log n) balls. Given m >

n log n balls in U , the maximum load of the 1-choice scheme becomes m
n

+ O(
√

log n · m
n

)

from the Chernoff bound. For convenience, we refer to this case of m ≥ n log n balls as

a heavy load. In a recent breakthrough, Gopalan, Kane, and Meka [GKM15] designed a

pseudorandom generator of seed length O(log n(log log n)2) that fools the Chernoff bound

within polynomial error. Hence the pseudorandom generator [GKM15] provides a hash

function with O(log n(log log n)2) random bits for the heavy load case. Compared to the

hash function of [GKM15], we provide a simplified construction that achieves the same

maximum load but only works for m = n · poly(log n) balls.
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Theorem 8.0.3 (Informal version of Theorem 8.6.1). For any constants c and a ≥ 1,

there exist a hash function generated by O(log n log log n) random bits such that for any

m = loga n · n balls, with probability at least 1 − n−c, the max-load of the n bins in the

1-choice scheme with h is m
n

+O
(√

log n ·
√

m
n

)
.

8.1 Preliminaries

We use U to denote the pool of balls, m to denote the numbers of balls in U , and n

to denote the number of bins. We assume m ≥ n and n is a power of 2 in this work. We use

Fp to denote the Galois field of size p for a prime power p.

Definition 8.1.1. Given a prime power p, a distribution D on Fnp is a δ-biased space if for

any non-trivial character function χα in Fnp , E
x∼D

[χα(x)] ≤ δ.

A distribution D on Fnp is a k-wise δ-biased space if for any non-trivial character

function χα in Fnp of support size at most k, E
x∼D

[χα(x)] ≤ δ.

The seminal works [NN90, AGHP90] provide small-biased spaces with optimal seed

length.

Lemma 8.1.2 ([NN90, AGHP90]). For any prime power p and integer n, there exist explicit

constructions of δ-biased spaces on Fnp with seed length O(log pn
δ

) and explicit constructions

of k-wise δ-biased spaces with seed length O(log kp logn
δ

).

Given two distributions D1 and D2 with the same support Fnp , we define the statistical

distance to be ‖D1 − D2‖1 =
∑

x∈Fnp
|D1(x) − D2(x)|. Vazirani [Vaz86] proved that small-

biased spaces are close to the uniform distribution.

Lemma 8.1.3 ([Vaz86]). A δ-biased space on Fnp is δ · pn/2 close to the uniform distribution

in statistical distance.
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Given a subset S of size k in [n], a k-wise δ-biased space on Fnp is δ · pk/2 close to the

uniform distribution on S in statistical distance.

Given a distribution D on functions from U to [n], D is k-wise independent if for any

k elements x1, . . . , xk in U , D(x1), . . . , D(xk) is a uniform distribution on [n]k. For small-

biased spaces, we choose p = n and the space to be F|U |n in Lemma 8.1.2 and summarize the

discussion above.

Lemma 8.1.4. Given k and n, a k-wise δ-biased space from U to [n] is δ · nk/2 close to the

uniform distribution from U to [n] on any k balls, which needs O(log kn logn
δ

) random bits.

Remark 8.1.5. In this work, we always choose δ ≤ 1/n and k = poly(log n) in the small

biased spaces such that the seed length is O(log 1
δ
). At the same time, we only use k-wise

small-biased spaces rather than small biased spaces to improve the evaluation time from

O(log n) to O(log log n)4.

We state the Chernoff bound in k-wise independence by Schmidt et al. in [SSS95].

Lemma 8.1.6 (Theorem 5 (I) (b) in [SSS95]). If X is the sum of k-wise independent random

variables, each of which is confined to the interval [0, 1] with µ = E[X], then for δ ≤ 1 and

k ≥ δ2µ · e−1/3,

Pr[|X − µ| ≥ δµ] ≤ e−δ
2µ/3.

8.2 Witness Trees

We first provide several notation and definitions in this work. Then we review the

witness tree argument of Vöcking [Voc03] for the Uniform-Greedy scheme.

Definition 8.2.1 (Uniform-Greedy with d choices). The process inserts balls in any fixed

order. Let h(1), . . . , h(d) be d hash functions from U to [n]. The allocation process works as
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follows: for each ball i, the algorithm considers d bins {h(1)(i), . . . , h(d)(i)} and puts the ball

i into the bin with the least load among {h(1)(i), . . . , h(d)(i)}. When there are several bins

with the least load, it picks an arbitrary one.

We define the height of a ball to be the height of it on the bin allocated in the above

process.

Next we follow the notation of Vöcking [Voc03] to define witness trees and pruned

witness trees. Given the balls and d hash functions h(1), . . . , h(d) in the allocation process,

we construct a symmetric witness tree for each ball in this process.

Definition 8.2.2 (Symmetric witness trees). A symmetric witness tree T with height l for

a ball b is a complete d-ary tree of height l. Every node w in this tree corresponds to a ball

T (w) ∈ [n]; and the root corresponds to the ball b. A ball u in T has a ball v as its ith child

iff when we allocate u in the process, ball v is the top ball in the bin h(i)
(
u
)
. Hence v < u

and the bin h(i)(u) is in the subset
{
h(1)(v), . . . , h(d)(v)

}
of [n] when v is the ith child of u.

Next we trim the repeated nodes in a witness trees such that there is no duplicate

edge after the trimming.

Definition 8.2.3 (Pruned witness trees and collisions). Given a witness tree T where nodes

v1, . . . , vj in T correspond to the same ball, let v1 be the node among them in the most bottom

level of T . Consider the following process: first remove v2, . . . , vj and their subtrees; then,

redirect the edges of v2, . . . , vj from their parents to v1 and call these edges collisions. Given a

symmetric witness tree T , we call the new tree without repeated nodes after the above process

as the pruned witness tree of T .

We call different witness trees with the same structure but different balls a configu-

ration. For example, the configuration of symmetric witness trees with distinct nodes is a

full d-ary tree without any collision.
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1 3 4 8 11 13 14 18

24 19 26 23

37 42

48

1 3 6 1 3 11 6 1

24 19 26 19

37 42

48

Trim T

1 3 6 11

24 19 26

37 42

48

Figure 8.1: A witness tree with distinct balls and a pruned witness tree with 3 collisions

Next we define the height and size of pruned witness trees.

Definition 8.2.4 (Height of witness trees). Given any witness tree T , let the height of T

be the length of the shortest path from the root of T to its leaves. Because height(u) =

min
v∈children(u)

{
height(v)

}
+ 1, the height of the pruned witness tree equals the height of the

original witness tree. Given a ball b of height h and any h′ < h, we always consider the

pruned witness tree of b with height h′ whose leaves have height h− h′.

At the same time, let |T | denote the number of vertices in T for any witness tree T

and |C| denote the number of nodes in a configuration C.

Finally we review the argument of Vöcking [Voc03] for m = n balls. One difference

between this proof and Vöcking’s [Voc03] proof is an alternate argument for the case of

witness trees with many collisions.

Lemma 8.2.5 ([Voc03]). For any constants c ≥ 2 and d, with probability at least 1−n−c, the

max-load of the Always-Go-Left scheme with d independent choices from perfectly random

hash functions is log logn
log d

+O(1).

Proof. We fix a parameter l = dlogd
(
(2 + 2c) log n

)
+ 3c+ 5e for the height of witness trees.

In this proof, we bound the probability that any symmetric witness tree of height l with
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leaves of height at least 4 exists in perfectly random hash functions. From the definition

of witness trees, this also bounds the probability of a ball with height l + 4 in the d-choice

Uniform-Greedy scheme.

For symmetric witness trees of height l, it is sufficient to bound the probability that

their pruned counterparts appear in perfectly random hash functions. We separate all pruned

witness trees into two cases according to the number of edge collisions: pruned witness trees

with at most 3c collisions and pruned witness trees with at least 3c collisions.

Pruned witness trees with at most 3c collisions. Let us fix a configuration C with at

most 3c collisions and consider the probability any pruned witness trees with configuration

C appears in perfectly random hash functions. Because each node of this configuration C

corresponds a distinct ball, there are at most n|C| possible ways to instantiate balls into C.

Next, we fix one possible pruned witness tree T and bound the probability of the

appearance of T in h(1), . . . , h(d). We consider the probability of two events: every edge

(u, v) in the tree T appears during the allocation process; and every leaf of T has height at

least 4. For the first event, an edge (u, v) holds during the process only if the hash functions

satisfy

h(i)(u) ∈
{
h(1)(v), . . . , h(d)(v)

}
, which happens with probability at most

d

n
. (8.1)

Secondly, the probability that a fixed leaf ball has height at least 4 is at most 3−d.

A leaf ball of height 4 indicates that each bin in his choices has height at least 3. Because

at most n/3 bins contain at least 3 balls at any moment, the probability that a random bin

has height at least 3 is ≤ 1/3. Thus the probability that d random bins have height 3 is at

most 3−d.

111



We apply a union bound on the probability that any witness tree with the configura-

tion C appears in perfectly random hash functions:

n|C| ·
∏

(u,v)∈C

d

n
· (3−d)number of leaves (8.2)

We lower bound the number of edges in C by |C|−1 because C is connected. Next we lower

bound the number of leaves. Because C is a d-ary tree with at most 3c collisions, the number

of leaves is at least |C|−3c
2

. At the same time, C is trimmed from the d-ary symmetric witness

tree of height l. Thus |C| ≥ (1 + d+ · · ·+ dl−3c). From all discussion above, we bound (8.2)

by

n|C|·(d
n

)|C|−1·(3−d)
|C|−3c

2 ≤ n·(d2.5·3−d)|C|/2.5 ≤ n·(d2.5·3−d)dl−3c/2.5 ≤ n·(0.8)10(2+2c) logn ≤ n−2c−1.

Finally, we apply a union bound on all possible configurations with at most 3c colli-

sions: the number of configurations is at most
∑3c

i=0(dl+1)2·i ≤ n such that the probability

of any witness tree with height l and at most 3c collisions existing is at most n−c.

Pruned witness trees with at least 3c collisions. We use the extra 3c collisions with

equation (8.1) instead of the number of leaves in this case.

Given any configuration C with at least 3c collisions, we consider the first 3c collisions

e1, . . . , e3c in the BFS of C. Let C ′ be the induced subgraph of C that only contains nodes

in e1, . . . , e3c and their ancestors in C. At the same time, the size |C ′| ≤ 3c(2l + 1) and the

number of edges in C ′ is |C ′|+ 3c− 1.

Because any pruned witness tree of C exists only if its corresponding counterpart of

C ′ exists in perfectly random hash functions, it is suffice to bound the probability of the

latter event. There are at most n|C
′| instantiations of balls in C ′. For each instantiation, we

bound the probability that all edges survive by (8.1):

(
d

n
)number of edges = (

d

n
)|C
′|+3c−1.
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Extract C ′ from C

Figure 8.2: An example of extracting C ′ from C given two collisions.

We bound the probability that any pruned witness tree of configuration C ′ survives

in the perfectly random hash function by

(
d

n
)|C
′|+3c−1 · n|C′| ≤ (

1

n
)3c−1 · d(2l+2)·3c ≤ n−2c.

Finally, we apply a union bound over all possible configurations C ′: there are at most

(1 + d+ · · ·+ dl)2·3c ≤ n configurations of 3c collisions.

Remark 8.2.6. Because the sizes of all witness trees are bounded by dl+1 = O(log n),

Oc,d(log n)-wise independent hash functions could adopt the above argument to prove a max-

load of logd log n+O(d+ c).

8.3 Hash Functions

We construct our hash family and show its properties for the derandomization of d-

choice schemes in this section. We sketch the derandomization of Lemma 8.2.5 of Vocking’s

argument in Section 8.3.1.

Let ◦ denote the concatenation operation and ⊕ denote the bit-wise XOR operation.

Construction 8.3.1. Given δ1 > 0, δ2 > 0, and two integers k, kg, let
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1. hi : U → [n2−i ] denote a function generated by an O(log2 n)-wise δ1-biased space for

each i ∈ [k],

2. hk+1 : U → [n2−k ] denote a function generated by an O(log2 n)-wise δ2-biased space

such that (h1(x) ◦ h2(x) ◦ · · · ◦ hk(x) ◦ hk+1(x)) is a function by U to [n],

3. g : U → [n] denote a function from a kg-wise independent family from U to [n].

We define a random function h : U → [n] in our hash family H with parameters δ1, δ2, k and

kg to be:

h(x) =
(
h1(x) ◦ h2(x) ◦ · · · ◦ hk(x) ◦ hk+1(x)

)
⊕ g(x).

Hence the seed length of our hash family is O(k log n·log2 n·log |U |
δ1

+ log n·log2 n·log |U |
δ2

+

kg log n). We always choose k ≤ log log n, kg = O(log log n), δ1 = 1/poly(n), and δ2 =

(log n)−O(logn) such that the seed length is O(log n log log n).

Remark 8.3.2. Our parameters of h1◦· · ·◦hk+1 are stronger than the parameters in [CRSW13].

While the last function hk+1 of [CRSW13] is still a δ1-biased space, we use δ2 = (δ1)O(k) in

hk+1 to provide almost O(log n)-wise independence on (log n)O(logn) subsets of size O(log n)

for our calculations.

Properties of h. We state the properties of h that will be used in the derandomization.

Because of the kg-wise independence in g and the ⊕ operation, we have the same property

for h.

Property 8.3.3. h is kg-wise independent.

Then we fix g and discuss h1 ◦ · · · ◦ hk ◦ hk+1. For each i ∈ [k], it is natural to think

h1 ◦ · · · ◦ hi as a function from U to [n1− 1

2i ], i.e., a hash function maps all balls into n1− 1

2i

bins. Celis et al. [CRSW13] showed that for every i ∈ [k], the number of balls in every bin

of h1 ◦ · · · ◦ hi is close to its expectation n
1

2i · m
n

in 1
poly(n)

-biased spaces.
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Lemma 8.3.4 ([CRSW13]). Given k = log2(log n/3 log log n) and β = (log n)−0.2, for any

constant c > 0, there exists δ1 = 1/poly(n) such that given m = O(n) balls, with probability

at least 1 − n−c, for all i ∈ [k], every bin in [n1− 1

2i ] contains at most (1 + β)in
1

2i · m
n

balls

under h1 ◦ · · · ◦ hi.

For completeness, we provide a proof of Lemma 8.3.4 in Appendix C. In this work,

we use the following version that after fixing g in the Construction 8.3.1, h1 ◦ h2 ◦ · · · ◦ hk
still allocates the balls evenly.

Corollary 8.3.5. For any constant c > 0, there exists δ1 = 1/poly(n) such that given

m = O(n) balls and any function g0 : U → [n/ log3 n], with probability at least 1− n−c over

h1, . . . , hk, for any bin j ∈ [n1− 1

2k ] = [n/ log3 n], it contains at most 1.01 · log3 n · m
n

balls in

the hash function
(
h1(x) ◦ · · · ◦ hk(x)

)
⊕ g0(x).

Next we discuss the last function hk+1 generated from a δ2-biased space on [log3 n]U .

For a subset S ⊆ U , let h(S) denote the distribution of a random function h on S and

U[log3 n](S) denote the uniform distribution over all maps from S → [log3 n]. From Lemma 8.1.3

and the union bound, we have the following claim.

Claim 8.3.6. Given δ2 = (log n)−C logn, for a fixed subset S of size C
3
· log n, hk+1(S)

is (log n)−
C
2
·logn-close to the uniform distribution on S, i.e., ‖hk+1(S) − U[log3 n](S)‖1 ≤

(log n)−
C
2
·logn.

Then for m = (log n)
C
3
·logn subsets S1, . . . , Sm of size C

3
· log n, we have∑

i∈[m]

‖hk+1(Si)− U[log3 n](Si)‖1 ≤ m · (log n)−
C
2
·logn ≤ (log n)−

C
6
·logn.

In another word, hk+1 is close to the uniform distribution on (log n)
C
3

logn subsets of

size C
3

log n. However, hk+1 (or h) is not close to log n-wise independence on n balls.
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Remark 8.3.7 (Evaluation time). Our hash function has an evaluation time O((log log n)4)

in the RAM model. Because we use (log n)−O(log logn)-biased spaces in hk+1, we lose a factor

of O(log log n)2 compared to the hash family of [CRSW13]. The reason is as follows.

g can be evaluated by a degree O(log log n) polynomial in the Galois field of size

poly(n), which takes O(log log n) time. The first k hash functions h1, . . . , hk use 1/poly(n)-

biased spaces, which have total evaluation time O(k · log log n) = O(log log n)2 in the RAM

model from [MRRR14].

The last function hk+1 in the RAM model is a O(log n)-wise n−O(log logn)-biased space

from U to [log3 n], which needs O(log log n) words in the RAM model. Thus the evaluation

time becomes O(log log n) times the cost of a quadratic operation in the Galois field of size

nO(log logn), which is O((log log n)4).

8.3.1 Proof Overview

We sketch the derandomization of Lemma 8.2.5 in this section. Similar to the proof of

Lemma 8.2.5, we bound the probability that any pruned witness tree of height l = logd log n+

O(1) exists in h(1), . . . , h(d), where each h(i) =
(
h

(i)
1 (x) ◦ · · · ◦ h(i)

k+1(x)
)
⊕ g(i)(x). We use the

property of h1 ◦ · · · ◦ hk+1 to derandomize the case of pruned witness trees with at most 3c

collisions and the property of g to derandomize the other case.

Pruned witness trees with at most 3c collisions. We show how to derandomize the

union bound (8.2) for a fixed configuration C with at most 3c collisions. There are two

probabilities in (8.2): the second term
∏

(u,v)∈C
d
n

over all edges in C and the last term

3−d·number of leaves over all leaves. We focus on the second term
∏

(u,v)∈C
d
n

in this discussion,

because it contributes a smaller probability. Since |C| ∈ [dl−3c, dl+1] = Θ(log n), it needs

O(log n)-wise independence over [n] bins for every possible witness trees in (8.2), which is

impossible to support with o(log2 n) bits [Sti94].
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We omit {g(1), . . . , g(d)} and focus on the other part
{
h

(i)
1 ◦· · ·◦h

(i)
k ◦h

(i)
k+1

∣∣i ∈ [d]
}

in this

case. Our strategy is to first fix the prefixes in the d hash functions,
{
h

(i)
1 ◦ · · · ◦h

(i)
k

∣∣i ∈ [d]
}

,

then recalculate (8.2) using the suffixes h
(1)
k+1, . . . , h

(d)
k+1. Let T be a possible witness tree in

the configuration C. For an edge (u, v) in T to satisfy (8.1), the prefixes of h(1)(v), . . . , h(d)(v)

and h(i)(u) must satisfy

h
(i)
1 (u) ◦ · · · ◦ h(i)

k (u) ∈
{
h

(1)
1 (v) ◦ · · · ◦ h(1)

k (v), . . . , h
(d)
1 (v) ◦ · · · ◦ h(d)

k (v)
}
. (8.3)

After fixing the prefixes, let FT denote the subset of possible witness trees in the

configuration C that satisfy the prefix condition (8.3) for every edge. Because each bin of

[n/ log3 n] receives at most 1.01 log3 n balls from every prefix function h
(j)
1 ◦ h

(j)
2 ◦ · · · ◦ h

(j)
k

by Corollary 8.3.5, we could bound

|FT | ≤ n(d · 1.01 log3 n)|C|−1 = n · (1.01d)|C| · (log3 n)|C|−1 = (log n)O(logn)

instead of n|C| in the original argument.

Now we consider all possible witness trees in FT under the suffixes h
(1)
k+1, . . . , h

(d)
k+1.

We could treat h
(1)
k+1, . . . , h

(d)
k+1 as O(log n)-wise independent functions for all possible witness

trees in FT from Claim 8.3.6, because |C| = O(log n) and |FT | = (log n)O(logn). In the next

step, we use O(log n)-wise independence to rewrite (8.2) and finish the proof of this case.

Pruned witness trees with at least 3c collisions. In our alternate argument of this

case in Lemma 8.2.5, the subconfiguration C ′ of C has at most 3c · (2l + 1) nodes and

3c · (2l+ 1) + 3c edges. Since l = logd log n+O(1), the number of edges in C ′ is O(log log n).

By choosing kg = Θ(log log n) with a sufficiently large constant, h with kg-wise independence

supports the argument in Lemma 8.2.5.
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8.4 The Uniform Greedy Scheme

We prove our main result for the Uniform-Greedy scheme — Theorem 8.0.1 in this

section.

Theorem 8.4.1. For any m = O(n), any constant c ≥ 2, and integer d, there exists a hash

family H from Construction 8.3.1 with O(log n log log n) random bits that guarantees the

max-load of the Uniform Greedy scheme with d independent choices from H is logd log n +

O
(
c+ m

n

)
with probability at least 1− n−c for any m balls in U .

Proof. We specify the parameters of H as follows: kg = 10c(logd logm + logd(2 + 2c) + 5 +

3c), k = log2
logn

3 log logn
, δ2 = log n−C logn for a large constant C, and δ1 = 1/poly(n) such that

Corollary 8.3.5 holds with probability at least 1 − n−c−1. Let h(1), . . . , h(d) denote the d

independent hash functions from H with the above parameters, where each

h(j)(x) =
(
h

(j)
1 (x) ◦ h(j)

2 (x) ◦ · · · ◦ h(j)
k (x) ◦ h(j)

k+1(x)
)
⊕ g(j)(x).

We use the notation g to denote {g(1), g(2), . . . , g(d)} in the d choices and hi to denote the

group of hash functions {h(1)
i , . . . , h

(d)
i } in this proof.

We bound the probability that any symmetric witness tree of height l = dlogd logm+

logd(2 + 2c) + 5 + 3ce with leaves of height at least b = 10d · m
n

+ 1 exists in h(1), . . . , h(d).

Similar to the proof of Lemma 8.2.5, we bound the probability of pruned witness trees of

height l in h(1), . . . , h(d). We separate all pruned witness trees into two cases according to

the number of edge collisions: pruned witness trees with at most 3c collisions and pruned

witness trees with at least 3c collisions.

Pruned witness trees with at least 3c collisions. We start with a configuration C of

pruned witness trees with height l and at least 3c collisions. Let e1, . . . , e3c be the first 3c

collisions in the BFS of C. Let C ′ be the induced subgraph of C that only contains nodes
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in these edges e1, . . . , e3c and their ancestors in C. Therefore any pruned witness tree T of

configuration C exists in h(1), . . . , h(d) only if the corresponding counterpart T ′ of T with

configuration C ′ exists in h(1), . . . , h(d). The existence of T ′ in h(1), . . . , h(d) indicates that for

every edge (u, v) in T ′, h(1), . . . , h(d) satsify

h(i)
(
T (u)

)
∈
{
h(1)
(
T (v)

)
, . . . , h(d)

(
T (v)

)}
when v is the ith child of u. (8.4)

Notice that the number of edges in C ′ and T ′ is at most 3c · 2l + 3c = 2l(3c+ 1) ≤ kg/2.

Because h(1), . . . , h(d) are kg-wise independent, We bound the probability that all

edges of T ′ satisfy (8.4) in h(1), . . . , h(d) by∏
(u,v)∈T ′

(
d

n
) = (

d

n
)|C
′|+3c−1.

Now we apply a union bound over all choices of balls in C ′. There are at most m|C
′| choices

of balls in the nodes of C ′. Therefore we bound the probability that any witness with at

least 3c collisions survives in kg-wise independent functions by

(
d

n
)|C
′|+3c−1 ·m|C′| ≤ (

d

n
)3c−1 · (m

n
· d)|C

′| ≤ (
d

n
)3c−1 · (m

n
· d)3c·(2l+1) ≤ n−2c.

Next we apply a union bound over all configurations C ′. Because there are at most

(1 + d + · · · + dl)2·3c ≤ n configurations of 3c collisions, with probability at least 1 − n−c,
there is no pruned witness trees with at least 3c collision and height l exists in h(1), . . . , h(d).

Pruned witness trees with at most 3c collisions. We fix a configuration C of pruned

witness trees with height l and less than 3c collisions. Next we bound the probability that

any pruned witness trees in this configuration C with leaves of height at least b exists in

h(1), . . . , h(d).

We extensively use the fact that after fixing g and h1◦· · ·◦hk, at most d(1.01 log3 n·m
n

)

elements in h(1), . . . , h(d) are mapped to any bin of [n/ log3 n] from Corollary 8.3.5. Another
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property is the number of leaves in C: because there are at most 3c collisions in C, C has

at least dl−3c ∈ [d5(2 + 2c) logm, d6(2 + 2c) logm] leaves. On the other hand, the number of

leaves is at least |C|−3c
2

.

For a pruned witness tree T with configuration C, T exists in h(1), . . . , h(d) only if

∀(u, v) ∈ C, h(i)
(
T (u)

)
∈
{
h(1)
(
T (v)

)
, . . . , h(d)

(
T (v)

)}
when v is the ith child of u. (8.5)

We restate the above condition on the prefixes and suffixes of h(1), . . . , h(d) separately. Let

gp(x) denote the first log n − 3 log log n bits of g(x) and gs(x) denote the last 3 log log n

bits of g(x), which matches h1(x) ◦ · · · ◦ hk(x) and hk+1(x) separately. Since h(i)(x) =(
h

(i)
1 (x)◦· · ·◦h(i)

k+1(x)
)
⊕g(i)(x), property (8.5) indicates that the prefixes of the balls bu = T (u)

and bv = T (v) satisfy

(
h

(i)
1 (bu) ◦ · · · ◦ h(i)

k (bu)
)
⊕ g(i)

p (bu) ∈
{(
h

(i)
1 (bv) ◦ · · · ◦ h(i)

k (bv)
)
⊕ g(i)

p (bv)
∣∣
i∈[d]

}
. (8.6)

and their suffixes satisfy

h
(i)
k+1(bu)⊕ g(i)

s (bu) ∈
{
h

(1)
k+1(bv)⊕ g(1)

s (bv), . . . , h
(d)
k+1(bv)⊕ g(d)

s (bv)
}
. (8.7)

Let FT be the subset of witness trees in the configuration C whose edges satisfy the

condition (8.6) in preffixes h(1), . . . , h(k), i.e., FT = {T |configuration(T ) = C and (u, v) satisfies (8.6) ∀(u, v) ∈

T}. We show that

|FT | ≤ m · (d · 1.01 log3 n · m
n

)|C|−1.

The reason is as follows. There are m choices of balls for the root u in C. For the ith

child v of the root u, we have to satisfy the condition (8.6) for (u, v). For a fixed bin(
h

(i)
1 (bu) ◦ · · · ◦ h(i)

k (bu)
)
⊕ g(i)

p (bu), there are at most 1.01 · log3 n · m
n

elements from each hash

function h(j) mapped to this bin from Corollary 8.3.5. Hence there are at most d·1.01 log3 n·m
n

choices for each child of u. Then we repeat this arguments for all non-leaf nodes in C.
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Next we consider the suffixes h
(1)
k+1, . . . , h

(d)
k+1. We first calculate the probability that

any possible witness tree in FT survives in h
(1)
k+1, . . . , h

(d)
k+1 from t-wise independence for t =

5b ·dl+2 = O(log n). After fixing gs, for a possible witness tree T in FT , h
(1)
k+1, . . . , h

(d)
k+1 satisfy

(8.7) for every edge (u, v) ∈ C with probability d
log3 n

in t/2-wise independent distributions

because the number of edges in C is less than t/2.

For each leaf v in T , we bound the probability that its height is at least b = 10d · m
n

+1

by 2−3d2 · ( n
m

)2d in (b ·d+1)-wise independence. Given a choice i ∈ [d] of leaf v, we fix the bin

to be h(i)(v). Then we bound the probability that there are at least b− 1 balls w1, . . . , wb−1

in this bin excluding all balls in the tree by∑
w1:w1<v,w1 /∈T

∑
w2:w1<w2<v,w2 /∈T

· · ·
∑

wb−1:wb−2<wb−1<v,wb−1 /∈T

Pr[h(i)(v) = h(j1)(w1) = · · · = h(jb−1)(wb−1)]

≤
(

1.01d·log3 n·m
n

b−1

)
(log3 n)b−1

≤
(1.01d · m

n
)b−1

(b− 1)!
≤ (

3

4
)b−1.

For all d choices of this leaf v, this probability is at most (3
4
)(b−1)·d ≤ 2−3d2 · ( n

m
)2d.

Because w1, . . . , wb are not in the tree T for every leaf, they are disjoint and in-

dependent with the events of (8.7) in T , which are over all edges in the tree. Hence we

could multiply these two probability together in t-wise independence given t/2 ≥ (b · d+ 1) ·
number of leaves. Then we apply a union bound over all possible pruned witness trees in

FT to bound the probability (in the t-wise independence) that there is one witness tree of

height l whose leaves have height at least 10d · m
n

+ 1 by

|FT | · (
d

log3 n
)|C|−1 ·

(
(
3

4
)b·d
)number of leaves ≤m

(
1.01d · log3 n · m

n
· d

log3 n

)|C|
·
(

2−3d2 · ( n
m

)2d
) |C|−3c

2

≤m ·
(

2d2 · m
n

)|C|
·
(

2−3d2 · ( n
m

)2d
)|C|/3

≤m · 2−|C|/3 ≤ n−c−1.

Finally we replace the t-wise independence by a δ2-biased space for δ2 = n−c−1 ·
(log3 n)−t/|FT | = (log n)−O(logn). We apply Claim 8.3.6 to all possible pruned witness tress
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in FT : in δ2-biased spaces, the probability of the existence of any height-l witness tree with

leaves of height at least b = 10d · m
n

+ 1 is at most

n−c−1 + |FT | · δ2 · (log3 n)t ≤ 2n−c−1.

Then we apply a union bound on all possible configurations with at most 3c collisions:

(dl+1)|3c| · 2n−c−1 ≤ 0.5n−c.

From all discussion above, with probability at least 1−n−c, there is no ball of height

more than l + b = logd log n+O(1).

8.5 The Always-Go-Left Scehme

We show that the hash family in Section 8.3 with proper parameters also achieves

a max-load of log logn
d log φd

+ O(1) in the Always-Go-Left scheme [Voc03] with d choices, where

φd > 1 is the constant satisfying φdd = 1 + φd + · · · + φd−1
d . We define the Always-Go-Left

scheme [Voc03] as follows:

Definition 8.5.1 (Always-Go-Left with d choices). Our algorithm partition the bins into d

groups G1, . . . , Gd of the same size n/d. Let h(1), . . . , h(d) be d functions from U to G1, . . . , Gd

separately. For each ball b, the algorithm consider d bins {h(1)(b) ∈ G1, . . . , h
(d)(b) ∈ Gd}

and chooses the bin with the least number of balls. If there are several bins with the least

number of balls, our algorithm always choose the bin with the smallest group number.

We define asymmetric witness trees for the Always-Go-Left mechanism such that a

ball of height l + C in the Always-Go-Left scheme indicates that there is an asymmetric

witness tree of height l whose leaves have height at least C. For an asymmetric witness tree

T , the height of T is still the shortest distance from the root to its leaves.
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Definition 8.5.2 (Asymmetric Witness tree). The asymmetric witness tree T of height l in

group Gi is a d-ary tree. The root has d children where the subtree of the jth child is an

asymmetric witness tree in group Gj of height (l − 1j≥i).

Given d functions h(1), . . . , h(d) from U to G1, . . . , Gd separately, a ball b with height

more than l + C in a bin of group Gi indicates an asymmetric witness tree T of height l in

Gi whose leaves have height at least C. Each node of T corresponds to a ball, and the root of

T corresponds to the ball b. A ball u in T has a ball v as its jth child iff when we insert the

ball u in the Always-Go-Left mechanism, v is the top ball in the bin h(j)(u). Hence v < u

and h(j)(u) = h(j)(v) when the jth child of u is v.

For an asymmetric witness tree T of height l in group Gi, We use the height l and the

group index i ∈ [d] to determine its size. Let f(l, i) be the size of a full asymmetric witness

tree of height l in group Gi. From the definition, we have f(0, i) = 1 and

f(l, i) =
i−1∑
j=1

f(l, j) +
d∑
j=i

f(l − 1, j).

Let g
(
(l − 1) · d+ i

)
= f(l, i) such that

g(n) = g(n− 1) + g(n− 2) + · · ·+ g(n− d).

We know there exist c0 > 0, c1 = O(1), and φd > 1 satisfying

φdd = 1 + φd + · · ·+ φd−1
d such that g(n) ∈ [c0 · φnd , c1 · φnd ].

Hence

f(l, i) = g
(
(l − 1) · d+ i

)
∈ [c0 · φ(l−1)d+i

d , c1 · φ(l−1)d+i
d ].

Similar to the pruned witness tree of a symmetric witness tree, we use the same process in

Definition 8.2.3 to obtain the pruned asymmetric witness tree of an asymmetric witness tree.
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Vöcking in [Voc03] showed that in a perfectly random hash function, the maximum

load is log logn
d log φd

+O(1) with high probability given any n balls. We outline Vöcking’s argument

for distinct balls here: let b be a ball of height l + 4 for l = log logn+log(1+c)
d log φd

+ 1. Without loss

of generality, we assume that b is in the first group G1. By the definition of the asymmetric

witness tree, there exists a tree T in G1 with root b and height l whose leaves have height

at least 4. For each ball u and its ith ball v, the hash function h(i) satisfies h(i)(u) = h(i)(v).

Similar to (8.2), we apply a union bound on all possible witness trees of height l in this

configuration to bound the probability by

nf(l,1) · (d
n

)f(l,1)−1 · ( 1

3d
)number of leaves in f(l,1),

which is less than n−c given f(l, 1) = Θ(φ
(l−1)d+1
d ) = Θ

(
(1 + c) log n

)
.

We prove our derandomization of Vöcking’s argument here.

Theorem 8.5.3. For any m = O(n), any constants c > 1 and d ≥ 2, there exist a constant

φd ∈ (1.61, 2) and a hash family H in Construction 8.3.1 with O(log n log log n) random

bits such that for any m balls in U , with probability at least 1 − n−c, the max-load of the

Always-Go-Left mechanism with d independent choices from H is log logn
d log φd

+O(c+ m
n

).

Proof. Let l be the smallest integer such that c0φ
ld
d ≥ 10(2 + 2c) logm and b = 10d · m

n
+ 1.

We bound the probability of a witness tree of height l + 3c + 1 whose leaves have height

more than b in h(1), . . . , h(d) during the Always-Go-Left scheme. Notice that there is a ball

of height l+ b+ 3c+ 1 in any bin of G2, G3, . . . , Gd indicates that there is a ball of the same

height in G1.

We choose the parameters of H as follows: kg = 20c·d·(l+b+1+3c) = O(log log n), k =

log2(log n/3 log log n), δ1 = 1/poly(n) such that Corollary 8.3.5 happens with probability at

most n−c−1, and the bias δ2 = log n−O(logn) of hk+1 later. We set hk+1 to be a hash function

from U to [log3 n/d] and g to be a function from U to [n/d] such that

h(j) =
(
h

(j)
1 ◦ h

(j)
1 ◦ · · · ◦ h

(j)
k ◦ h

(j)
k+1

)
⊕ g(j)
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is a map from U to Gj of [n/d] bins for each j ∈ d.

We use h(1), . . . , h(d) to denote d independent hash functions from H with the above

parameters. We use the notation of hi to denote the group of hash functions {h(1)
i , . . . , h

(d)
i }

in this proof. We assume Corollary 8.3.5 and follow the same argument in the proof of

Theorem 8.4.1. We bound the probability of witness trees from 2 cases depending on the

number of collisions.

Pruned witness trees with at least 3c collisions: Given a configuration C with at

least 3c collisions, we consider the first 3c collisions e1, . . . , e3c in the BFS of C. Let C ′ be

the induced subgraph of C that only contains all vertices in e1, . . . , e3c and their ancestors

in C. Therefore C survives under h(1), . . . , h(d) only if C ′ survives under h(1), . . . , h(d).

Observe that |C ′| ≤ 3c · 2 ·
(
d · height(T )

)
. There are at most m|T

′| possible instan-

tiations of balls in C ′. For each instantiation T of C ′, because kg ≥ 2 · number of edges =

2(|C ′|+ 3c− 1), we bound the probability that any instantiation of C ′ survives in h by

m|C
′| · (d

n
)number of edges = m|C

′| · (d
n

)|C
′|+3c−1 ≤ (dm/n)|C

′| · (d
n

)3c−1 ≤ n−2c.

At the same time, there are at most (|T |2)3c = poly(log n) configurations of C ′. Hence we

bound the probability of any witness with at least 3c collisions surviving by n−c.

Pruned witness tree with less than 3c collisions: We fix a configuration C of witness

tree in group G1 with height l+1+3c and less than 3c collisions. Thus |C| ∈ [f(l+1, 1), f(l+

1 + 3c, 1)].

Let FT be the subset of possible asymmetric witness tree with configuration C after

fixing the prefixes h1, h2, . . . , hk. For any T ∈ FT , each edge (u, v) has to satisfy h(i)
(
T (u)

)
=

h(i)
(
T (v)

)
in the Always-Go-Left scheme when v is the ith child of u. This indicates their
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prefixes are equal:

h
(i)
1

(
T (u)

)
◦ · · · ◦ h(i)

k

(
T (u)

)
= h

(i)
1

(
T (v)

)
◦ · · · ◦ h(i)

k

(
T (v)

)
.

From the same argument in the proof of Theorem 8.4.1, we bound

|FT | ≤ m · (1.01 log3 n · m
n

)|C|−1

under h1, h2, . . . , hk from Corollary 8.3.5.

We first consider hk+1 as a t-wise independent distribution from U to [log3 n/d] for

t = 5bd · f(l + 3c + 1, 1) = O(logm) then move to δ2-biased spaces. For each asymmetric

witness tree, every edge (u, v) maps to the same bin w.p. d/ log3 n in hk+1.

For each leaf, its height is at least b if each bin in its choices has height at least b− 1,

which happens with probability at most( (
1.01·log3 n·m

n
b−1

)
(log3 n/d)b−1

)d

≤
(

(1.01d · m
n

)b−1

(b− 1)!

)d
≤ 2−3d2 · ( n

m
)2d

from the proof of Theorem 8.4.1.

Because these two types of events are on disjoint subsets of balls, the probability that

any possible asymmetric witness tree in FT exists in t-wise independent distributions over

the suffixes is at most

|FT | ·
(

d

log3 n

)|C|−1

·
(

2−3d2 · ( n
m

)2d
) (d−1)(|C|−3c)

d ≤m ·
(

1.01d · m
n

)|C|
·
(

2−3d2 · ( n
m

)2d
)|C|/3

≤m · 2−f(l+1,1) ≤ n−c−1.

We choose δ2 = n−c−1 · (log3 n/d)−t/|FT | = (log n)−O(logn) such that in δ2-biased

spaces, any possible asymmetric witness tree in FT exists hk+1 is at most happens with

probability at most n−c−1 + |FT | · δ2 · (log3 /d)bd·f(l+3c+1,1) ≤ 2n−c−1. At the same time, the

number of possible configurations is at most (f(l + 3c+ 1, 1)2)3c ≤ 0.1n.

From all discussion above, with probability at most n−c, there exists a ball in the

Always-Go-Left mechanism with height at least l + b+ 3c+ 1 = logn logn
d log φd

+O(1).
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8.6 Heavy Load

We consider the derandomization of the 1-choice scheme when we have m = n ·

poly(log n) balls and n bins. From the Chernoff bound, w.h.p, the max-load among n bins

is m
n

(
1 +O(

√
log n ·

√
n
m

)
)

when we throw m > n log n balls into n bins independently at

random. We modify the hash function from [CRSW13] with proper parameters for m =

poly(log n) · n balls and prove the max-load is still m
n

(
1 +O(

√
log n ·

√
n
m

)
)
. We assume

m = loga n · n for a constant a ≥ 1 in the rest of this section.

Theorem 8.6.1. For any constant c > 0 and a ≥ 1, there exist a constant C and a hash

function from U to [n] generated by O(log n log log n) random bits such that for any m =

loga n · n balls, with probability at least 1 − n−c, the max-load of the n bins in the 1-choice

scheme with the hash function h is at most m
n

(
1 + C ·

√
log n ·

√
n
m

)
.

We omit g in this section and change h1, . . . , hk+1 with different parameters. We

choose k = log logn
(2a) log logn

, hi to denote a hash function from U to [n2−i ] for i ∈ [k], and hk+1

to denote a hash function from U to [n2−k ] = [log2a n] such that h1 ◦ h2 ◦ · · · ◦ hk ◦ hk+1

constitute a hash function from U to [n]. We set β = 4(c + 2)
√

log n
√

n
m

. For convenience,

we still think h1 ◦ h2 ◦ · · · ◦ hi as a hash function maps to n1−2−i bins for any i ≤ k. In

this section, we still use δ1-biased spaces on h1, . . . , hk and a δ2-biased space on hk+1 for

δ1 = 1/poly(n) and δ2 = (log n)−O(logn).

Claim 8.6.2. For any constant c > 0, there exists δ1 = 1/poly(n) such that given m =

loga n · n balls, with probability 1− n−c−1, for any i ∈ [k] and any bin b ∈ [n1−2−i ], there are

less than
∏

j≤i(1 + β
(k+2−i)2 ) · m

n
· n2−i balls in this bin.

Proof. We still use induction on i. The base case is i = 0. Because there are at most m

balls, the hypothesis is true.
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Suppose it is true for i = l. Now we fix a bin and assume there are s =
∏

j≤l(1 +

β
(k+2−i)2 ) · m

n
n2−l ≤ (1 + β)m

n
n2−l balls in this bin from the induction hypothesis. hl+1 maps

these s balls to t = n2−(l+1)
bins. We will prove that with high probability, every bin in these

t bins of hl+1 contains at most (1 + β
(k+1−l)2 )s/t balls.

We use Xi ∈ {0, 1} to denote whether ball i is in one fixed bin of [t] or not. Hence

Pr[Xi = 1] = 1/t. Let Yi = Xi − E[Xi]. Therefore E[Yi] = 0 and E[|Yi|l] ≤ 1/t for any l ≥ 2.

Let b = β2l for a large constant β later.

Pr
Dδ1

[
∑
i

Xi > (1 +
β

(k + 1− l)2
)s/t] ≤

EDδ1 [(
∑

i Yi)
b]

( β
(k+1−l)2 s/t)b

≤
∑

i1,...,ib
EU [Yi1 · · ·Yib ] + δ1s

2b

( β
(k+1−l)2 s/t)b

≤ 2bb!(s/t)b/2 + δ1s
2b

( β
(k+1−l)2 s/t)b

≤

(
2b(s/t)

( β
(k+1−l)2 s/t)2

)b/2

+ δ1 · s2b

We use these bounds k = log logn
(2l) log logn

< log log n, b < β2k < β logn
(2l) log logn

and n2−l−1 ≥ n2k ≥
log2l n ≥ (m/n)2 to simplify the above bound by(

2 log n
β2

(log logn)4 · s/t

)b/2

+ δ1s
2b

≤
(

2 log2 n

(log n · n
m

) · (m
n
n2−l−1)

)b/2
+ δ1s

2b

≤
(

1

n0.5·2−l−1

)b/2
+ δ1s

2b

≤n−0.5·2−l−1·β2l/2 + δ1

(
2m

n
n2−l

)2β2l

≤ n−β/8 + δ1 · n6β.
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Hence we choose the two parameters β > 8(c + 2) and δ1 = n−6β−c−2 such that the above

probability is bounded by 2n−c−2. Finnally, we apply the union bound on i and all bins.

Proof of Theorem 8.6.1. We first apply Claim 8.6.2 to h1, . . . , hk.

In hk+1, we first consider it as a b = 16(c + 2)2 log n = O(log n)-wise independent

distribution that maps s <
∏

j≤k(1 + β
(k+2−i)2 ) · m

n
n2−k balls to t = n2−k bins. From Lemma

8.1.6 and Theorem 5 (I) in [SSS95], we bound the probability that one bin receives more

than (1 + β)s/t by eβ
2·E[s/t]/3 ≤ n−c−2 given b ≥ β2 E[s/t].

Then we choose δ2 = (log n)−b·5a = (log n)−O(logn) such that any δ2-biased space from

[2m
n

log2a n] to [log2a n] is δ2 ·
(

2m
n

log2a n

≤b

)
· (log2a n)b < n−c−2-close to a b-wise independent

distribution. Hence in hk+1, with probability at most 2 ·n−c−2, there is one bin that receives

more than (1 + β)s/t balls. Overall, the number of balls in any bin of [n] is at most∏
i≤k

(1 +
β

(k + 2− i)2
)(1 + β)

m

n
≤ (1 +

∑
i≤k+1

β

(k + 2− i)2
)
m

n
≤ (1 + 2β)

m

n
.
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Chapter 9

Constraint Satisfaction Problems Above Average with

Global Cardinality Constraints

In this chapter, we consider the constraint satisfaction problem on {−1, 1}n under

a global cardinality constraint. For generality, we allow different constraints using different

predicates.

Definition 9.0.1. An instance I of a constraint satisfaction problem of arity d consists of

a set of variables V = {x1, · · · , xn} and a set of m constraints C1, · · · , Cm. Each constraint

Ci consists of d variables xi1 , · · · , xid and a predicate Pi ⊆ {−1, 1}d. An assignment on

xi1 , · · · , xid satisfies Ci if and only if (xi1 , · · · , xid) ∈ Pi. The value valI(α) of an assignment

α is the number of constraints in C1, · · · , Cm that are satisfied by α. The goal of the problem

is to find an assignment with maximum possible value.

An instance I of a constraint satisfaction problem with a global cardinality constraint

consists of an instance I of a CSP and a global cardinality constraint
∑

i∈[n] xi = (1 − 2p)n

specified by a parameter p. The goal of the problem is to find an assignment of maximum

possible value complying with the global cardinality constraint
∑

i∈[n] xi = (1 − 2p)n. We

denote the value of the optimal assignment by

OPT = max
α:
∑
i αi=(1−2p)n

valI(α).

The average value AV G of I is the expected value of an assignment chosen uniformly at

random among all assignments complying the global cardinality constraint

AV G = E
α:
∑
i αi=(1−2p)n

[valI(α)].
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Given an instance I of a constraint satisfaction problem of arity d, we associate a

degree-at-most d multilinear polynomial fI with I such that fI(α) = valI(α) for any α ∈
{±1}n.

fI(x) =
∑
i∈[m]

∑
σ∈Pi

∏
j∈[d](1 + σj · xi,j)

2d
.

Notice that given an instance I and a global cardinality constraint
∑

i∈n xi = (1− 2p)n, the

expectation of I under the global cardinality constraint AV G = ED[fI] is different than its

expectation in the uniform distribution, even for CSPs of arity 2 in the bisection constraint.

Definition 9.0.2. In the satisfiability above Average Problem, we are given an instance of a

CSP of arity d, a global cardinality constraint
∑

i∈n xi = (1− 2p)n, and a parameter t. We

need to decide whether OPT ≥ AV G+ t or not.

In this chapter, we show that it is fixed-parameter tractable. Namely, given a pa-

rameter t and an instance of a CSP problem of arity d under a global cardinality constraint∑
i∈n xi = (1− 2p)n, we design an algorithm that either finds a kernel on O(t2) variables or

certifies that OPT ≥ AV G+ t.

Theorem 9.0.3 (Informal version of Theorem 9.3.1 and Theorem 9.5.1). For any integer

constant d and real constant p0 ∈ (0, 1/2], given a d-ary CSP with n variables and m = nO(1)

constraints, a global cardinality constraint
∑n

i=1 xi = (1−2p)n such that p ∈ [p0, 1−p0], and

an integer parameter t, there is an algorithm that runs in time (nO(1) + 2O(t2)) and decides

whether there is an assignment complying with the cardinality constraint to satisfy at least

(AV G+ t) constraints or not.

One important ingredient in the proof of our main theorem is the 2 → 4 hypercon-

tractivity of low-degree multilinear polynomials in a correlated probability space. Let Dp be

the uniform distribution on all assignments to the n variables complying with the cardinality

constraint
∑n

i=1 xi = (1− 2p)n. We show the following inequality.
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Theorem 9.0.4 (Informal version of Corollary 9.3.8 and Corollary 9.4.2). For any degree d

multilinear polynomial f on variables x1, x2, . . . , xn, we have

E
Dp

[f 4] ≤ poly(d) · Cd
p · E

Dp
[f 2]2,

where the constant Cp = poly( 1
1−p ,

1
p
).

The ordinary 2 → 4 hypercontractive inequality (see Section 9.1.1 for details of the

inequality) has wide applications in computer science, e.g., invariance principles [MOO10], a

lower bound on the influence of variables on Boolean cube [KKL88], and an upper bound on

the fourth moment of low degree functions [AGK+11, MMZ15] (see [O’D14] for a complete

introduction and more applications with the reference therein). The inequality admits an

elegant induction proof, which was first introduced in [MOO05]; and the proof was later ex-

tended to different settings (e.g. to the low-level sum-of-squares proof system [BBH+14], and

to more general product distributions [MMZ15]). All the previous induction proofs, to the

best of our knowledge, rely on the local independence of the variables (i.e. the independence

among every constant-sized subset of random variables). In the 2 → 4 hypercontractive

inequality we prove, however, every pair of the random variables is correlated.

Because of the lack of pair-wise independence, our induction proof (as well as the proof

to the main theorem (Theorem 9.0.3)) crucially relies on the analysis of the eigenvalues of

several nO(d) × nO(d) set-symmetric matrices. We will introduce more details about this

analysis in the next subsection.

Related work. Recently, Gutin and Yeo [GY10] showed that it is possible to decide

whether there is an assignment satisfying more than dm/2+te constraints in time
(

2O(t2) +O(m)
)

for the MaxBisection problem with m constraints and n variables. The running time

was later improved to
(
2O(t) +O(m)

)
by Mnich and Zenklusen [MZ12]. However, observe

that in the MaxBisection problem, the trivial randomized algorithm satisfies AV G =

132



(
1
2

+ 1
2(n−1)

)
m constraints in expectation. Therefore, when m � n, our problem MaxBi-

section above average asks more than what was proved in [GY10, MZ12]. For the Max-

Cut problem without any global cardinality constraint, Crowston et al. [CJM15] showed

that optimizing above the Edwards-Erdős bound is fixed-parameter tractable, which is com-

parable to the bound in our work, while our algorithm outputs a solution strictly satisfying

the global cardinality constraint
∑n

i=1 xi = (1− 2p)n.

Independently, Filmus and Mossel [FM16] provided a hypercontractive inequality

over Dp based on the log-Sobolev inequality due to Lee and Yau [LY98]. They utilized the

property that harmonic polynomials constitute an orthogonal basis in Dp. In this chapter,

we use parity functions and their Fourier coefficients to analyze the eigenspaces of VarDp

and prove the hypercontractivity in Dp. Parity functions do not constitute an orthogonal

basis in Dp, e.g., the n variables are not independent under any global cardinality constraint∑n
i=1 xi = (1−2p)n. However, there is another important component in the proof of our main

theorem – we need to prove the variance of a random solution is high if the optimal solution

is much above average, where parity functions play an important role in this component.

Organization. We review several basic tools like Fourier analysis and Johnson scheme in

Section 9.1. Then we analyze the eigenspaces of EDp [f
2] and VarDp(f) in Section 9.2. Next

we consider CSPs under the bisection constraint in Section 9.3. We prove the hypercontrac-

tivity Theorem 9.0.4 in Section 9.4. Finally we consider an arbitrary global constraint in

Section 9.5.

9.1 Notation and Tools

In this chapter, we only consider f : {±1}n → R. Let U denote the uniform distribu-

tion on {±1}n and Up denote the biased product distribution on {±1}n such that each bit

equals to −1 with probability p and equals to 1 with probability 1− p.
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For a random variable X with standard deviation σ, it is known that the fourth

moment is necessary and sufficient to guarantee that there exists x ∈ supp(X) greater than

E[X] + Ω(σ) from [Ber97, AGK+11, O’D14]. We state this result as follows.

Lemma 9.1.1. Let X be a real random variable. Suppose that E[X] = 0,E[X2] = σ2 > 0,

and E[X4] < bσ4 for some b > 0. Then Pr[X ≥ σ/(2
√
b)] > 0.

In this chapter, we always use D to denote the uniform distribution on all assignments

to the n variables complying with the bisection constraint
∑n

i=1 xi = 0 and Dp to denote the

uniform distribution on all assignments complying with the cardinality constraint
∑n

i=1 xi =

(1− 2p)n.

9.1.1 Basics of Fourier Analysis of Boolean functions

We state several basic properties of the Fourier transform for Boolean functions those

will be useful in this chapter. We first introduce the standard Fourier transform in {±1}n,

which will be used in Section 9.3 and 9.5. We will also use the p-biased Fourier transform in

several proofs especially for the 2→ 4 hypercontractive inequality under Dp in Section 9.1.2,

Section 9.2, and Section 9.4.

For the uniform distribution U , we define the inner-product on a pair of functions

f, g : {±1}n → R by 〈f, g〉 = Ex∼U [f(x)g(x)]. Hence χS(x) =
∏

i∈S xi over all subsets

S ⊆ [n] constitute an orthonormal basis for the functions from {±1}n to R. We simplify

the notation by writing χS instead of χS(x). Hence every Boolean function has a unique

multilinear polynomial expression f =
∑

S⊆[n] f̂(S)χS, where f̂(S) = 〈f, χS〉 is the coefficient

of χS in f . In particular, f̂(∅) = Ex∼U [f(x)]. An important fact about Fourier coefficients

is Parseval’s identity, i.e.,
∑

S f̂(S)2 = Ex∼U [f(x)2], which indicates VarU(f) =
∑

S 6=∅ f̂(S)2.

Given any Boolean function f , we define its degree to be the largest size of S with

non-zero Fourier coefficient f̂(S). In this chapter, we focus on the multilinear polynomials

134



f with degree-at-most d. We use the Fourier coefficients of weight i to denote all Fourier

coefficients {f̂(S)|S ∈
(

[n]
i

)
} of size i character functions. For a degree-at-most d polynomial

f , we abuse the notation f to denote a vector in the linear space span{χS|S ∈
(

[n]
≤d

)
}, where

each coordinate corresponds to a character function χS of a subset S.

We state the standard Bonami Lemma for Bernoulli ±1 random variables [Bon70,

O’D14], which is also known as the 2 → 4 hypercontractivity for low-degree multilinear

polynomials.

Lemma 9.1.2. Let f : {−1, 1}n → R be a degree-at-most d multilinear polynomial. Let

X1, · · · , Xn be independent unbiased ±1-Bernoulli variables. Then

E[f(X1, · · · , Xn)4] ≤ 9d · E[f(X1, · · · , Xn)2]2.

For the p-biased distribution Up, we define the inner product on pairs of function f, g :

{±1}n → R by 〈f, g〉 = Ex∼Up [f(x)g(x)]. Then we define φi(x) =
√

p
1−p1xi=1 −

√
1−p
p

1xi=−1

and φS(x) =
∏

i∈S φi(x). We abuse the notation by writing φS instead of φS(x). It is

straightforward to verify EUp [φi] = 0 and EUp [φ2
i ] = 1. Notice that φSφT 6= φS∆T unlike

χSχS = χS∆T for all x. However, 〈φS, φT 〉 = 0 for different S and T under Up. Thus we have

the biased Fourier expansion f(x) =
∑

S⊆[n] f̂(S)φS(x), where f̂(S) = 〈f, φS〉 in Up. We

also have f̂(∅) = EUp [f ] and Parseval’s identity
∑

S f̂(S)2 = EUp [f 2], which demonstrates

VarUp(f) =
∑

S 6=∅ f̂(S)2. We state two facts of φi that will be useful in the later section.

1. xi = 2
√
p(1− p)·φi+1−2p. Hence

∑
i φi(x) = 0 for any x satisfying

∑
i xi = (1−2p)n.

2. φ2
i = q · φi + 1 for q = 2p−1√

p(1−p)
. Thus we write f as a multilinear polynomial of φi.

Observe that the largest size of |T | with non-zero Fourier coefficient f̂(T ) in the basis

{φS|S ∈
(

[n]
≤d

)
} is equivalent to the degree of f defined in {χS|S ∈

(
[n]
≤d

)
}. Hence we still
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define the degree of f to be maxS:f̂(S)6=0 |S|. We abuse the notation f to denote a vector in

the linear space span{φS|S ∈
(

[n]
≤d

)
}.

For the biased distribution Up, we know EUp [φ4
i ] = p2

1−p + (1−p)2

p
≥ 1. Therefore we

state the 2→ 4 hypercontractivity in the biased distribution Up as follows.

Lemma 9.1.3. Let f : {−1, 1}n → R be a degree-at-most d multilinear polynomial of

φ1, · · · , φn. Then

E
Up

[f(X1, · · · , Xn)4] ≤
(

9 · p2

1− p
+ 9 · (1− p)2

p

)d
· E
Up

[f(X1, · · · , Xn)2]2.

At last, we notice that the definition of φS is consistent with the definition of χS when

p = 1/2. When the distribution Up is fixed and clear, we use ‖f‖2 = Ex∼Up [f(x)2]1/2 to denote

the L2 norm of a Boolean function f . From Parseval’s identity, ‖f‖2 is also (
∑

S f̂(S)2)1/2.

From the Cauchy-Schwarz inequality, one useful property is ‖fg‖2 ≤ ‖f 2‖1/2
2 ‖g2‖1/2

2 .

9.1.2 Distributions conditioned on global cardinality constraints

We will study the expectation and the variance of a low-degree multilinear polynomial

f in Dp. Because φS is consistent with χS when p = 1/2, we fix the basis to be φS of the

p-biased Fourier transform. We treat q = 2p−1√
p(1−p)

as a constant and hide it in the big-Oh

notation.

We first discuss the expectation of f under Dp. Because EDp [φS] is not necessary 0

for any non-empty subset S, EDp [f ] 6= f̂(∅). Let δS = EDp [φS]. From symmetry, δS = δS′ for

any S and S ′ with the same size. For convenience, we use δk = δS for any S ∈
(

[n]
k

)
. From

the definition of δ, we have EDp [f ] =
∑

S f̂(S) · δS.

For p = 1/2 and D, δk = 0 for all odd k and δk = (−1)k/2 (k−1)!!
(n−1)·(n−3)···(n−k+1)

for even k.

We calculate it this way: pick any T ∈
(

[n]
k

)
and consider ED[(

∑
i xi)χT ] = 0. This indicates

k · δk−1 + (n− k)δk+1 = 0.
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From δ0 = 1 and δ1 = 0, we could obtain δk for every k > 1.

For p 6= 1/2 and Dp under the global cardinality constraint
∑

i∈n xi = (1− 2p)n, we

consider EDp [φS], because
∑

i∈n xi = (1−2p)n indicates
∑

i φi = 0. Thus we use δS = EDp [φS]

and calculate it as follows: pick any T ∈
(

[n]
k

)
and consider EDp [(

∑
i φi)φT ] = 0. φiφT = φT∪i

for i /∈ T ; and φiφT = q · φT + φT\i for i ∈ T from the fact φ2
i = q · φi + 1. We have

k · δk−1 + k · q · δk + (n− k)δk+1 = 0 (9.1)

Remark 9.1.4. For p = 1/2 and the bisection constraint, q = 0 and the recurrence relation

becomes k · δk−1 + (n− k)δk+1 = 0, which is consistent with the above characterization. Thus

we abuse the notation δk when Up is fixed and clear.

From δ0 = 1, δ1 = 0, and the relation above, we can determine δk for every k. For

example, δ2 = − 1
n−1

and δ3 = − δ2
n−2
· 2 · q = 2q

(n−1)(n−2)
. We bound δi as follows:

Claim 9.1.5. For any i ≥ 1, δ2i−1 = (−1)iO(n−i) and δ2i = (−1)i (2i−1)!!
ni

+O(n−i−1).

Proof. We use induction on i. Base Case: δ0 = 1 and δ1 = 0.

Because δ2i−2 = (−1)i−1Θ(n−i+1) and δ2i−1 = (−1)iO(n−i), the major term of δ2i is

determined by δ2i−2. We choose k = 2i− 1 in the equation (9.1) to obtain

δ2i = (−1)i
(2i− 1)!!

(n− 1)(n− 3) · · · (n− 2i+ 1)
+O(

1

ni+1
) = (−1)i

(2i− 1)!!

ni
+O(

1

ni+1
).

At the same time, from δ2i and δ2i−1,

δ2i+1 = (−1)i+1q·(2i)(2i− 1)!! + (2i)(2i− 2)(2i− 3)!! + · · ·+ (2i)!!

ni+1
+O(

1

ni+2
) = (−1)i+1O(

1

ni+2
).
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Now we turn to EDp [f 2] and VarDp [f ] for a degree-at-most-d multilinear polynomial

f . From the definition and the Fourier transform f =
∑

S f̂(S)φS,

E
Dp

[f 2] =
∑
S,T

f̂(S)f̂(T )δS∆T , VarDp(f) = E
Dp

[f 2]− E
Dp

[f ]2 =
∑
S,T

f̂(S)f̂(T )(δS∆T − δSδT ).

We associate a
(
n
≤d

)
×
(
n
≤d

)
matrix A with EDp [f 2] that A(S, T ) = δS∆T . Hence EDp [f 2] = fT ·

A ·f from the definition when we think f is a vector in the linear space of span{φS|S ∈
(

[n]
≤d

)
}.

Similarly, we associate a
(
n
≤d

)
×
(
n
≤d

)
matrix B with VarDp(f) that B(S, T ) = δS∆T −

δS · δT . Hence VarDp(f) = fT · B · f . Notice that an entry (S, T ) in A and B only depends

on the size of S, T, and S ∩ T .

Remark 9.1.6. Because B(∅, S) = B(S, ∅) = 0 for any S and VarDp(f) is independent with

f̂(∅), we could neglect f̂(∅) in B such that B is a (
(

[n]
d

)
+ · · ·

(
[n]
1

)
)× (

(
[n]
d

)
+ · · ·

(
[n]
1

)
) matrix.

f̂(∅) is the only difference between the analysis of eigenvalues in A and B. Actually, the

difference δS ·δT between A(S, T ) and B(S, T ) will not effect the analysis of their eigenvalues

except the eigenvalue induced by f̂(∅).

In Section 9.2, we study the eigenvalues of EDp [f 2] and VarDp(f) in the linear space

span{φS|S ∈
(

[n]
≤d

)
}, i.e., the eigenvalues of A and B.

9.1.3 Eigenspaces in the Johnson Schemes

We shall use a few characterizations about the eigenspaces of the Johnson scheme to

analyze the eigenspaces and eigenvalues of A and B in Section 9.2 (please see [God10] for a

complete introduction).

We divide A into (d + 1) × (d + 1) submatrices where Ai,j is the matrix of A(S, T )

over all S ∈
(

[n]
i

)
and T ∈

(
[n]
j

)
. For each diagonal matrix Ai,i, observe that Ai,i(S, T ) only

depends on |S∩T | because of |S| = |T | = i, which indicates Ai,i is in the association schemes,

in particular, Johnson scheme.
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Definition 9.1.7. A matrix M ∈ R([n]
r )×([n]

r ) is set-symmetric if for every S, T ∈
(

[n]
r

)
,

M(S, T ) depends only on the size of |S ∩ T |.

For n, r ≤ n/2, let Jr ⊆ R([n]
r )×([n]

r ) be the subspace of all set-symmetric matrices. Jr

is called the Johnson scheme.

Let r be a fixed integer and M ∈ R([n]
r )×([n]

r ) be a matrix in the Johnson scheme Jr.

We treat a vector in R([n]
r ) as a homogeneous degree r polynomial f =

∑
T∈([n]

r ) f̂(T )φT ,

where each coordinate corresponds to a r-subset. Although the eigenvalues of M depend

on the entries of M , the eigenspaces of M are independent with M as long as M is in the

Johnson scheme.

Fact 9.1.8. There are r + 1 eigenspaces V0, V1, · · · , Vr in M . For i ∈ [r], the dimension

of Vi is
(
n
i

)
−
(
n
i−1

)
; and the dimension of V0 is 1. We define Vi through f̂(S) over all

S ∈
(

[n]
i

)
, although M and f only depend on {f̂(T )|T ∈

(
[n]
r

)
}. Vi is the linear space spanned

by {f̂(S)φS|S ∈
(

[n]
i

)
} with the following two properties:

1. For any T ′ ∈
(

[n]
i−1

)
, {f̂(S)|S ∈

(
[n]
i

)
} satisfies that

∑
j /∈T ′ f̂(T ′ ∪ j) = 0 (neglect this

property for V0).

2. For any T ∈
(

[n]
r

)
, f̂(T ) =

∑
S∈(Ti)

f̂(S).

It is straightforward to verify that the dimension of Vi is
(
n
i

)
−
(
n
i−1

)
and Vi is an eigenspace

in M . Notice that the homogeneous degree i polynomial
∑

S∈([n]
i ) f̂(S)φS is an eigenvector of

matrices in Ji.

To show the orthogonality between Vi and Vj, it is enough to prove that

Claim 9.1.9. For any j ≤ r and any S ∈
(

[n]
<j

)
,
∑

T∈([n]
j ):S⊂T f̂(T ) = 0 for any f ∈ Vj.
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Proof. We use induction on the size of S to show it is true.

Base Case |S| = j − 1: from the definition of f ,
∑

T :S⊂T f̂(T ) = 0.

Suppose
∑

T :S⊂T f̂(T ) = 0 for any S ∈
(

[n]
k+1

)
. We prove it is true for any S ∈

(
[n]
k

)
:

∑
T :S⊂T

f̂(T ) =
1

j − |S|
∑
i/∈S

∑
T :(S∪i)⊂T

f̂(T ) = 0.

9.2 Eigenspaces and Eigenvalues of EDp
[f 2] and VarDp

(f)

In this section we analyze the eigenvalues and eigenspaces of A and B, following the

approach of Grigoriev [Gri01b].

We fix any p ∈ (0, 1) with the global cardinality constraint
∑

i xi = (1−2p)n and use

the p-biased Fourier transform in this section, i.e., {φS|S ∈
(

[n]
≤d

)
}. Because χS is consistent

with φS for p = 1/2, it is enough to study the eigenspaces of A and B in span{φS|S ∈
(

[n]
≤d

)
}.

Since A can be divided into (d+ 1)× (d+ 1) submatrices where we know the eigenspaces of

the diagonal submatrices from the Johnson scheme, we study the eigenspaces of A through

the global cardinality constraint
∑

i φi = 0 and the relations between eigenspaces of these

diagonal matrices characterized in Section 9.1.3. We will focus on the analysis of A in most

time and discuss about B in the end of this section.

We first show the eigenspace V ′null with an eigenvalue 0 in A, i.e., the null space of

A. Because
∑

i xi = (1− 2p)n in the support of Dp,
∑

i φi(x) = 0 for any x in the support

of Dp. Thus (
∑

i φi)h = 0 for all polynomial h of degree-at-most d − 1, which is in the

linear subspace span{(
∑

i φi)φS|S ∈
(

[n]
≤d−1

)
}. This linear space is the eigenspace of A with

an eigenvalue 0; and its dimension is
(

n
≤d−1

)
=
(

[n]
d−1

)
+
(

[n]
d−2

)
+ · · ·

(
[n]
0

)
. By the same reason,

V ′null is the eigenspace in B with an eigenvalue 0.
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Let Vd be the largest eigenspace in Ad,d on
(

[n]
d

)
×
(

[n]
d

)
. We demonstrate how to find

an eigenspace of A based on Vd. From the definition of Vd, for any fd ∈ Vd, fd satisfies that∑
j /∈T f̂d(T ∪ j) = 0 for any T ∈

(
[n]
d−1

)
from the property of the Johnson scheme. Thus,

from Claim 9.1.9 and the fact that A(S, T ) only depends on |S ∩ T | given S ∈
(

[n]
i

)
and

T ∈
(

[n]
d

)
, we know Ai,dfd = ~0 for all i ≤ d− 1. We construct an eigenvector f in A from fd

as follows: f̂(S) = 0 for all S ∈
(

[n]
<d

)
and f̂(T ) = f̂d(T ) for all T ∈

(
[n]
d

)
, i.e., f = (~0, fd). It is

straightforward to verify that A(~0, fd) = λd(~0, fd), where the eigenvalue λd is the eigenvalue

of Vd in Ad,d.

Then we move to Vd−1 in Ad,d and illustrate how to use an eigenvector in Vd−1 to

construct an eigenvector of A. For any fd ∈ Vd−1, let fd−1 =
∑

S∈( [n]
d−1)

f̂d−1(S)φS be the

homogeneous degree d−1 polynomial such that fd =
∑

T∈([n]
d )

(∑
S∈( T

d−1)
f̂d−1(S)

)
φT . From

Claim 9.1.9, Ai,dfd = 0 for all i < d − 1 and Ai,d−1fd−1 = 0 for all i < d − 2. Observe

that fd−1 is an eigenvector of Ad−1,d−1, although it is possible that the eigenvalue of fd−1 in

Ad−1,d−1 is different than the eigenvalue of fd in Ad,d. At the same time, from the symmetry

of A and the relationship between fd and fd−1, Ad−1,dfd = β0fd−1 and Ad,d−1fd−1 = β1fd for

some constants β0 and β1 only depending on δ and d. Thus we can find a constant αd−1,d

such that (~0, fd−1, αd−1,dfd) becomes an eigenvector of A.

More directly, we determine the constant αd−1,d from the orthogonality between

(~0, fd−1, αd−1,d · fd) and the null space span{(
∑

i φi)φS|S ∈
(

[n]
≤d−1

)
}. We pick any T ∈

(
[n]
d−1

)
and rewrite (

∑
i φi)φT =

∑
j∈T φT\j + q · |T | · φT +

∑
j /∈T φT∪j. From the orthogonality,

q|T | · f̂d−1(T ) +
∑
j /∈T

αd−1,d

( ∑
T ′∈(T∪jd−1)

f̂d−1(T ′)
)

= 0

⇒
(
q|T |+ (n− |T |)αd−1,d

)
f̂d−1(T ) + αd−1,d

( ∑
T ′′∈( T

d−2)

∑
j /∈T

f̂d−1(T ′′ ∪ j)
)

= 0.
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From the property of fd−1 that
∑

j /∈T ′′ f̂d−1(T ′′ ∪ j) = 0 for all T ′′ ∈
(

[n]
d−2

)
, we simplify it to

(
q|T |+ (n− 2|T |)αd−1,d

)
f̂d−1(T ) = 0,

which determines αd−1,d = −(d−1)q
n−2d+2

directly.

Following this approach, we figure out all eigenspaces of A from the eigenspaces

V0, V1, · · · , Vd in Ad,d. For convenience, we use V ′k for k ≤ d to denote the kth eigenspace in

A extended by Vk in Ad,d. We first choose the coefficients in the combination. Let αk,i = 0

for all i < k, αk,k = 1, and αk,k+1, · · · , αk,d satisfy the recurrence relation (we will show the

choices of α later):

i · αk,k+i−1 + (k + i) · q · αk,k+i + (n− 2k − i)αk,k+i+1 = 0. (9.2)

Then for every f ∈ Vk, the coefficients of f̂(T ) over all T ∈
(

[n]
≤d

)
spanned by {f̂(S)|S ∈

(
[n]
k

)
}

satisfy the following three properties:

1. ∀T ∈
(

[n]
k−1

)
,
∑

j /∈T f̂(T ∪ j) = 0 (neglect this property for V ′0);

2. ∀T ∈
(

[n]
>k

)
, f̂(T ) = αk,|T | ·

∑
S∈(Tk)

f̂(S);

3. ∀T ∈
(

[n]
<k

)
, f̂(T ) = 0.

Now we show the recurrence relation of αk,k+i from the fact that f is orthogonal to the null

space of A. We consider (
∑

i φi)φT in the null space for a subset T of size k + i < d and

simplify (
∑

i φi)φT to
∑

j∈T φT\j + q · |T | · φT +
∑

j /∈T φT∪j. We have

∑
j∈T

αk,k+i−1

∑
S∈(T\jk )

f̂(S) + (k + i) · q · αk,k+i

∑
S∈(Tk)

f̂(S) +
∑
j /∈T

αk,k+i+1

∑
S∈(T∪jk )

f̂(S) = 0⇒

∑
S∈(Tk)

(
i·αk,k+i−1+(k+i)q·αk,k+i+(n−k−i)αk,k+i+1

)
f̂(S)+

∑
T ′∈( T

k−1)

αk,k+i+1

∑
j /∈T

f̂(T ′∪j) = 0.
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Using the first property ∀T ′ ∈
(

[n]
k−1

)
,
∑

j /∈T ′ f̂(T ′ ∪ j) = 0 to eliminate all S ′ not in T , We

obtain

(
i · αk,k+i−1 + (k + i) · q · αk,k+i + (n− 2k − i)αk,k+i+1

) ∑
S∈(Tk)

f̂(S) = 0.

Because
∑

S∈(Tk)
f̂(S) is not necessary equal to 0 to satisfy the first property (actually∑

S∈(Tk)
f̂(S) = 0 for all T ∈

(
[n]
k+i

)
indicates f̂(S) = 0 for all S ∈

(
[n]
k

)
), the coefficient

is 0, which provides the recurrence relation in (9.2).

The dimension of V ′k is
(

[n]
k

)
−
(

[n]
k−1

)
from the first property (It is straightforward to

verify
∑d

k=0 dim(V ′k) + dim(V ′null) =
∑d

k=0(
(

[n]
k

)
−
(

[n]
k−1

)
) +

(
[n]
d−1

)
+
(

[n]
d−2

)
+ · · ·

(
[n]
0

)
=
(

[n]
≤d

)
).

The orthogonality between V ′i and V ′j follows from Claim 9.1.9 and the orthogonality of Vi

and Vj.

Remark 9.2.1. V ′1 , · · · , V ′d are the non-zero eigenspaces in B except for V ′0 . For f ∈ V ′0 ,

observe that f̂(T ) only depends on the size of T and f̂(∅). Hence for any polynomial f ∈ V ′0 ,

f is a constant function over the support of Dp, i.e., VarDp(V
′

0) = 0. Therefore V ′0 is in the

null space of B.

We use induction on i to bound αk,k+i. From αk,k = 1 and the recurrence relation

(9.2), the first few terms would be αk,k+1 = − kq
n−2k

and αk,k+2 = −1+(k+1)q·αk,k+1

n−2k−1
= − 1

n−2k−1
+

O(n−2).

Claim 9.2.2. αk,k+2i = (−1)i (2i−1)!!
ni

+O(n−i−1) and αk,k+2i+1 = (−1)i+1O(n−i−1).

Proof. We use induction on i again. Base Case: αk,k = 1 and αk,k+1 = − kq
n−2k

.

From the induction hypothesis αk,k+2i−2 = (−1)i−1Θ(n−i+1) and αk,k+2i−1 = (−1)in−i,

the major term of αk,k+2i is determined αk,k+2i−2 such that αk,k+2i = (−1)i (2i−1)!!
ni

+O(n−i−1).

Similarly, αk,k+2i+1 = (−1)i+1O(n−i−1).
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Now we bound the eigenvalue of V ′k . For convenience, we think 0! = 1 and (−1)!! = 1.

Theorem 9.2.3. For any k ∈ {0, · · · , d}, the eigenvalue of V ′k in A is
∑d−k

even i=0
(i−1)!!(i−1)!!

i!
±

O(n−1). For any k ∈ {1, · · · , d}, the eigenvalue of V ′k in B is the same
∑d−k

even i=0
(i−1)!!(i−1)!!

i!
±

O(n−1).

Proof. We fix a polynomial f ∈ V ′k and S ∈
(

[n]
k

)
to calculate

∑
T∈([n]

≤d)
A(S, T )f̂(T ) for the

eigenvalue of V ′k in A. From the fact f̂(T ) = αk,|T |·
∑

S′∈(Tk)
f̂(S ′), we expand

∑
T A(S, T )f̂(T )

into the summation of f̂(S ′) over all S ′ ∈
(

[n]
k

)
with coefficients. From the symmetry of A,

the coefficients of f̂(S ′) in the expansion only depends on the size of S ∩ S ′ (the sizes of S

and S ′ are k). Hence we use τi to denote the coefficients of f̂(S ′) given |S ′∆S| = i. Thus∑
T A(S, T )f̂(T ) =

∑
S′∈([n]

k ) τ|S′MS|f̂(S ′).

We calculate τ0, · · · , τ2d as follows. Because |S ′| = |S| = k, |S∆S ′| is always even.

For τ0, we only consider T containing S and use k + i to denote the size of T .

τ0 =
d−k∑
i=0

(
n− k
i

)
· αk,k+i · δi. (9.3)

For τ2l, we fix a subset S ′ with S∆S ′ = 2l and only consider T containing S ′. We use k + i

to denote the size of T and t to denote the size of the intersection of T and S \ S ′.

τ2l =
d−k∑
i=0

αk,k+i

i∑
t=0

(
l

t

)(
n− k − 2l

i− t

)
δ2l+i−2t. (9.4)

We will prove that τ0 = Θ(1) and τ2l = O(n−l) for all l ≥ 1 then eliminate all S ′ 6= S in∑
T A(S, T )f̂(T ) =

∑
S′∈([n]

k ) τS′MS f̂(S ′) to obtain the eigenvalue of V ′k .

From Claim 9.1.5 and Claim 9.2.2, we separate the summation of τ0 =
∑d−k

i=0

(
n−k
i

)
·

αk,k+i · δi to
∑

even i

(
n−k
i

)
· αk,k+i · δi +

∑
odd i

(
n−k
i

)
· αk,k+i · δi. We replace δi and αk,k+i by
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the bound in Claim 9.1.5 and Claim 9.2.2:

∑
even i

(
n− k
i

)
(−1)

i
2

+ i
2

(
(i− 1)!!

n
i
2

(i− 1)!!

n
i
2

+O(n−i−1)

)
+
∑
odd i

(
n− k
i

)
(−1)

i+1
2

+ i+1
2 ·O(n−

i+1
2 ) ·O(n−

i+1
2 ).

It shows τ0 =
∑d−k

even i=0
(i−1)!!(i−1)!!

i!
+O(n−1). For τ2l, we bound it by O(n−l) through similar

method, where O(n−l) comes from the fact that αk,k+i = O(n−
i
2 ),
(
n−k−2l
i−t

)
< ni−t, and

δ2l+i−2t = O(n−
2l+i−2t

2 ).

At last, we show the eigenvalue of V ′k is O(1/n) close to τ0, which is enough to finish

the proof. From the fact that for any T ′ ∈
(

[n]
k−1

)
,
∑

j /∈T ′ f̂(T ′ ∪ j) = 0, we have (recall

that|S| = k)

(k − i)

 ∑
S0∈(Si)

∑
S1∈([n]\S

k−i )

f̂(S0 ∪ S1)

+ (i+ 1)

 ∑
S0∈( S

i+1)

∑
S1∈( [n]\S

k−i−1)

f̂(S0 ∪ S1)


=
∑

S0∈(Si)

∑
S1∈( [n]\S

k−i−1)

∑
j /∈S0∪S1

f̂(S0 ∪ S1 ∪ j) = 0.

Thus we apply it on
∑

i τ2i

(∑
S′∈([n]

k ):|S∩S′|=k−i f̂(S ′)
)

to remove all S ′ 6= S. Let τ ′2k = τ2k

and

τ ′2k−2i−2 = τ2k−2i−2 −
i+ 1

k − i
· τ ′2k−2i.

Using the above rule, it is straightforward to verify

k∑
i=j

τ2i

( ∑
S′∈([n]

k ):|S∩S′|=k−i

f̂(S ′)

)
= τ ′2j

( ∑
S′∈([n]

k ):|S∩S′|=k−j

f̂(S ′)

)

from j = k to j = 0 by induction. Therefore
∑d

i=0 τ2i

(∑
S′∈([n]

k ):|S∩S′|=k−i f̂(S ′)
)

= τ ′0f̂(S).

Because τ2i = O(n−i), we have τ ′0 = τ0±O(1/n). (Remark: actually, τ ′0 =
∑k

i=0 τ2i ·(−1)i
(
k
i

)
.)
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From all discussion above, the eigenvalue of V ′k inA is τ ′0, which is
∑d−k

even i=0
(i−1)!!(i−1)!!

i!
±

O(n−1).

For V ′k in B of k ≥ 1, observe that the difference δS · δT between A(S, T ) and B(S, T )

will not change the calculation of τ , because
∑

T∈([n]
i ) δSδT f̂(T ) = δSδi

(∑
T∈([n]

i ) f̂(T )
)

= 0

from the fact f is orthogonal to V ′0 .

Because (i−1)!!(i−1)!!
i!

≤ 1 for any even integer i ≥ 0, we have the following two corol-

laries.

Corollary 9.2.4. All non-zero eigenvalues of EDp [f 2] in the linear space of span{φS|S ∈(
[n]
≤d

)
} are between .5 and [d

2
] + 1 ≤ d.

Corollary 9.2.5. All non-zero eigenvalues of VarDp [f ] in the linear space of span{φS|S ∈(
[n]

1,··· ,d

)
} are between .5 and [d+1

2
] ≤ d.

Because f + (
∑

i φi)h ≡ f over supp(Dp) for any h of degree-at-most d− 1, we define

the projection of f onto V ′null to compare ‖f‖2
2 and EDp [f 2].

Definition 9.2.6. Fix the global cardinality constraint
∑

i xi = (1 − 2p)n and the Fourier

transform φS, let hf denote the projection of a degree d multilinear polynomial f onto the null

space span{(
∑

i φi)φS|S ∈
(

[n]
≤d−1

)
} of EDp [f

2] and VarDp(f), i.e., f − (
∑

i φi)hf is orthogonal

to the eigenspace of an eigenvalue 0 in EDp [f 2] and VarDp(f).

From the above two corollaries and the definition of hf , we bound EDp [f 2] by ‖f‖2
2 as

follows. For VarDp(f), we exclude f̂(∅) because VarDp(f) is independent with f̂(∅). Recall

that ‖f‖2
2 = EUp [f

2] =
∑

S f̂(S)2.

Corollary 9.2.7. For any degree d multilinear polynomial f and a global cardinality con-

straint
∑

i xi = (1− 2p)n, EDp [f 2] ≤ d‖f‖2
2 and EDp [f 2] ≥ 0.5‖f − (

∑
i φi)hf‖2

2.
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Corollary 9.2.8. For any degree d multilinear polynomial f and a global cardinality con-

straint
∑

i xi = (1 − 2p)n, VarDp(f) ≤ d‖f − f̂(∅)‖2
2 and VarDp(f) ≥ 0.5‖f − f̂(∅) −

(
∑

i φi)hf−f̂(∅)‖2
2.

9.3 Parameterized algorithm for CSPs above average with the
bisection constraint

We prove that CSPs above average with the bisection constraint are fixed-parameter

tractable. Given an instance I from d-ary CSPs and the bisection constraint
∑

i xi = 0, we

use the standard basis {χS|S ∈
(

[n]
≤d

)
} of the Fourier transform in U and abbreviate fI to f .

Recall that ‖f‖2
2 = EU [f 2] =

∑
S f̂(S)2 and D is the uniform distribution on all assignments

in {±1}n complying with the bisection constraint.

For f with a small variance in D, we use hf−f̂(∅) to denote the projection of f − f̂(∅)

onto the null space span{(
∑

i xi)χS|S ∈
(

[n]
≤d−1

)
}. We know ‖f − f̂(∅) − (

∑
i xi)hf−f̂(∅)‖2

2 ≤

2VarD(f) from Corollary 9.2.8, i.e., the lower bound of the non-zero eigenvalues in VarD(f).

Then we show how to round hf−f̂(∅) in Section 9.3.1 to a degree d − 1 polynomial h with

integral coefficients such that ‖f − f̂(∅) − (
∑

i xi)h‖2
2 = O(‖f − f̂(∅) − (

∑
i xi)hf−f̂(∅)‖2

2),

which indicates that f − f̂(∅)− (
∑

i xi)h has a small kernel under the bisection constraint.

Otherwise, for f with a large variance in D, we show the hypercontractivity in D that

ED[(f−ED[f ])4] = O(ED[(f−ED[f ])2]2) in Section 9.3.2. From the fourth moment method,

we know there exists α in the support of D satisfying f(α) ≥ ED[f ] + Ω(
√

VarD[f ]2). At

last, we prove the main theorem in Section 9.3.3.

Theorem 9.3.1. Given an instance I of a CSP problem of arity d and a parameter t,

there is an algorithm with running time O(n3d) that either finds a kernel on at most Cdt
2

variables or certifies that OPT ≥ AV G + t under the bisection constraint for a constant

Cd = 24d2 · 7d · 9d · 22d ·
(
d!(d− 1)! · · · 2!

)2
.
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9.3.1 Rounding

In this section, we show that for any polynomial f of degree d with integral coefficients,

there exists an efficient algorithm to round hf into an integral-coefficient polynomial h while

it keeps ‖f − (
∑

i xi)h‖2
2 = O(‖f − (

∑
i xi)hf‖2

2).

Theorem 9.3.2. For any constants γ and d, given a degree d multilinear polynomial f with

‖f − (
∑

i xi)hf‖2
2 ≤
√
n whose Fourier coefficient f̂(S) is a multiple of γ for all S ∈

(
[n]
≤d

)
,

there exists an efficient algorithm to find a degree-at-most d− 1 polynomial h such that

1. The Fourier coefficients of h are multiples of γ
d!(d−1)!···2!

, which demonstrates that the

Fourier coefficients of f − (
∑

i xi)h are multiples of γ
d!(d−1)!···2!

.

2. ‖f − (
∑

i xi)h‖2
2 ≤ 7d · ‖f − (

∑
i xi)hf‖2

2.

The high level idea of the algorithm is to round ĥf (S) to ĥ(S) from the coefficients of

weight d−1 to the coefficient of weight 0. At the same time, we guarantee that for any k < d,

the rounding on the coefficients of weight k will keep ‖f− (
∑

i xi)h‖2
2 = O(‖f− (

∑
i xi)hf‖2

2)

in the same order.

Because hf contains non-zero coefficients up to weight d − 1, we first prove that we

could round {ĥf (S)|S ∈
(

[n]
d−1

)
} to multiples of γ/d!. Observe that for T ∈

(
[n]
d

)
, the coefficient

of χT in f−(
∑

i xi)hf is f̂(T )−
∑

j∈T ĥf (T \j). Because
∑

T∈([n]
d )(f̂(T )−

∑
j∈T ĥf (T \j))2 =

o(n), f̂(T )−
∑

j∈T ĥf (T \ j) is close to 0 for most T in
(

[n]
d

)
. Hence

∑
j∈T ĥf (T \ j) mod γ

is close to 0 for most T . Our start point is to prove that for any S ∈
(

[n]
d−1

)
, ĥ(S) is close to

a multiple of γ/d! from the above discussion.

Lemma 9.3.3. If f̂(T ) is a multiple of γ and f̂(T )−
∑

S∈( T
d−1)

ĥf (S) = 0 for all T ∈
(

[n]
d

)
,

then ĥf (S) is a multiple of γ/d! for all S ∈
(

[n]
d−1

)
.
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Proof. From the two conditions, we know∑
S∈( T

d−1)

ĥf (S) ≡ 0 mod γ

for any T ∈
(

[n]
d

)
. We prove that

(d− 1)! · ĥf (S1) + (−1)d(d− 1)! · ĥf (S2) ≡ 0 mod γ

for any S1 ∈
(

[n]
d−1

)
and S2 ∈

(
[n]\S
d−1

)
. Thus

0 ≡ (d− 1)! ·
∑

S2∈( T
d−1)

ĥf (S2) ≡ d! · ĥf (S1) mod γ,

for any T with S1 ∩ T = ∅, which indicates ĥf (S1) is a multiple of γ/d!.

Without loss of generality, we assume S1 = {1, 2, · · · , d−1} and S2 = {k1, k2, · · · , kd−1}.
For a subset T ∈

(
S1∪S2

d

)
, because

∑
S∈( T

d−1)
ĥf (S) =

∑
j∈T ĥf (T \ j), we use (T ) to denote

the equation ∑
j∈T

ĥf (T \ j) ≡ 0 mod γ (T)

Let βd−1,1 = (d−2)! and βd−i−1,i+1 = −i
d−i−1

·βd−i,i for any i ∈ {1, · · · , d−2} (we choose βd−1,1

to guarantee that all coefficients are integers). Consider the following linear combination of

equations over T ∈
(
S1∪S2

d

)
with coefficients βd−i,i:

d−1∑
i=1

βd−i,i
∑

T1∈( S1
d−i),T2∈(S2

i )

(T1∪T2)⇒
d−1∑
i=1

βd−i,i
∑

T1∈( S1
d−i),T2∈(S2

i )

( ∑
j∈T1∪T2

ĥf (T1∪T2\j)
)
≡ 0 mod γ.

(9.5)

Observe that for any i ∈ {1, · · · , d − 2}, S ∈
(

S1

d−i−1

)
, and S ′ ∈

(
S2

i

)
, the coefficient of

ĥf (S ∪ S ′) is i · βd−i,i + (d− i− 1) · βd−i−1,i+1 = 0 in equation (9.5), where i comes from the

number of choices of T1 is d− 1− |S| = i and d− i− 1 comes from the number of choices of

T2 is (d− 1)− |S ′|.
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Hence equation (9.5) indicates that (d − 1)βd−1,1ĥf (S1) + (d − 1)β1,d−1ĥf (S2) ≡ 0

mod γ. Setting into βd−1,1 = (d− 2)! and β1,d−1 = (−1)d−2(d− 2)!, we obtain

(d− 1)! · ĥf (S1) + (−1)d(d− 1)! · ĥf (S2) ≡ 0 mod γ.

Corollary 9.3.4. If
∑

T∈([n]
d )(f̂(T ) −

∑
S∈( T

d−1)
ĥf (S))2 = k = o(n0.6), then for all S ∈(

[n]
d−1,

)
, ĥf (S) is 0.1

d
· γ/d! close to a multiple of γ/d!.

Proof. From the condition, we know that except for n.8 choices of T ∈
(

[n]
d

)
,
∑

S∈( T
d−1)

ĥf (S) is

n−.1 close to a multiple of γ because of n.8 ·(n−.1)2 > k. Observe that the above proof depends

on the Fourier coefficients in at most 2d+ 1 variables of S1∪T . Because n0.8 = o(n), for any

subset S1 ∈
(

[n]
d−1

)
, there is a subset T ∈

(
[n]\S1

d

)
such that for any T ′ ∈

(
S1∪T
d

)
,
∑

S∈( T ′
d−1)

ĥf (S)

is n−.1 close to a multiple of γ.

Following the proof in Lemma 9.3.3, we obtain that ĥf (S) is (2d)!(d!)2

n.1
< 0.1

d
·γ/d! close

to a multiple of γ/d! for any S ∈
(

[n]
d−1

)
.

We consider a natural method to round hf , which is to round ĥf (S) to the closet

multiple of γ/d! for every S ∈
(

[n]
d−1

)
.

Claim 9.3.5. Let hd−1 be the rounding polynomial of hf such that ĥd−1(S) = ĥf (S) for any

|S| 6= d − 1 and ĥd−1(S) is the closest multiple of γ/d! to ĥf (S) for any S ∈
(

[n]
d−1

)
. Let

ε(S) = ĥd−1(S)− ĥf (S).

If |ε(S)| < .1/d · γ/d! and α(T ) is a multiple of γ for any T , then∑
T∈([n]

d )

( ∑
S∈( T

d−1)

ε(S)
)2 ≤

∑
T∈([n]

d )

(
α(T )−

∑
S∈( T

d−1)

ĥf (S)
)2
.
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Proof. For each T ∈
(

[n]
d

)
, Because

∑
S∈( T

d−1)
|ε(S)| < 0.1 · γ/d!, then |

∑
S∈( T

d−1)
ε(S)| <

|α(T ) −
∑

S∈( T
d−1)

ĥf (S)|. Hence we know
∑

T∈([n]
d )
(∑

S∈( T
d−1)

ε(S)
)2 ≤

∑
T∈([n]

d )
(
α(T ) −∑

S∈( T
d−1)

ĥf (S)
)2
.

From now on, we use hd−1 to denote the degree d−1 polynomial of hf after the above

rounding process on the Fourier coefficients of weight d− 1. Now we bound the summation

of the square of the Fourier coefficients in f − (
∑

i xi)hd−1, i.e., ‖f − (
∑

i xi)hd−1‖2
2. Observe

that rounding ĥf (S) only affect the terms of T ∈
(

[n]
d

)
containing S and T ′ ∈

(
[n]
d−2

)
inside S,

because (
∑

i xi)ĥf (S)χS =
∑

i∈S ĥf (S)χS\i +
∑

i/∈S ĥf (S)χS∪i.

Lemma 9.3.6. ‖f − (
∑

i xi)hd−1‖2
2 ≤ 7‖f − (

∑
i xi)hf‖2

2.

Proof. Let ε(S) = ĥd−1(S)− ĥf (S). It is sufficient to prove

∑
T∈([n]

d )

f̂(T )−
∑

S∈( T
d−1)

ĥf (S)−
∑

S∈( T
d−1)

ε(S)


2

≤ 4
∑

T∈([n]
d )

(
f̂(T )−

∑
S∈( T

d−1)

ĥf (S)
)2
, (9.6)

and

∑
T ′∈( [n]

d−2)

f̂(T ′)−
∑

S∈( T ′
d−3)

ĥf (S)−
∑
j /∈T ′

ĥf (T
′ ∪ {j})−

∑
j /∈T ′

ε(T ′ ∪ {j})


2

≤ 2‖f−(
∑
i

xi)hf‖2
2.

(9.7)

Equation (9.6) follows the fact that
∑

T∈([n]
d )
(∑

S∈( T
d−1)

ε(S)
)2 ≤

∑
T∈([n]

d )
(
f̂(T )−

∑
S∈( T

d−1)
ĥf (S)

)2

by Claim 9.3.5. From the inequality of arithmetic and geometric means, we know the cross

terms:∑
T∈([n]

d )

2 ·
∣∣f̂(T )−

∑
S∈( T

d−1)

ĥf (S)
∣∣ · | ∑

S∈( T
d−1)

ε(S)| ≤ 2
∑

T∈([n]
d )

(
f̂(T )−

∑
S∈( T

d−1)

ĥf (S)
)2
.
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For (9.7), observe that∑
T ′∈( [n]

d−2)

(∑
j /∈T ′

ε(T ∪ {j})
)2

= (d− 1)
∑

S∈( [n]
d−1)

ε(S)2 +
∑

S,S′:|S∩S′|=d−2

2ε(S)ε(S ′)

≤
∑

T∈([n]
d )

( ∑
S∈( T

d−1)

ε(S)
)2 ≤

∑
T∈([n]

d )

(
f̂(T )−

∑
S∈( T

d−1)

ĥf (S)
)2
.

Hence we have∑
T ′∈( [n]

d−2)

(
f̂(T ′)−

∑
S∈( T ′

d−3)

ĥf (S)−
∑
j /∈T ′

ĥf (T
′ ∪ {j})

)
+

∑
T ′∈( [n]

d−2)

(∑
j /∈T ′

ε(T ∪ {j})
)2

≤
∑

T ′∈( [n]
d−2)

(
f̂(T ′)−

∑
S∈( T ′

d−3)

ĥf (S)−
∑
j /∈T ′

ĥf (T
′ ∪ {j})

)
+
∑

T∈([n]
d )

(
f̂(T )−

∑
S∈( T

d−1)

ĥf (S)
)2

≤ ‖f − (
∑
i

xi)hf‖2
2.

We use the inequality of arithmetic and geometric means again to obtain inequality (9.7).

Proof of Theorem 9.3.2. We apply Claim 9.3.5 and Lemma 9.3.6 for d times on the Fourier

coefficients of hf from {ĥf (S)|S ∈
(

[n]
d−1

)
}, {ĥf (S)|S ∈

(
[n]
d−2

)
}, · · · to {ĥf (S)|S ∈

(
[n]
0

)
} by

choosing γ properly. More specific, let hi be the polynomial after rounding the coefficients on(
[n]
≥i

)
and hd = hf . Every time, we use Claim 9.3.5 to round coefficients of {ĥi(S)|S ∈

(
[n]
i

)
}

from hi+1 for i = d− 1, · · · , 0. We use different parameters of γ in different rounds: γ in the

rounding of hd−1, γ/d! in the rounding of hd−2, γ
d!·(d−1)!

in the rounding of hd−3 and so on.

After d rounds, all coefficients in h0 are multiples of γ
d!(d−1)!(d−2)!···2!

.

Because ‖f − (
∑

i xi)hi‖2
2 ≤ 7‖f − (

∑
i xi)hi+1‖2

2 from Lemma 9.3.6. Eventually,

‖f − (
∑

i xi)h0‖2
2 ≤ 7d · ‖f − (

∑
i xi)hf‖2

2.

9.3.2 2→ 4 Hypercontractive inequality under distribution D

We prove the 2→ 4 hypercontractivity for a degree d polynomial g in this section.
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Theorem 9.3.7. For any degree-at-most d multilinear polynomial g, ED[g4] ≤ 3d ·92d · ‖g‖4
2.

Recall that ‖g‖2 = EU [g2]1/2 = (
∑

S ĝ(S)2)1/2 and g − (
∑

i xi)hg ≡ g in the support

of D. Because ‖g − (
∑

i xi)hg‖2
2 ≤ 2Ex∼D[g2] from the lower bound of non-zero eigenvalues

in ED[g2] in Corollary 9.2.4, without loss of generality, we assume g is orthogonal to the null

space span{(
∑

i xi)χS|S ∈
(

[n]
≤d−1

)
}.

Corollary 9.3.8. For any degree-at-most d multilinear polynomial g, ED[g4] ≤ 12d · 92d ·

ED[g2]2.

Before proving the above Theorem, we observe that uniform sampling a bisection

(S, S̄) is as same as first choosing a random perfect matching M and independently assigning

each pair of M to the two subsets. For convenience, we use P (M) to denote the product

distribution on M and EM to denote the expectation over a uniform random sampling of

perfect matchingM . LetM(i) denote the vertex matched with i inM andM(S) = {M(i)|i ∈

S}. From the 2→ 4 hypercontractive inequality on product distribution P (M), we have the

following claim:

Claim 9.3.9. EM [EP (M)[g
4]] ≤ 9d EM [EP (M)[g

2]2].

Now we prove the main technical lemma of the 2 → 4 hypercontractivity under the

bisection constraint to finish the proof.

Lemma 9.3.10. EM [EP (M)[g
2]2] ≤ 3d · 9d · ‖g‖4

2.

Theorem 9.3.7 follows from Claim 9.3.9 and Lemma 9.3.10. Now we proceed to the

proof of Lemma 9.3.10.
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Proof of Lemma 9.3.10. Using g(x) =
∑

S∈([n]
≤d)

ĝ(S)χS, we rewrite EM [EP (M)[g
2]2] as

E
M

[
E

P (M)

[
(
∑

S∈([n]
≤d)

ĝ(S)χS)2
]2]

= E
M

[
E

P (M)

[ ∑
S∈([n]

≤d)

ĝ(S)2 +
∑

S∈([n]
≤d),S′∈(

[n]
≤d),S′ 6=S

ĝ(S)ĝ(S ′)χSMS′
]2]

.

Notice that EP (M)[χS∆S′ ] = (−1)|S∆S′|/2 if and only if M(S∆S ′) = S∆S ′; otherwise it is 0.

We expand it to

E
M

[(
‖g‖2

2 +
∑

S∈([n]
≤d),S′∈(

[n]
≤d),S′ 6=S

ĝ(S)ĝ(S ′) · 1SMS′=M(SMS′) · (−1)|SMS
′|/2
)2
]

= ‖g‖4
2 + 2‖g‖2

2 · E
M

[ ∑
S∈([n]

≤d),S′∈(
[n]
≤d),S′ 6=S

ĝ(S)ĝ(S ′) · 1SMS′=M(SMS′) · (−1)|SMS
′|/2
]

+ E
M

( ∑
S∈([n]

≤d),S′∈(
[n]
≤d),S′ 6=S

ĝ(S)ĝ(S ′) · 1SMS′=M(SMS′) · (−1)|SMS
′|/2
)2

 .
We first bound the expectation of

∑
S∈([n]

≤d),S′∈(
[n]
≤d),S′ 6=S

ĝ(S)ĝ(S ′)·1SMS′=M(SMS′)·(−1)|SMS
′|/2

in the uniform distribution over all perfect matchings, then bound the expectation of its

square. Observe that for a subset U ⊆ [n] with even size, EM [1U=M(U)] = (|U |−1)(|U |−3)···1
(m−1)(m−3)···(m−|U |+1)

such that EM [1U=M(U) · (−1)|U |/2] = δ|U |, i.e., the expectation ED[χU ] of χU in D. Hence

E
M

[ ∑
S∈([n]

≤d),S′∈(
[n]
≤d),S′ 6=S

ĝ(S)ĝ(S ′)1SMS′=M(SMS′) · (−1)|SMS
′|/2] ≤∑

S,S′

ĝ(S)ĝ(S ′) · δSMS′ = E
D

[g2].

From Corollary 9.2.4, the largest non-zero eigenvalue of the matrix constituted by δS∆S′ is

at most d. Thus the expectation is upper bounded by d · ‖g‖2
2.

We define g′ to be a degree 2d polynomial
∑

T∈( [n]
≤2d)

ĝ′(T )χT with coefficients

ĝ′(T ) =
∑

S∈([n]
≤d),S′∈(

[n]
≤d):S∆S′=T

ĝ(S)ĝ(S ′)
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for all T ∈
(

[n]
≤2d

)
. Hence we rewrite

E
M

( ∑
S∈([n]

≤d),S′∈(
[n]
≤d),S′ 6=S

ĝ(S)ĝ(S ′) · 1SMS′=M(SMS′) · (−1)|SMS
′|/2
)2


= E

M

[( ∑
T∈( [n]

≤2d)

ĝ′(T ) · 1T=M(T )(−1)|T |/2
)2
]

= E
M

[∑
T,T ′

ĝ′(T )ĝ′(T ′) · 1T=M(T )1T ′=M(T ′)(−1)|T |/2+|T ′|/2
]
.

Intuitively, because |T | ≤ 2d and |T ′| ≤ 2d, most of pairs T and T ′ are disjoint such that

EM [1T=M(T )1T ′=M(T ′)] = EM [1T=M(T )] · EM [1T ′=M(T ′)]. The summation is approximately

EM [
∑

T ĝ
′(T )1T=M(T )(−1)|T |/2]2, which is bounded by d2‖g‖4

2 from the discussion above.

However, we still need to bound the contribution from the correlated paris of T and T ′.

Notice that ‖g′‖2
2 = EU [g4], which can be upper bounded by ≤ 9d‖g‖4

2 from the

standard 2→ 4 hypercontractivity.

Instead of bounding it by ‖g‖4
2 directly, we will bound it by 2d · ‖g′‖2

2 ≤ 2d · 9d‖g‖4
2

through the analysis on its eigenvalues and eigenspaces to this end. For convenience, we

rewrite it to

E
M

[∑
T,T ′

ĝ′(T )ĝ′(T )1T=M(T )1T ′=M(T ′)(−1)|T |/2+|T ′|/2
]

=
∑
T,T ′

ĝ′(T )ĝ′(T ′)∆(T, T ′),

where ∆(T, T ′) = 0 if |T | or |T ′| is odd, otherwise

∆(T, T ′) = E
M

[
1T∩T ′=M(T∩T ′)1T=M(T )1T ′=M(T ′)(−1)|T |/2+|T ′|/2

]
=
|T ∩ T ′ − 1|!! · |T \ T ′ − 1|!! · |T ′ \ T − 1|!!

(n− 1)(n− 3) · · · (n− |T ∪ T ′|+ 1)
(−1)|T∆T ′|/2.

Let A′ be the
(
n
2d

)
×
(
n
2d

)
matrix whose entry (T, T ′) is ∆(T, T ′). We prove that the eigenspace

of A′ with eigenvalue 0 is still span{(
∑

i xi)χT |T ∈
(

[n]
≤2d−1

)
}. Because ∆T,T ′ 6= 0 if and only
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if |T |, |T ′|,and |T ∩ T ′| are even, it is sufficient to show
∑

iA
′(S, T∆i) = 0 for all odd sized

T and even sized S.

1. |S ∩ T | is odd: ∆(S, T M i) 6= 0 if and only if i ∈ S. We separate the calculation into

i ∈ S ∩ T or not:∑
i

A′(S, T M i) =
∑
i∈S∩T

∆(S, T \ i) +
∑
i∈S\T

∆(S, T ∪ i).

Plugging in the definition of ∆, we obtain

|S ∩ T | · |S ∩ T − 2|!! · |S \ T |!! · |T \ S|!!
(n− 1)(n− 3) · · · (n− |S ∪ T |+ 1)

(−1)|S|/2+|T−1|/2

+
|S \ T | · |S ∩ T |!! · |S \ T − 2|!! · |T \ S|!!

(n− 1)(n− 3) · · · (n− |S ∪ T |+ 1)
(−1)|S|/2+|T+1|/2 = 0.

2. |S ∩ T | is even: ∆(S, T M i) 6= 0 if and only if i /∈ S. We separate the calculation into

i ∈ T or not: ∑
i

A′(S, T M i) =
∑
i∈T\S

∆(S, T \ i) +
∑
i/∈S∪T

∆(S, T ∪ i).

Plugging in the definition of ∆, we obtain

|T \ S| · |S ∩ T − 1|!! · |S \ T − 1|!! · |T \ S − 2|!!
(n− 1)(n− 3) · · · (n− |S ∪ T |+ 1)

(−1)|S|/2+|T−1|/2

+
(n− |S ∪ T |) · |S ∩ T − 1|!! · |S \ T − 1|!! · |T \ S|!!

(n− 1)(n− 3) · · · (n− |S ∪ T |)
(−1)|S|/2+|T+1|/2 = 0.

From the same analysis in Section 9.2, the eigenspaces of A′ are as same as the

eigenspaces of A with degree 2d except the eigenvalues, whose differences are the differences

between ∆SMT and δSMT . We can compute the eigenvalues of A′ by the same calculation of

eigenvalues in A. However, we bound the eigenvalues of A′ by 0 � A′ � A as follows.

Observe that for any S and T , A′(S, T ) and A(S, T ) always has the same sign. At

the same time, |A′(S, T )| = O( |A(S,T )|
n|S∩T |

). For a eigenspace V ′k in A, we focus on τ0 because
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the eigenvalue is O(1/n)-close to τ0 from the proof of Theorem 9.2.3. We replace δi by any

∆(S, T ) of |S| = k, |T | = k + i and |S ∩ T | = i in τ0 =
∑d−k

i=0

(
n−k
i

)
· αk,k+i · δi to obtain τ ′0

for A′. Thus αk,k+i ·∆(S, T ) = Θ(
αk,k+iδi

ni
) indicates τ ′0 = Θ(1) < τ0 from the contribution of

i = 0. Repeat this calculation to τ2l, we can show τ ′2l = O(τ2l) for all l. Hence we know the

eigenvalue of A′ in V ′k is upper bounded by the eigenvalue of A from the cancellation rule of

τ in the proof of Theorem 9.2.3. On the other hand, A′ � 0 from the definition that it is the

expectation of a square term in M .

From Corollary 9.2.4 and all discussion above, we bound the largest eigenvalue of A′

by 2d. Therefore

E
M

[∑
T,T ′

ĝ′(T )ĝ′(T )1T=M(T )1T ′=M(T ′)(−1)|T |/2+|T ′|/2
]

=
∑
T,T ′

ĝ′(T )ĝ′(T ′)∆(T, T ′) ≤ 2d‖g′‖2
2 ≤ 2d · 9d · ‖g‖4

2.

Over all discussion above, EM
[
EP (M)[g

2]2
]
≤ ‖g‖4

2 + 2d‖g‖4
2 + 2d · 9d · ‖g‖4

2 ≤ 3d · 9d ·

‖g‖4
2.

9.3.3 Proof of Theorem 9.3.1

In this section, we prove Theorem 9.3.1. Let f = fI be the degree d multilinear

polynomial associated with the instance I and g = f − ED[f ] for convenience. We discuss

VarD[f ] in two cases.

If VarD[f ] = ED[g2] ≥ 12d ·92d · t2, we have ED[g4] ≤ 12d ·92d ·ED[g2]2 from the 2→ 4

hypercontractivity of Theorem 9.3.7. By Lemma 9.1.1, we know PrD[g ≥
√

ED[g2]

2
√

12d·92d
] > 0.

Thus PrD[g ≥ t] > 0, which demonstrates that PrD[f ≥ ED[f ] + t] > 0.

Otherwise we know VarD[f ] < 12d·92d·t2. We consider f−f̂(∅) now. Let hf−f̂(∅) be the

projection of f− f̂(∅) onto the linear space such that ‖f− f̂(∅)− (
∑

i xi)hf−f̂(∅)‖2
2 ≤ 2Var(f)
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from Corollary 9.2.8 and γ = 2−d. From Theorem 9.3.2, we could round hf−f̂(∅) to h for

f − f̂(∅) in time nO(d) such that

1. the coefficients of f − f̂(∅)− (
∑

i xi)h are multiples of γ
d!(d−1)!···2!

;

2. ‖f − f̂(∅)− (
∑

i xi)h‖2
2 ≤ 7d‖f − f̂(∅)− (

∑
i xi)hf−f̂(∅)‖2

2 ≤ 7d · 2 · 12d · 9d · t2.

We first observe that f(α) = f(α) − (
∑

i αi)h(α) for any α in the support of D. Then we

argue f− f̂(∅)−(
∑

i xi)h has a small kernel, which indicates that f has a small kernel. From

the above two properties, we know there are at most ‖f − f̂(∅) − (
∑

i xi)h‖2
2/(

γ
d!(d−1)!···2!

)2

non-zero coefficients in f− f̂(∅)−(
∑

i xi)h. Because each of the nonzero coefficients contains

at most d variables, the instance I has a kernel of at most 24d2 ·7d ·9d ·22d ·
(
d!(d−1)! · · · 2!

)2
t2

variables.

The running time of this algorithm is the running time to find hf and the rounding

time O(nd). Therefore this algorithm runs in time O(n3d).

9.4 2→ 4 Hypercontractive inequality under distribution Dp

In this section, we prove the 2 → 4 hypercontractivity of low-degree multilinear

polynomials in the distribution Dp conditioned on the global cardinality constraint
∑

i xi =

(1− 2p)n.

We assume p is in (0, 1) such that p ·n is a integer. Then we fix the Fourier transform

to be the p-biased Fourier transform in this section, whose basis is {φS|S ∈
(

[n]
≤d

)
}. Hence

we use φ1, · · · , φn instead of x1, · · · , xn and say that a function only depends on a subset of

characters {φi|i ∈ S} if this function only takes input from variables {xi|i ∈ S}. For a degree

d multilinear polynomial f =
∑

S∈([n]
≤d)

f̂(S)φS, we use ‖f‖2 = EUp [f
2]1/2 = (

∑
S f̂(S)2)1/2 in

this section.
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We rewrite the global cardinality constraint as
∑

i φi = 0. For convenience, we use

n+ = (1− p)n to denote the number of
√

p
1−p ’s in the global cardinality constraint of φi and

n− = pn to denote the number of −
√

1−p
p

’s. If n+

n−
= 1−p

p
= p1

p2
for some integers p1 and p2,

we could follow the approach in Section 9.3.2 that first partition [n+ +n−] into tuples of size

p1 + p2 then consider the production distribution over tuples. However, this approach will

introduce a dependence on p1 + p2 to the bound, which may be superconstant. Instead of

partitioning, we use induction on the number of characters and degree to prove the 2 → 4

hypercontractivity of low-degree multilinear polynomials in Dp.

Theorem 9.4.1. For any degree-at-most d multilinear polynomial f on φ1, · · · , φn,

E
Dp

[f(φ1, . . . , φn)4] ≤ 3 · d3/2 ·
(

256 ·
(
(
1− p
p

)2 + (
p

1− p
)2
)2
)d
· ‖f‖4

2.

Recall that hf is the projection of f onto the null space span{(
∑

i φi)φS|S ∈
(

[n]
≤d−1

)
}.

We know f−(
∑

i φi)hf ≡ f in supp(Dp), which indicates EDp [fk] = EDp [(f−(
∑

i φi)hf )
k] for

any integer k. Without loss of generality, we assume f is orthogonal to span{(
∑

i φi)φS|S ∈(
[n]
≤d−1

)
}. From the lower bound of eigenvalues in EDp [f 2] by Corollary 9.2.4, 0.5‖f‖2

2 ≤

EDp [f 2]. We have a direct corollary as follows.

Corollary 9.4.2. For any degree-at-most d multilinear polynomial f on φ1, · · · , φn,

E
Dp

[f(φ1, . . . , φn)4] ≤ 12 · d3/2 ·
(

256 ·
(
(
1− p
p

)2 + (
p

1− p
)2
)2
)d

E
Dp

[f(φ1, . . . , φn)2]2.

Note that since xi can be written as a linear function of φi and linear transformation does

not change the degree of the multilinear polynomial, we also have for any degree-at-most d

multilinear polynomial g on x1, · · · , xn,

E
Dp

[g(x1, . . . , xn)4] ≤ 12 · d3/2 ·
(

256 ·
(
(
1− p
p

)2 + (
p

1− p
)2
)2
)d

E
Dp

[g(x1, . . . , xn)2]2.
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Proof of Theorem 9.4.1. We assume the inequality holds for any degree < d polynomials

and use induction on the number of characters in a degree d multilinear polynomial f to

prove that if the multilinear polynomial f of φ1, · · · , φn depends on at most k characters

of φ1, · · · , φn, then EDp [f 4] ≤ d3/2 · Cd · βk · ‖f‖4
2 for C = 256 ·

(
(1−p

p
)2 + ( p

1−p)2
)2

and

β = 1 + 1/n.

Base case. f is a constant function that is independent from φ1, · · · , φn, EDp [f 4] = f̂(∅)4 =

‖f‖4
2.

Induction step. Suppose there are k ≥ 1 characters of φ1, · · · , φn in f . Without loss of

generality, we assume φ1 is one of the characters in f and rewrite f = φ1h0 +h1 for a degree

d − 1 polynomial h0 with at most k − 1 characters and a degree d polynomial h1 with at

most k − 1 characters. Because f is a multilinear polynomial, ‖f‖2
2 = ‖h0‖2

2 + ‖h1‖2
2. We

expand EDp [f 4] = EDp [(φ1h0 + h1)4] to

E
Dp

[φ4
1 · h4

0] + 4 E
Dp

[φ3
1 · h3

0 · h1] + 6 E
Dp

[φ2
1 · h2

0 · h2
1] + 4 E

Dp
[φ1 · h0 · h3

1] + E
Dp

[h4
1].

From the induction hypothesis, EDp [h4
1] ≤ Cdβk−1‖h1‖4

2 and

E
Dp

[φ4
1 · h4

0] ≤ max{(1− p
p

)2, (
p

1− p
)2} E

Dp
[h4

0] ≤ d3/2 · Cd−0.5βk−1‖h0‖4
2. (9.8)

Hence EDp [φ2
1 ·h2

0 ·h2
1] ≤ (EDp [φ4

1h
4
0])1/2(EDp [h4

1])1/2 from the Cauchy-Schwarz inequal-

ity. From the above discussion, this is at most

d3/4 ·Cd/2 ·β(k−1)/2 ·‖h1‖2
2 ·d3/4 ·C(d−0.5)/2β(k−1)/2‖h0‖2

2 ≤ d3/2 ·Cd−1/4 ·βk−1 ·‖h0‖2
2‖h1‖2

2. (9.9)

Applying the inequality of arithmetic and geometric means on EDp [φ3
1 · h3

0 · h1], we

know it is at most

(E
Dp

[φ4
1h

4
0] + E

Dp
[φ2

1h
2
0h

2
1])/2 ≤ d3/2

(
Cd−0.5βk−1‖h0‖4

2 + Cd−1/4 · βk−1 · ‖h0‖2
2‖h1‖2

2

)
/2. (9.10)
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Finally, we bound EDp [φ1 · h0 · h3
1]. However, we cannot apply the Cauchy-Schwarz

inequality or the inequality of arithmetic and geometric means, because we cannot afford a

term like d3/2 ·Cdβk−1‖h1‖4
2 any more. We use Dφ1>0 (Dφ1<0 resp.) to denote the conditional

distribution of Dp on fixing φ1 =
√

p
1−p (−

√
1−p
p

resp.) and rewrite

E
Dp

[φ1 · h0 · h3
1] =

√
p(1− p) E

Dφ1>0

[h0 · h3
1]−

√
p(1− p) E

Dφi<0

[h0 · h3
1]. (9.11)

Let L be the matrix corresponding to the quadratic form EDφ1>0
[fg] − EDφ1<0

[fg] for low-

degree multilinear polynomials f and g (i.e. let L be a matrix such that fTLg = EDφ1>0
[fg]−

EDφ1<0
[fg]). The main technical lemma of this section is a upper bound on the spectral norm

of L.

Lemma 9.4.3. Let g be a degree d(d ≥ 1) multilinear polynomial on characters φ2, · · · , φn,

we have

| E
Dφ1>0

[g2]− E
Dφ1<0

[g2]| ≤ 3d3/2

p(1− p)
· ‖g‖

2
2√
n
.

Therefore, the spectral norm of L is upper bounded by 3d3/2

p(1−p) ·
1√
n

.

From the above lemma, we rewrite the equation (9.11) from the upper bound of its

eigenvalues:

E
Dp

[φ1 · h0 · h3
1] =

√
p(1− p)

(
E

Dφ1>0

[h0 · h3
1]− E

Dφ1<0

[h0 · h3
1]

)
=
√
p(1− p)(h0h1)TL · (h2

1) ≤
√
p(1− p) · 3(2d)3/2

p(1− p)
· 1√

n
· ‖h0h1‖2 · ‖h2

1‖2.

Then we use the inequality of arithmetic and geometric means on it:

E
Dp

[φ1 · h0 · h3
1] ≤

√
p(1− p) · 10d3/2

p(1− p)
· ‖h0h1‖2

2 + ‖h2
1‖2

2/n

2
.
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Next, we use the 2→ 4 hypercontractivity ‖h2‖2
2 = EUp [h4] ≤ 9d ·

(
p2

1−p + (1−p)2

p

)d
‖h‖4

2 in Up

and the Cauchy-Schwarz inequality to further simplify it to:

E
Dp

[φ1 · h0 · h3
1] ≤ 5d3/2√

p(1− p)
· (‖h2

0‖2 · ‖h2
1‖2 +

9d ·
(

p2

1−p + (1−p)2

p

)d
n

‖h1‖4
2)

≤ 5d3/2√
p(1− p)

· 9d ·
(

p2

1− p
+

(1− p)2

p

)d
(‖h0‖2

2 · ‖h1‖2
2 +

1

n
‖h1‖4

2). (9.12)

From all discussion, we bound E[f 4] by the upper bound of each inequalities in

(9.8),(9.10),(9.9),(9.12):

EDp [(φ1h0 + h1)4]

=EDp [φ
4
1 · h4

0] + 4EDp [φ
3
1 · h3

0 · h1] + 6EDp [φ
2
1 · h2

0 · h2
1] + 4EDp [φ1 · h0 · h3

1] + EDp [h
4
1]

≤d3/2Cd−.5βk−1‖h0‖4
2 + 2d3/2

(
Cd−.5βk−1‖h0‖4

2 + Cd−.25βk−1‖h0‖2
2‖h1‖2

2

)
+ 6d3/2Cd−.25βk−1‖h0‖2

2‖h1‖2
2

+ 4
5d3/2√
p(1− p)

· 9d ·
(

p2

1− p
+

(1− p)2

p

)d(
‖h0‖2

2‖h1‖2
2 +

1

n
‖h1‖4

2

)
+ d3/2 · Cdβk−1‖h1‖4

2

≤3d3/2 · Cd−.5βk−1‖h0‖4
2 +

(
8d3/2 · Cd−.25 · βk−1 +

20d3/2√
p(1− p)

· 9d ·
(

p2

1− p
+

(1− p)2

p

)d)
· ‖h0‖2

2‖h1‖2
2

+

(
20d3/2√
p(1− p)

· 9d ·
(

p2

1− p
+

(1− p)2

p

)d
· 1

n
+ d3/2 · Cdβk−1

)
‖h1‖4

2

≤d3/2 · Cdβk‖h0‖4
2 + d3/2 · Cdβk · 2‖h0‖2

2‖h1‖2
2 + d3/2 · (Cd/n+ Cdβk−1)‖h1‖4

2 ≤ d3/2 · Cdβk‖f‖4
2.

We prove Lemma 9.4.3 to finish the proof. Intuitively, both EDφ1>0
[g2] and EDφ1<0

[g2]

are close to EDp [g2] (we add the dummy character φ1 back in Dp) for a low-degree multilinear

polynomial g; therefore their gap should be small compared to EDp [g2] = O(‖g‖2
2). Recall

that Dp is a uniform distribution on the constraint
∑

i φi = 0, i.e., there are always n+
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characters of φi with
√

p
1−p and n− characters with −

√
1−p
p

. For convenience, we abuse the

notation φ to denote a vector of characters (φ1, · · · , φn).

Proof of Lemma 9.4.3. Let F be the p-biased distribution on n − 2 characters with the

global cardinality constraint
∑n−1

i=2 φi = −
√

p
1−p +

√
1−p
p

= −q, i.e., n+− 1 of the characters

are always
√

p
1−p and n− − 1 of the characters are always −

√
1−p
p

. Let ~φ−i denote the

vector (φ2, · · · , φi−1, φi+1, · · · , φn) of n − 2 characters such that we could sample ~φ−i from

F . Hence φ ∼ Dφ1<0 is equivalent to the distribution that first samples i from 2, · · · , n then

fixes φi =
√

p
1−p and samples ~φ−i ∼ F . Similarly, φ ∼ Dφ1>0 is equivalent to the distribution

that first samples i from 2, · · · , n then fixes φi = −
√

1−p
p

and samples ~φ−i ∼ F .

For a multilinear polynomial g depending on characters φ2, · · · , φn, we rewrite

E
Dφ1>0

[g2]− E
Dφ1<0

[g2]

= E
i

E
φ∼F

[
g(φi =

√
p

1− p
, ~φ−i = φ)2 − g(φi = −

√
1− p
p

, ~φ−i = φ)2

]
. (9.13)

We will show its eigenvalue is upper bounded by 3d3/2

p(1−p) ·
√

1/n. We first use the Cauchy-

Schwarz inequality:

E
φ∼F

[(
g(φi =

√
p

1− p
, ~φ−i = φ)− g(φi = −

√
1− p
p

, ~φ−i = φ)

)
·
(
g(φi =

√
p

1− p
, ~φ−i = φ) + g(φi = −

√
1− p
p

, ~φ−i = φ)

)]

≤ E
φ∼F

[(
g(φi =

√
p

1− p
, ~φ−i = φ)− g(φi = −

√
1− p
p

, ~φ−i = φ)

)2
]1/2

· E
φ∼F

[(
g(φi =

√
p

1− p
, ~φ−i = φ) + g(φi = −

√
1− p
p

, ~φ−i = φ)

)2
]1/2

.
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From the inequality of arithmetic and geometric means and the fact that EDp [g2] ≤ d‖g‖2
2,

observe that the second term is bounded by

E
φ∼F

[(
g(φi =

√
p

1− p
, ~φ−i = φ) + g(φi = −

√
1− p
p

, ~φ−i = φ)

)2
]

≤2 E
Dφ1>0

[
g(φi =

√
p

1− p
, ~φ−i = φ)2

]
+ 2 E

Dφ1<0

[
g(φi = −

√
1− p
p

, ~φ−i = φ)2

]
≤ 3

p(1− p)
E
Dp

[g2] ≤ 3d

p(1− p)
· ‖g‖2

2.

Then we turn to Eφ∼F
[(

g(φi =
√

p
1−p ,

~φ−i = φ)− g(φi = −
√

1−p
p
, ~φ−i = φ)

)2
]1/2

.

We use

gi =
∑

S:i∈S f̂(S)φS\i to replace g(φi =
√

p
1−p ,

~φ−i = φ)− g(φi = −
√

1−p
p
, ~φ−i = φ):

E
φ∼F

(∑
S:i∈S

ĝ(S)

(√
p

1− p
+

√
1− p
p

)
φS\i

)2
1/2

=

(√
p

1− p
+

√
1− p
p

)
E
φ∼F

[
gi(φ)2

]1/2
.

Eventually we bound Eφ∼F [gi(φ)2] by its eigenvalue. Observe that F is the distri-

bution on n − 2 characters with (n+ − 1)
√

p
1−p ’s and (n− − 1) −

√
1−p
p

’s, which indicates∑
j φj + q = 0 in F . However, the small difference between

∑
j φj + q = 0 and

∑
j φj = 0

will not change the major term in the eigenvalues of Dp. From the same analysis, the largest

eigenvalue of EF [g2
i ] is at most d. For completeness, we provide a calculation in Section 9.4.1.

Claim 9.4.4. For any degree-at-most d multilinear polynomial gi, Eφ∼F [gi(φ)2] ≤ d‖gi‖2
2.

Therefore we have Ei[Eφ∼F [gi(φ)2]1/2] ≤
√
d ·Ei[‖gi(φ)‖2] and simplify the right hand
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side of inequality (9.13) further:

E
i

{
E
φ∼F

[(
g(φi =

√
p

1− p
, ~φ−i = φ)− g(φi = −

√
1− p
p

, ~φ−i = φ)

)2
]1/2

· E
φ∼F

[(
g(φi =

√
p

1− p
, ~φ−i = φ) + g(φi = −

√
1− p
p

, ~φ−i = φ)

)2
]1/2}

≤ E
i

[(√
p

1− p
+

√
1− p
p

)
·
√
d · ‖gi‖2 ·

√
3d

p(1− p)
· ‖g‖2

]
≤ 3d

p(1− p)
· ‖g‖2 · E

i
[‖gi‖2]

Using the fact that
∑

i ‖gi‖2
2 ≤ d‖g‖2

2 and Cauchy-Schwartz again, we further simplify the

expression above to obtain the desired upper bound on the absolute value of eigenvalues of

EDφ1=1
[g2]− EDφ1=−1

[g2] :

3d

p(1− p)
· ‖g‖2 · E

i
[‖gi‖2] ≤ 3d

p(1− p)
· ‖g‖2 ·

(
∑

i ‖gi‖2
2)1/2

√
n

≤ 3d

p(1− p)
· ‖g‖2 ·

√
d

n
‖g‖2 ≤

3d3/2

p(1− p)
· ‖g‖

2
2√
n
.

9.4.1 Proof of Claim 9.4.4

We follow the approach in Section 9.2 to determine the eigenvalues of EF [f 2] for a

polynomial f =
∑

S∈([n−2]
≤d ) f̂(S)φS. Recall that

∑
i φi + q = 0 over all support of F for

q = 2p−1√
p(1−p)

as defined before.

We abuse δk = EF [φS] for a subset S with size k. We start with δ0 = 1 and δ1 =

−q/(n− 2). From (
∑

i φi + q)φS ≡ 0 for k ≤ d− 1 and any S ∈
(

[n]
k

)
, we have

E[
∑
j∈S

φjφS + qχS +
∑
j /∈S

φS∪j] = 0⇒ k · δk−1 + (k + 1)q · δk + (n− 2− k) · δk+1 = 0
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Now we determine the eigenspaces of EF [f 2]. The eigenspace of an eigenvalue 0 is span{(
∑

i φ+

q)φS|S ∈
(

[n−2]
≤d−1

)
}. There are d + 1 non-zero eigenspaces V0, V1, · · · , Vd. The eigenspace Vi

of EF [f 2] is spanned by {f̂(S)φS|S ∈
(

[n−2]
i

)
}. For each f ∈ Vi, f satisfies the following

properties:

1. ∀T ′ ∈
(

[n−2]
i−1

)
,
∑

j /∈T ′ f̂(S ∪ j) = 0 (neglect this contraint for V0).

2. ∀T ∈
(

[n]
<i

)
, f̂(T ) = 0.

3. ∀T ∈
(

[n−2]
>i

)
, f̂(T ) = αk,|T |

∑
S∈T f̂(S) where αk,k = 1 and αk,k+i satisfies

i · αk,k+i−1 + (k + i+ 1) · q · αk,k+i + (n− 2− 2k − i)αk,k+i+1 = 0.

We show the calculation of αk,k+i as follows: fix a subset T of size k + i and consider the

orthogonality between (
∑

i φi + q)]φT and f ∈ Vk:∑
j∈T

αk,k+i−1

∑
S∈(T\jk )

f̂(S) + (k + i+ 1) · q · αk,k+i

∑
S∈(Tk)

f̂(S) +
∑
j /∈T

αk,k+i+1

∑
S∈(T∪jk )

f̂(S) = 0

⇒
∑
S∈(Tk)

(
(k + i+ 1) · q · αk,k+i + (n− 2− k − i)αk,k+i+1 + i · αk,k+i−1

)
f̂(S)

+
∑

T ′∈( T
k−1)

αk,k+i+1

∑
j /∈T

f̂(T ′ ∪ j) = 0.

Using the first property ∀T ′ ∈
(

[n−2]
i−1

)
,
∑

j /∈T ′ f̂(S ∪ j) = 0 to remove all S ′ /∈ T , we have∑
S∈(Tk)

(
i · αk,k+i−1 + (k + i+ 1) · q · αk,k+i + (n− 2− 2k − i)αk,k+i+1

)
f̂(S) = 0

We calculate the eigenvalues of Vk following the approach in Section 9.2. Fix S and S ′

with i = |S M S ′|, we still use τi to denote the coefficients of f̂(S ′) in the expansion of
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∑
T (δSMT − δSδT )f̂(T ). Observe that τi is as same as the definition in Section 9.2 in terms

of δ and αk :

τ0 =
d−k∑
i=0

(
n− 2− k

i

)
· αk,k+i · δi, τ2l =

d−k∑
i=0

αk,k+i

i∑
t=0

(
l

t

)(
n− 2− k − 2l

i− t

)
δ2l+i−2t.

Observe that the small difference between (
∑

i φi+q) ≡ 0 and
∑

i φi ≡ 0 only changes

a little in the recurrence formulas of δ and α. For δ2i and αk,k+2i of an integer i, the major

term is still determined by δ2i−2 and αk,k+2i−2. For δ2i+1 and αk,k+2i+1, they are still in the

same order (the constant before n−i−1 will not change the order). Using the same induction

on δ and α, we have

1. δ2i = (−1)i (2i−1)!!
ni

+O(n−i−1);

2. δ2i+1 = O(n−i−1);

3. αk,k+2i = (−1)i (2i−1)!!
ni

+O(n−i−1);

4. αk,k+2i+1 = O(n−i−1).

Hence τ0 =
∑d−k

even i=0
(i−1)!!(i−1)!!

i!
+ O(n−1) and τ2l = O(n−l). Follow the same analysis in

Section 9.2, we know the eigenvalue of Vk is τ0 ±O(τ2) =
∑d−k

even i=0
(i−1)!!(i−1)!!

i!
+O(n−1).

From all discussion above, the eigenvalues of EF [f 2] is at most [d
2
] + 1 ≤ d.

9.5 Parameterized algorithm for CSPs above average with global
cardinality constraints

We show that CSPs above average with the global cardinality constraint
∑

i xi =

(1 − 2p)n are fixed-parameter tractable for any p ∈ [p0, 1 − p0] with an integer pn. We

still use Dp to denote the uniform distribution on all assignments in {±1}n complying with∑
i xi = (1− 2p)n.
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Without loss of generality, we assume p < 1/2 and (1−2p)n is an integer. We choose

the standard basis {χS} in this section instead of {φS}, because the Fourier coefficients in

{φS} can be arbitrary small for some p ∈ (0, 1).

Theorem 9.5.1. For any constant p0 ∈ (0, 1) and d, given an instance of d-ary CSP,

a parameter t, and a parameter p ∈ [p0, 1 − p0], there exists an algorithm with running

time nO(d) that either finds a kernel on at most C · t2 variables or certifies that OPT ≥
AV G + t under the global cardinality constraint

∑
i xi = (1 − 2p)n for a constant C =

160d2 · 30d
(

(1−p0

p0
)2 + ( p0

1−p0
)2
)d
· (d!)3d2 · (1/2p0)4d.

9.5.1 Rounding

Let f be a degree d polynomial whose coefficients are multiples of γ in the standard

basis {χS|S ∈
(

[n]
≤d

)
}. We show how to find an integral-coefficients polynomial h such that

f −
(∑

i xi − (1 − 2p)n
)
h only depends on O(VarDp(f)) variables. We use the rounding

algorithm in Section 9.3.1 as a black box, which provides a polynomial h such that f −(∑
i xi
)
h only depends on O(VarD(f)) variables (where D is the distribution conditioned on

the bisection constraint). Without loss of generality, we assume f̂(∅) = 0 because VarDp(f)

is independent with f̂(∅).

Before proving that f depends on at most O(VarDp(f)) variables, we first define the

inactivity of a variable xi in f .

Definition 9.5.2. A variable xi for i ∈ [n] is inactive in f =
∑

S f̂(S)χS if f̂(S) = 0 for

all S containing xi.

A variable xi is inactive in f under the global cardinality constraint
∑

i xi = (1 − 2p)n if

there exists a polynomial h such that xi is inactive in f −
(∑

i xi − (1− 2p)n
)
h.

In general, there are multiple ways to choose h to turn a variable into inactive.

However, if we know a subset S of d variables and the existence of some h to turn S
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into inactive in f −
(∑

i xi − (1 − 2p)n
)
h, we show that h is uniquely determined by S.

Intuitively, for any subset S1 with d− 1 variables, there are
(
S1∪S
d

)
=
(

2d−1
d

)
ways to choose

a subset of size d. Any d-subset T in S1 ∪S contains at least one inactive variable such that

f̂(T )−
∑

j∈T ĥ(T \ j) = 0 from the assumption. At the same time, there are at most
(

2d−1
d−1

)
coefficients of ĥ in S1 ∪ S. So there is only one solution of coefficients in ĥ to satisfy these(

2d−1
d

)
equations.

Claim 9.5.3. Given f =
∑

T∈([n]
≤d)

f̂(T )χT and p ∈ [p0, 1−p0], let S be a subset with at least

d variables such that there exists a degree ≤ d − 1 multilinear polynomial h turning S into

inactive in f −
(∑

i xi − (1− 2p)n
)
h. Then h is uniquely determined by any d elements in

S and f .

Proof. Without lose of generality, we assume S = {1, · · · , d} and determine ĥ(S1) for S1 =

{i1, · · · , id−1}.

For simplicity, we first consider the case S ∩ S1 = ∅. From the definition, we know

that for any T ∈
(
S∪S1

d

)
, T contains at least one inactive variable, which indicates f̂(T ) −∑

j∈T ĥ(T \ j) = 0. Hence we can repeat the argument in Lemma 9.3.3 to determine ĥ(S1)

from f̂(T ) over all T ∈
(
S∪S1

d

)
.

Let βd−1,1 = (d − 2)! and βd−i−1,i+1 = −i
d−i−1

βd−i,i for any i ∈ {1, · · · , d − 2} be the

parameters define in Lemma 9.3.3. For any S2 ∈
(
S
d−1

)
, by the same calculation,

d−1∑
i=1

βd−i,i
∑

T1∈( S1
d−i),T2∈(S2

i )

(
f̂(T1 ∪ T2)−

∑
j∈T1∪T2

ĥ(T1 ∪ T2 \ j)

)
= 0

indicates that (all ĥ(S) not S1 or S2 cancel with each other)

(d− 1)! · ĥ(S1) + (−1)d(d− 1)! · ĥ(S2) =
d−1∑
i=1

βd−i,i
∑

T1∈( S1
d−i),T2∈(S2

i )

f̂(T1 ∪ T2).
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Hence ĥ(S2) = (−1)d−1ĥ(S1) + (−1)d
∑d−1

i=1
βd−i,i
(d−1)!

(∑
T1∈( S1

d−i),T2∈(S2
i ) f̂(T1 ∪ T2)

)
for any S2 ∈(

S
d−1

)
. Replacing all ĥ(S2) in the equation f̂(S) −

∑
S2∈( S

d−1)
ĥ(S2) = 0, we obtain ĥ(S1) in

terms of f and S.

If S ∩S1 6= ∅, then we set S ′ = S \S1. Next we add arbitrary |S ∩S1| more variables

into S ′ such that |S ′| = d and S ′ ∩ S1 = ∅. Observe that S ′ ∪ S1 contains at least d inactive

variables. Repeat the above argument, we could determine ĥ(S1).

After determining ĥ(S1) for all S1 ∈
(

[n]
d−1

)
, we repeat this argument for S1 ∈

(
[n]
d−2

)
and so on. Therefore we could determine ĥ(S1) for all S1 ∈

(
[n]
≤d−1

)
from S and the coefficients

in f .

Remark 9.5.4. The coefficients of h are multiples of γ/d! if the coefficients of f are multiples

of γ.

Let h1 and h2 be two polynomials such that at least d variables are inactive in both

f−
(∑

i xi−(1−2p)n
)
h1 and f−

(∑
i xi−(1−2p)n

)
h2. We know that h1 = h2 from the above

claim. Furthermore, it implies that any variable that is inactive in f−
(∑

i xi− (1−2p)n
)
h1

is inactive in f −
(∑

i xi − (1− 2p)n
)
h2 from the definition, and vice versa.

Based on this observation, we show how to find a degree d − 1 function h such that

there are fews active variables left in f −
(∑

i xi− (1− 2p)n
)
h. The high level is to random

sample a subset Q of (1 − 2p)n variables and restrict all variables in Q to 1. Thus the

rest variables constitutes the bisection constraint on 2pn variables such that we could use

the rounding process in Section 9.3.1. Let k be a large number, Q1, · · · , Qk be k random

subsets and h1, · · · , hk be the k functions after rounding in Section 9.3.1. Intuitively, the

number of active variables in f − (
∑

i/∈Q1
xi)h1, · · · , f − (

∑
i/∈Qi xk)hk are small with high

probability such that h1, · · · , hk share at least d inactive variables. We can use one function

h to represent h1, · · · , hk from the above claim such that the union of inactive variables in
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f − (
∑

i/∈Qj xi)hj over all j ∈ [k] are inactive in f − (
∑

i xi)h from the definition. Therefore

there are a few active variables in f − (
∑

i xi)h.

Let us move to f−
(∑

i xi−(1−2p)n
)
h. Because h is a degree-at-most d−1 function,

(1− 2p)n ·h is a degree ≤ d− 1 function. Thus we know that the number of active variables

among degree d terms in f −
(∑

i xi− (1−2p)n
)
h is upper bounded by the number of active

variables in f − (
∑

i xi)h. For the degree < d terms left in f −
(∑

i xi − (1 − 2p)n
)
h, we

repeat the above process again.

Theorem 9.5.5. Given a global cardinality constraint
∑

i xi = (1 − 2p)n and a degree d

function f =
∑

S∈([n]
≤d)

f̂(S) with VarDp(f) < n0.5 and coefficients of multiples of γ , there is

an efficient algorithm running in time O(dn2d) to find a polynomial h such that there are at

most
C′p,d·VarDp (f)

γ2 active variables in f −
(∑

i xi − (1− 2p)n
)
h for C ′p,d = 20d27d·(d!)2d2

(2p)4d .

Proof. For any subset Q ∈
(

[n]
(1−2p)n

)
, we consider the assignments conditioned on xQ = ~1

and use fQ to denote the restricted function f on xQ = ~1. Conditioned on xQ = ~1, the

global cardinality constraint on the rest variables is
∑

i/∈Q xi = 0. We use DQ denote the

distribution on assignments of {xi|i /∈ Q} satisfying
∑

i/∈Q xi = 0, i.e., the distribution of

{xi|i /∈ Q̄} under the bisection constraint.

Let XQ(i) ∈ {0, 1} denote whether xi is active in fQ under the bisection constraint

of Q̄ or not after the bisection rounding in Theorem 9.3.2. From Theorem 9.3.2, we get an

upper bound on the number of active variables in fQ, i.e.,∑
i

XQ(i) ≤ 2C ′d · VarDQ(fQ)

for C ′d = 7d(d!(d−1)!···2!)2

γ2 and any Q with VarDQ(fQ) = O(n0.6).

We claim that

E
Q

[VarDQ(fQ)] ≤ VarDp(f).
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From the definition, EQ[VarDQ(fQ)] = EQ Ey∼DQ [fQ(y)2]−EQ
[
Ey∼DQ [fQ(y)]

]2
. At the same

time, we observe that EQ Ey∼DQ [fQ(y)2] = ED[f 2] and EQ[Ey∼DQ fQ(y)]2 ≥ EDp [f ]2. There-

fore EQ[VarDQ(fQ)] ≤ VarDp [f ]. One observation is that PrQ[VarDQ ≥ n0.6] < n−0.1 from

the assumption VarDp(f) < n0.5, which is very small such that we can neglect it in the rest

of proof. From the discussion above, we have EQ[
∑

iXQ(i)] ≤ 2C ′d · VarDp(f) with high

probability.

Now we consider the number of i’s with EQ[XQ(i)] ≤ (2p)2d

5d
. Without loss of generality,

we use m to denote the number of i’s with EQ[XQ(i)] ≤ (2p)2d

5d
and further assume these

variables are {1, 2, · · · ,m} for convenience. Hence for any i > m, EQ[XQ(i)] > (2p)2d

5d
. We

know the probability VarDQ(f) ≤ 2VarDp (f)

(2p)2d is at least 1− (2p)2d

2
, which implies

n−m ≤
2C ′d · VarDQ(f)

(2p)2d

5d

≤
20d · C ′dVarDp(f)

(2p)4d
.

We are going to show that EQ[XQ(i)] is either 0 or at least (2p)2d

5d
, which means that only

xm+1, · · · , xn are active in f under
∑

i xi = 0. Then we discuss how to find out a polynomial

hd such that x1, · · · , xm are inactive in the degree d terms of f −
(∑

i xi − (1− 2p)n
)
hd.

We fix d variables x1, · · · , xd and pick d arbitrary variables xj1 , · · · , xjd from {d +

1, · · · , n}. We focus on {x1, x2, · · · , xd, xj1 , · · · , xjd} now. With probability at least (2p)2d−
o(1) ≥ 0.99(2p)2d over random sampling Q, none of these 2d variables is in Q. At the same

time, with probability at least 1 − 2d · (2p)2d

5d
, all variables in the intersction {x1, . . . , xm} ∩

{x1, x2, · · · , xd, xj1 , · · · , xjd} are inactive in fQ under the bisection constraint on Q̄ (2d is

for xj1 , · · · , xjd if necessary). Therefore, with probability at least 0.99(2p)2d − 2d · (2p)2d

5d
−

(2p)2d

2
≥ 0.09(2p)2d, x1, x2, · · · , xd are inactive in fQ under

∑
i/∈Q xi = 0 and n − m is

small. Namely there exists a polynomial hxj1 ,··· ,xjd such that the variables in {x1, . . . , xm} ∩
{x1, x2, · · · , xd, xj1 , · · · , xjd} are inactive in fQ − (

∑
i/∈Q xi)hxj1 ,··· ,xjd .

Now we apply Claim 9.5.3 on S = {1, · · · , d} in f to obtain the unique polynomial hd,

which is the combination of hxj1 ,··· ,xjd over all choices of j1, · · · , jd, and consider f−(
∑

i xi)hd.
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Because of the arbitrary choices of xj1 , · · · , xjd , it implies that x1, · · · , xd are inactive in

f − (
∑

i xi)hd. For example, we fix any j1, · · · , jd and T = {1, j1, · · · , jd−1}. we know

f̂(T ) −
∑

j∈T ĥxj1 ,··· ,xjd (T \ j) = 0 from the definition of hxj1 ,··· ,xjd . Because hd agrees with

hxj1 ,··· ,xjd on the Fourier coefficients from Claim 9.5.3, we have f̂(T )−
∑

j∈T ĥd(T \ j) = 0.

Furthermore, it implies that xd+1, · · · , xm are also inactive in f − (
∑

i xi)hd. For

example, we fix j1 ∈ {d+ 1, · · · ,m} and choose j2, · · · , jd arbitrarily. Then x1, · · · , xd, and

xj1 are inactive in fQ − (
∑

i/∈Q xi)hxj1 ,··· ,xjd for some Q from the discussion above, which

indicates that xj1 are inactive in f − (
∑

i xi)hd by Claim 9.5.3.

To find hd in time O(n2d), we enumerate all possible choices of d variables in [n] as

S. Then we apply Claim 9.5.3 to find the polynomial hS corresponding to S and check

f − (
∑

i xi)hS. If there are more than m inactive variables in f − (
∑

i xi)hS, then we set

hd = hS. Therefore the running time of this process is
(
n
d

)
·O(nd) = O(n2d).

Hence, we can find a polynomial hd efficiently such that at least m variables are

inactive in f − (
∑

i xi)hd. Let us return to the original global cardinality constraint
∑

i xi =

(1− 2p)n. Let

fd = f −
(∑

i

xi − (1− 2p)n
)
hd.

x1, · · · , xm are no longer inactive in fd because of the extra term (1 − 2p)n · h. However,

x1, · · · , xm are at least independent with the degree d terms in fd. Let Ad denote the set for

active variables in the degree d terms of fd, which is less than
20d·C′dVarDp(f)

(2p)4d from the upper

bound of n−m.

For fd, observe that VarDp(fd) = VarDp(f) and all coefficients of fd are multiples of

γd−1 = γ/d! from Claim 9.5.3. For fd, we neglect its degree d terms in Ad and treat it as a

degree d − 1 function from now on. Then we could repeat the above process again for the

degree d − 1 terms in fd to obtain a degree d − 2 polynomial hd−1 such that the active set

Ad−1 in the degree d − 1 terms of fd−1 = fd −
(∑

i xi − (1 − 2p)n
)
hd−1 contains at most
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20d·C′d−1VarDp(f)

(2p)4d variables for C ′d−1 = ((d−1)2···2!)2

γ2
d−1

. At the same time, observe that the degree of(∑
i xi − (1 − 2p)n

)
hd−1 is at most d − 1 such that it will not introduce degree d terms to

fd−1. Then we repeat it again for terms of degree d− 2, d− 3, and so on.

To summarize, we can find a polynomial h such that Ad ∪Ad−1 · · · ∪A1 is the active

set in f −
(∑

i xi − (1 − 2p)n
)
h. At the same time, |Ad ∪ Ad−1 · · · ∪ A1| ≤

∑
i |Ai| ≤

20d27d·VarDp (f)·(d!)2d2

γ2·(2p)4d .

9.5.2 Proof of Theorem 9.5.1

In this section, we prove Theorem 9.5.1. Let f = fI be the degree d function associated

with the instance I and g = f − EDp [f ] for convenience. We discuss VarDp [f ] in two cases.

If VarDp [f ] = EDp [g2] ≥ 8
(

16 ·
(
(1−p

p
)2 + ( p

1−p)2
)
· d3
)d
· t2, we have

E
Dp

[g4] ≤ 12 ·
(

256 ·
(
(
1− p
p

)2 + (
p

1− p
)2
)2 · d6

)d
E
Dp

[g2]2

from the 2→ 4 hypercontractivity in Theorem 9.4.2. By Lemma 9.1.1, we know

Pr
Dp

g ≥
√
EDp [g2]

2

√
12 ·

(
256 ·

(
(1−p

p
)2 + ( p

1−p)2
)2 · d6

)d
 > 0.

Thus PrDp [g ≥ t] > 0, which demonstrates that PrDp [f ≥ EDp [g] + t] > 0.

Otherwise we know VarDp [f ] ≤ 8
(

16 ·
(
(1−p

p
)2 + ( p

1−p)2
)
· d3
)d
· t2. We set γ = 2−d.

From Theorem 9.5.5, we could find a degree d − 1 function h in time O(n2d) such that

f −
(∑

i xi − (1 − 2p)n
)
h contains at most

C′p,d·VarDp (f)

γ2 variables. We further observe that

f(α) = f(α)−
(∑

i αi − (1− 2p)n
)
h(α) for any α in the support of Dp. Then we know the
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kernel of f and I is at most

8

(
16 ·

(
(
1− p
p

)2 + (
p

1− p
)2
)
· d3

)d
· t2 ·

C ′p,d
γ2

< 8

(
16 ·

(
(
1− p
p

)2 + (
p

1− p
)2
)
· d3

)d
· t2 ·

20d27d · VarDp(f) · (d!)2d2 · 22d

γ2 · (2p)4d
< C · t2.

The running time of this algorithm is O(dn2d).
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Chapter 10

Integrality Gaps for Dispersers and Bipartite

Expanders

In this chapter, we study the vertex expansion of bipartite graphs. For convenience,

we always use G to denote a bipartite graph and [N ]∪ [M ] to denote the vertex set of G. Let

D and d denote the maximal degree of vertices in [N ] and [M ], respectively. For a subset S

in [N ] ∪ [M ] of a bipartite graph G = ([N ], [M ], E), we use Γ(S) to denote its neighbor set

{j|∃i ∈ S, (i, j) ∈ E}. We consider the following two useful concepts in bipartite graphs:

Definition 10.0.1. A bipartite graph G = ([N ], [M ], E) is a (k, s)-disperser if for any subset

S ⊆ [N ] of size k, the neighbor set Γ(S) contains at least s distinct vertices.

Definition 10.0.2. A bipartite graph G = ([N ], [M ], E) is a (k, a)-expander if for any subset

S ⊆ [N ] of size k, the neighbor set Γ(S) contains at least a·k distinct vertices. It is a (≤ K, a)

expander if it is a (k, a)-expander for all k ≤ K.

Because dispersers focus on hitting most vertices in [M ], and expanders emphasize

that the expansion is in proportion of the degree D , it is often more convenient to use

parameters ρ, δ, and ε for k = ρN, s = (1 − δ)M, and a = (1 − ε)D for dispersers and

expanders.

These two combinatorial objects have wide applications in computer science. Dis-

persers are well known for obtaining non-trivial derandomization results, e.g., for deran-

domization of inapproximability results for MAX Clique and other NP-Complete problems
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[Zuc96a, TZ04, Zuc07], deterministic amplification [Sip88], and oblivious sampling [Zuc96b].

Dispersers are also closely related to other combinatorial constructions such as randomness

extractors, and some constructions of dispersers follow the constructions of randomness ex-

tractors directly [TZ04, BKS+10, Zuc07]. Explicit constructions achieving almost optimal

degree have been designed by Ta-Shma [Ta-02] and Zuckerman [Zuc07], respectively, in dif-

ferent important parameter regimes.

For bipartite expanders, it is well known that the probabilistic method provides very

good expanders, and some applications depend on the existence of such bipartite expanders,

e.g., proofs of lower bounds in different computation models [Gri01a, BOT02]. Expanders

also constitute an important part in other pseudorandom constructions, such as expander

codes [SS96] and randomness extractors [TZ04, CRVW02, GUV09b]. A beautiful appli-

cation of bipartite expanders was given by Buhrman et.al. [BMRV00] in the static mem-

bership problem (see [CRVW02] for more applications and the reference therein). Explicit

constructions for expansion a = (1 − ε)D with almost-optimal parameters have been de-

signed in [CRVW02] and [TZ04, GUV09b] for constant degree and super constant degree

respectively.

We consider the natural problem of how to approximate the vertex expansion of ρN -

subsets in a bipartite graph G on [N ]∪ [M ] in terms of the degrees D, d, and the parameter

ρ. More precisely, given a parameter ρ such that k = ρN , it is natural to ask what is the

size of the smallest neighbor set over all ρN -subsets in [N ]. To the best of our knowledge,

this question has only been studied in the context of expander graphs when G is d-regular

with M = N and D = d by bounding the second eigenvalue. In [Kah95], Kahale proved

that the second eigenvalue can be used to show the graph G is a (≤ ρN, D
2

)-expander for a

ρ� poly( 1
D

). Moreover, Kahale showed that some Ramanujan graphs do no expand by more

than D/2 among small subsets, which indicates D/2 is the best parameter for expanders

using the eigenvalue method. In another work [WZ99], Wigderson and Zuckerman pointed
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out that the expander mixing lemma only helps us determine whether the bipartite graph

G is a (ρN, (1− 4
Dρ

)N)-disperser or not, which is not helpful if Dρ ≤ 4. Even if Dρ = Ω(1),

the expander mixing lemma is unsatisfactory because a random bipartite graph on [N ]∪ [M ]

with right degree d is an (N, (1−O((1− ρ)d))M)-disperser with high probability. Therefore

Wigderson and Zuckerman provided an explicit construction for the case dρ = Ω(1) when

d = N1−δ+o(1) and ρ = N−(1−δ) for any δ ∈ (0, 1). However, there exist graphs such that

the second eigenvalue is close to 1 but the graph has very good expansion property among

small subsets [KV05, BGH+12]. Therefore the study of the eigenvalue is not enough to fully

characterize the vertex expansion. On the other hand, it is well known that a random regular

bipartite graph is a good disperser and a good expander simultaneously, it is therefore natural

to ask how to certify a random bipartite graph is a good disperser or a good expander.

Our main results are strong integrality gaps and an approximation algorithm for

the vertex expansion problem in bipartite graphs. We prove the integrality gaps in the

Lasserre hierarchy, which is a strong algorithmic tool in approximation algorithm design

such that most currently known semidefinite programming based algorithms can be derived

by a constant number of levels in this hierarchy.

We first provide integrality gaps for dispersers in the Lasserre hierarchy. It is well

known that a random bipartite graph on [N ] ∪ [M ] is an (Nα, (1 − δ)M)-disperser with

very high probability when N is large enough and left degree D = Θα,δ(logN), and these

dispersers have wide applications in theoretical computer science [Sha02, Zuc07]. We show

an average-case complexity of the disperser problem that given a random bipartite graph,

the Lasserre hierarchy cannot approximate the size of the subset in [N ] (equivalently the

min-entropy of the disperser) required to hit at least 0.01 fraction of vertices in [M ] as its

neighbors. The second result is an integrality gap for any constant ρ > 0 and random

bipartite graphs with constant right degree d (the formal statements are in section 10.2.1).

Theorem 10.0.3. (Informal Statement) For any α ∈ (0, 1) and any δ ∈ (0, 1), the NΩ(1)-
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level Lasserre hierarchy cannot distinguish whether, for a random bipartite graph G on [N ]∪

[M ] with left degree D = O(logN):

1. G is an (Nα, (1− δ)M)-disperser,

2. G is not an (N1−α, δM)-disperser.

Theorem 10.0.4. (Informal Statement) For any ρ > 0, there exist infinitely many d such

that the Ω(N)-level Lasserre hierarchy cannot distinguish whether, for a random bipartite

graph G on [N ] ∪ [M ] with right degree d:

1. G is a (ρN, (1− (1− ρ)d)M)-disperser,

2. G is not a
(
ρN, (1− C0 · 1−ρ

ρd+1−ρ)M
)
-disperser for a universal constant C0 > 0.1.

We also provide an approximation algorithm to find a subset of size exact ρN with

a relatively small neighbor set when the graph is not a good disperser. For a balanced

constant ρ like ρ ∈ [1/3, 2/3], ρ
1−ρ and 1−ρ

ρ
are just constants, and the approximation ratio of

our algorithm is close to the integrality gap in Theorem 10.0.4 within an extra loss of log d.

Theorem 10.0.5. Given a bipartite graph ([N ], [M ]) that is not a (ρN, (1−∆)M)-disperser

with right degree d, there exists a polynomial time algorithm that returns a ρN-subset in [N ]

with a neighbor set of size at most
(
1− Ω(

min{( ρ
1−ρ )2,1}

log d
· d(1− ρ)d)∆

)
M .

For expanders, we will show that for any constant ε > 0, there is another constant

ε′ < ε such that the Lasserre hierarchy cannot distinguish the bipartite graph is a (ρN, (1−

ε′)D) expander or not a (ρN, (1 − ε)D) expander for small ρ (the formal statement is in

Section 10.2.2). To the best knowledge, this is the first hardness result for such an expansion

property. For example, it indicates that the Lasserre hierarchy cannot distinguish between

a (ρN, 0.6322D)-expander or not a (ρN, 0.499D)-expander.
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Theorem 10.0.6. For any ε > 0 and ε′ < e−2ε−(1−2ε)
2ε

, there exist constants ρ and D such

that the Ω(N)-level Lasserre hierarchy cannot distinguish whether, a bipartite graph G on

[N ] ∪ [M ] with left degree D:

1. G is an (ρN, (1− ε′)D)-expander,

2. G is not an (ρN, (1− ε)D)-expander.

10.1 Preliminaries

In this chapter, we always use Λ to denote a Constraint Satisfaction Problem and Φ

to denote an instance of the CSP. A CSP Λ is specified by a width d, a finite field Fq for

a prime power q and a predicate C ⊂ F d
q . An instance Φ of Λ consists of n variables and

m constraints such that every constraint j is in the form of xj,1 · · · xj,d ∈ C + ~bj for some

~bj ∈ F d
q and d variables xj,1, · · · , xj,d.

We provide a short description the semidefinite programming relaxations from the

Lasserre hierarchy [Las02] (see [Rot13, Bar14] for a complete introduction of Lasserre hi-

erarchy and sum of squares proofs). We will use f ∈ {0, 1}S for S ⊂ [N ] to denote an

assignment on variables in {xi|i ∈ S}. Conversely, let fS denote the partial assignment on S

for f ∈ {0, 1}n and S ⊂ [n]. For two assignments f ∈ {0, 1}S and g ∈ {0, 1}T we use f ◦ g to

denote the assignment on S ∪ T when f and g agree on S ∩ T . For a matrix A, we will use

A(i,j) to describe the entry (i, j) of A and A � 0 to denote that A is positive semidefinite.

Consider a {0, 1}-programming with an objective functionQ and constraints P0, · · · , Pm,
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where Q,P0, · · · , Pm are from
(

[n]
≤d

)
× {0, 1}d to R:

max
∑

R⊂([n]
≤d),h∈{0,1}R

Q(R, h)1xR=h

Subject to
∑

R⊂([n]
≤d),h∈{0,1}R

Pj(R, h)1xR=h ≥ 0 ∀j ∈ [m]

xi ∈ {0, 1} ∀i ∈ [n]

Let yS(f) denote the probability that the assignment on S is f in the pseudo-distribution.

This {0, 1}-programming[Las02] in the t-level Lasserre hierarchy is:

max
∑

R⊂([n]
≤d),h∈{0,1}R

Q(R, h)yR(h)

Subject to
(
yS∪T (f ◦ g)

)
(S⊂([n]

≤t),f∈{0,1}S),(T⊂([n]
≤t),g∈{0,1}T )

� 0 (10.1)( ∑
R⊂([n]

≤d),h∈{0,1}R
Pj(R, h)yS∪T∪R(f ◦ g ◦ h)

)
(S⊂([n]

≤t),f∈{0,1}S),(T⊂([n]
≤t),g∈{0,1}T )

� 0,∀j ∈ [m]

(10.2)

An important tool in the Lasserre hierarchy to prove that the matrices in (10.2) are

positive semidefinite is introduced by Guruswami, Sinop and Zhou in [GSZ14], we restate it

here and prove it for completeness. Let uS(f) for all S ∈
(

[n]
≤t

)
, f ∈ {0, 1}S be the vectors to

explain the matrix (10.1).

Lemma 10.1.1. (Restatement of Theorem 2.2 in [GSZ14]) If
∑

R,h P (R, h)~uR(h) = ~0, then

the corresponding matrix in (10.2) is positive semidefinite.

Proof. From the definition of ~u, we have∑
R,h

P (R, h)yS∪T∪R(f ◦ g ◦ h) = 〈
∑
R,h

P (R, h)~uS∪R(f ◦ h), ~uT (g)〉

= 〈~uS∪T (f ◦ g),
∑
R,h

P (R, h)~uR(h)〉 = 0.
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10.1.1 Pairwise Independent Subspaces

We introduce an extra property of pairwise independent subspaces for our construc-

tion of integrality gaps of list Constraint Satisfaction Problems.

Definition 10.1.2. Let C be a pairwise independent subspace of F d
q and Q be a subset of Fq

with size k. We say that C stays in Q with probability p if Prx∼C [x ∈ Qd] = |C∩Qd|
|C| ≥ p.

In [BGGP12], Benjamini et.al. proved p ≤ k/q
(1−k/q)·d+k/q

for infinitely many d when

|Q| = k. They also provided a distribution that matches the upper bound with probability
k/q

(1−k/q)·d+k/q
for every d with q|(d − 1). In this thesis, we need the property that C is a

subspace rather than an arbitrary distribution in F d
q . We provide two constructions for the

base cases k = 1 and k = q − 1.

Lemma 10.1.3. There exist infinitely many d such that there is a pairwise independent

subspace C ⊂ F d
q that stays in a size 1 subset Q of Fq with probability 1/q

(1−1/q)d+1/q
.

Proof. Choose Q = {0} and C to be the dual code of Hamming codes over Fq with block

length d = ql−1
q−1

and distance 3 for an integer l. Using |C| = ql, the probability is 1
|C| =

1/q
(1−1/q)d+1/q

. It is pairwise independent because the dual distance of C is 3.

Lemma 10.1.4. There exist infinitely many d such that there is a pairwise independent

subspace C ⊂ F d
q staying in a (q − 1)-subset Q of Fq with probability at least Ω( (q−1)/q

d/q+(q−1)/q
).

Proof. First, we provide a construction for d = q − 1 then generalize it to d = (q − 1)ql for

any integer l. For d = q − 1, the generator matrix of the subspace is a (q − 1) × 2 matrix

where row i is (αi, α
2
i ) for q − 1 distinct elements {α1, · · · , αq−1} = F ∗q . Because αi 6= αj

for any two different rows i and j, it is pairwise independent. Let Q = Fq \ {1}. Using the

inclusion-exclusion principle and the fact that a quadratic equation can have at most 2 roots
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in Fq:

Pr
x∼C

[x ∈ Qd] = Pr
x∼C

[∀β ∈ F ∗q , xβ 6= 1]

= 1−
∑
β∈F ∗q

Pr[xβ = 1] +
∑

{β1,β2}∈(F
∗
q
2 )

Pr[xβ1 = 1 ∧ xβ2 = 1]

−
∑

{β1,β2,β3}∈(F
∗
q
3 )

Pr[xβ1 = 1 ∧ xβ2 = 1 ∧ xβ3 = 1] + · · ·

= 1− q − 1

q
+

(
q−1

2

)
q2
− 0 + 0

=
q2 − q + 2

2q2
≥ 1

2
− 1

2q

For any d = (q−1)ql, the generator matrix of the subspace is a d×(l+2) matrix where every

row is in the form (α, α2, β1, · · · , βl) for all nonzero elements α ∈ F ∗q and β1 ∈ Fq, · · · , βl ∈ Fq.

The pairwise independence comes from a similar analysis. Prx∼C [x ∈ Qd] ≥ 1
ql

(1
2
− 1

2q
) because

it is as same as d = q−1 when all coefficients before β1, · · · , βl are 0, which is ≥ 1
3
· q−1
d+q−1

.

Remark 10.1.5. The construction for d = q − 1 also provides a subspace that stays in Q

with probability 1− d
q

+
(d2)
q2 for any d < q − 1 by deleting unnecessary rows in the matrix.

10.2 Integrality Gaps

We first consider a natural {0, 1} programming to determine the vertex expansion of

ρN -subsets in [N ] given a bipartite graph G = ([N ], [M ], E):

min
M∑
j=1

∨i∈Γ(j)xi = min
M∑
j=1

(1− 1∀i∈Γ(j),xi=0)

Subject to
N∑
i=1

xi ≥ ρN

xi ∈ {0, 1} for every i ∈ [N ]
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We relax it to a convex programming in the t-level Lasserre hierarchy.

min
M∑
j=1

(1− yΓ(j)(~0))

Subject to
(
yS∪T (f ◦ g)

)
((S∈([N ]

≤t),f∈{0,1}S),(T∈([N ]
≤t),g∈{0,1}T ))

� 0 (10.3)

( N∑
i=1

yS∪T∪{i}(f ◦ g ◦ 1)− ρN · yS∪T (f ◦ g)
)

((S∈([N ]
≤t),f∈{0,1}S),(T∈([N ]

≤t),g∈{0,1}T ))
� 0

(10.4)

In this section, we focus on random bipartite graphs G on [N ]∪ [M ] that are d-regular

in [M ], which are generated by connecting each vertex in [M ] to d random vertices in [N ]

independently. The main technical result we will prove in this section is:

Lemma 10.2.1. Suppose there is a pairwise independent subspace C ⊆ F d
q staying in a

k-subset with probability ≥ p0. Let G = ([N ], [M ], E) be a random bipartite graph with

M = O(N) that is d-regular in [M ], the Ω(N)-level Lasserre hierarchy for G and ρ = 1−k/q

has an objective value at most (1− p0 + 1
N1/3 )M with high probability.

We introduce list Constraint Satisfaction Problems which allow every variable to take

k values from the alphabet. Next, we lower bound the objective value of an instance of a

list CSP in the Lasserre hierarchy from the objective value of the corresponding instance of

the CSP in the Lassrre hierarchy. Then we show how to use list CSPs to obtain an upper

bound of the vertex expansion for ρ = 1− k/q in the Lasserre hierarchy.

Definition 10.2.2 (list Constraint Satisfaction Problem). A list Constraint Satisfaction

Problem (list CSP) Λ is specified by a constant k, a width d, a domain over finite field Fq for

a prime power q, and a predicate C ⊆ F d
q . An instance Φ of Λ consists of a set of variables

{x1, · · · , xn} and a set of constraints {C1, C2, · · · , Cm} on the variables. Every variable xi

takes k values in Fq, and every constraint Cj consists of a set of d variables xj,1, xj,2, · · · , xj,d
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and an assignment ~bj ∈ F d
q . The value of Cj is |(C+~bj)∩xi,1×xi,2 · · ·xi,d| ∈ N. The value of

Φ is the summation of values over all constraints, and the objective is to find an assignment

on {x1, · · · , xn} that maximizes the total value as large as possible.

Remark 10.2.3. We abuse the notation Cj to denote the variable subset {xj,1, xj,2, · · · , xj,d}.

Our definition is consistent with the definition of the classical CSP when k = 1. The dif-

ferences between a list CSP and a classical CSP are that a list CSP allow each variable to

choose k values in Fq instead of one value and relax every constraint Ci from F d
q → {0, 1}

to F d
q → N.

The {0, 1} programming for an instance Φ with variables {x1, · · · , xn} and constraints

{C1, · · · , Cm} of Λ with parameters k, Fq,and a predicate C states as follows (the variable

set is the direct product of [n] and Fq in the {0, 1} programming):

max
∑
j∈[m]

∑
f∈C+~bj

1∀i∈C(j),xi,f(i)=1

Subject to xi,α ∈ {0, 1} ∀(i, α) ∈ [n]× Fq∑
α∈Fq

xi,α = k ∀i ∈ [n]

The SDP in the t-level Lasserre hierarchy for Φ succeeds this {0, 1} programming as follows:

max
∑
j∈[m]

∑
f∈C+~bj

y(Cj ,f)(~1)

S.t.
(
yS∪T (f ◦ g)

)
(S⊂([n]×Fq

≤t ),f∈{0,1}S),(T⊂([n]×Fq
≤t ),g∈{0,1}T )

� 0 (10.5)(
k · yS∪T (f ◦ g)−

∑
α

yS∪T∪{(i,α)}(f ◦ g ◦ 1)
)

(S⊂([n]×Fq
≤t ),f∈{0,1}S),(T⊂([n]×Fq

≤t ),g∈{0,1}T )
= 0,∀i ∈ [n]

(10.6)

Definition 10.2.4. Let Λ be the list CSP problem with parameters k, q, d and a predicate

C ⊂ F d
q . Let Φ be an instance of Λ with n variables and m constraints. p(Φ) is the projection

185



instance from Φ in the CSP of the same parameters q, d, C ⊆ F d
q , and the same constraints

(C1,~b1), (C2,~b2), · · · , (Cm,~bm) except k = 1.

Recall that a subspace C ⊂ F d
q stays in a subset Q ⊂ Fq with probability p0 if

Prx∼C [x ∈ Qd] ≥ p0. We lower bound Φ’s objective value in the Lasserre hierarchy by

exploiting the subspace property of C and Q.

Lemma 10.2.5. Let Φ be an instance of the list CSP Λ with parameters k, q, d and a predicate

C, where C is a subspace of F d
q staying in a k-subset Q with probability at least p0. Suppose

p(Φ)’s value is γ in the w-level Lasserre hierarchy, then Φ’s value is at least p0|C| · γ in the

w-level Lasserre hierarchy.

Proof. Let yS(f) and ~vS(f) for S ∈
(

[n]×Fq
≤w

)
and f ∈ {0, 1}S denote the pseudo-distribution

and the vectors in the w-level Lasserre hierarchy for p(Φ) respectively. Let z and ~u denote

the pseudo-distribution and vectors in the w-level Lasserre hierarchy for Φ. The construction

of z and ~u from y and ~v are based on the subspace C and Q. The intuition is to choose

xi = α +Q in Φ if xi = α for some α ∈ Fq in p(Φ).

Before constructing z and ~u, define ⊕ operation as follows. For any S ∈
(

[n]×Fq
≤w

)
, g ∈

{0, 1}S, and P ⊆ Fq, let S⊕P denote the union of the subset (i, α+P ) for every element (i, α)

in S, which is ∪(i,α)∈S{(i, α+ P )} in [n]× Fq, and g ⊕ P ∈ {0, 1}S⊕P denote the assignment

on S ⊕ P such that g ⊕ P (i, α + P ) = g(i, α). If there is a conflict in the definition of

g ⊕ P , namely ∃(i, β) such that (i, β) ∈ (i, α1 + P ) and (i, β) ∈ (i, α2 + P ) for two distinct

(i, α1), (i, α2) in S, define g ⊕ P (i, β) to be an arbitrary one. Because every variable only

takes one value in p(Φ), yS(g) = 0 if there is a conflict on g ⊕ P ∈ {0, 1}S⊕P . Follow the
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intuition mentioned above, for any S ⊂
(

[n]×Fq
≤w

)
and g ∈ {0, 1}S, let R = {i|∃α, (i, α) ∈ S},

zS(g) =
∑

T∈(R×Fq≤w ),g′∈{0,1}T :S⊆T⊕Q,g′⊕Q(S)=g

yT (g′),

~uS(g) =
∑

T∈(R×Fq≤w ),g′∈{0,1}T :S⊆T⊕Q,g′⊕Q(S)=g

~vT (g′).

The verification of the fact that ~u explains z in (10.5) of Φ is straightforward. To verify

(10.6) is positive semidefinite, notice that every variable xi takes k values in Fq:∑
α∈Fq

z(i,α)(1) =
∑
α∈Fq

∑
β∈Q

y(i,α−β)(1) =
∑
β∈Q

∑
α∈Fq

y(i,α−β)(1) = |Q| = k.

By a similar analysis,
∑

α∈Fq ~u(i,α)(1) = k~v∅ and apply Lemma 10.1.1 to prove (10.6) is PSD.

Recall that p(Φ)’s value is
∑

j∈[m]

∑
f∈C+~bj

y(Cj ,f)(~1) = γ, so Φ’s objective value in

the w-level Lasserre hierarchy is∑
j∈[m]

∑
f∈C+~bj

z(Cj ,f)(~1) =
∑
j∈[m]

∑
f∈C+~bj

∑
f ′∈F dq :f∈f ′⊕Q

y(Cj ,f ′)(~1)

=
∑
j∈[m]

∑
f ′∈F dq

∑
f∈C+~bj

y(Cj ,f ′)(~1) · 1f∈f ′⊕Q

≥
∑
j∈[m]

∑
f ′∈C+~bj

y(Cj ,f ′)(~1) · |(f ′ ⊕Q) ∩ (C +~bj)|

≥
∑
j∈[m]

∑
f ′∈C+~bj

y(Cj ,f ′)(~1) · p0|C|

≥ p0|C| · γ.

Before proving Lemma 10.2.1, We restate Theorem G.8 that is summarized by Chan in

[Cha13] of the previous works [Gri01a, Sch08, Tul09] and observe that the pseudo-distirbution

in their construction is uniform over C on every constraint.
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Theorem 10.2.6. ([Cha13]) Let Fq be the finite field with size q and C be a pairwise in-

dependent subspace of F d
q for some constant d ≥ 3. The CSP is specified by parameters

Fq, d, k = 1 and a predicate C. The value of an instance Φ of this CSP on n variables

with m constraints is m in the Ω(t)-level Lasserre hierarchy if every subset T of at most t

constraints contains at least (d− 1.4)|T | variables.

Observation 10.2.7. Let yS({0, 1}S) denote the pseudo-distribution on S provided by the

solution of the semidefinite programming in the Lasserre hierarchy of Φ. For every constraint

Cj(j ∈ [m]) in Φ, yCj({0, 1}Cj) provides a uniform distribution over all assignments that

satisfy constraint Cj.

Proof of Lemma 10.2.1. Without lose of generality, we assume [N ] = [n]×Fq. It is natural

to think [N ] corresponding to n variables and each variables has q vertices corresponding

to Fq. Let G be a random bipartite graph on [N ] ∪ [M ] that is d-regular on [M ]. For each

vertex j ∈ M , the probability that j has two or more neighbors in i × Fq for some i is at

most d2q
n

. Let R denote the subset in M that do not have two or more neighbors in any

i× Fq for all i ∈ [n]. With probability at least 1− 1√
n
, R ≥ (1− d2q√

n
)M .

Because the neighbors of each vertex in [M ] is generated by choosing d random vertices

in [N ]. For each vertex in R, the generation of its neighbors is as same as first sampling d

random variables in [n] then sampling an element in Fq for each variable. By a standard

calculation using Chernoff bound and Stirling formula, there exists a constant β = Od,M/n(1)

such that with high probability, ∀T ⊆
(
R
≤βn

)
, T contains at least (d− 1.4)|T | variables.

We construct an instance Φ based on the induced graph of [n] × Fq ∪ R in the

list CSP with the parameters k, q, d and the predicate {~0}. For each vertex j ∈ R, let

(i1, b1), · · · , (id, bd) be its neighbors in G. We add a constraint Cj in Φ with variables

xi1 , · · · , xid and ~b = (b1, · · · , bd).
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Recall that C is a subspace staying a subset Q of size k with probability p0, we use the

following two claims to prove the value of the vertex expansion of ρN -subsets in the Lasserre

hierarchy is at most (1− p0)R+ (M −R) ≤ (1− p0)(1− d2q√
n

)M + d2q√
n
M ≤ (1− p0 + o(1))M

with high probability.

Claim 10.2.8. Φ’s value is at least p0|R| in the Ω(βn)-level Lasserre hierarchy.

Claim 10.2.9. Suppose Φ’s value is at least r in the t-level Lasserre hierarchy, the objective

value of the t-level Lasserre hierarchy is at most |R| − r for the vertex expansion problem on

[N ] ∪R with ρ = 1− k/q.

Proof of Claim 10.2.8. Let Λ be the list CSP with parameters Fq, k, d and predicate C.

Let Φ′ be the instance of Φ in Λ. From Theorem 10.2.6, P (Φ′)’s value is R because every

small constraint subset contains at least (d − 1.4)|T | variables. From Lemma 10.2.5, Φ’s

value is at least p0|C| ·R in the Ω(n)-level Lasserre hierarchy.

Let us take a closer look, for each constraint j in P (Φ′), the pseudo-distribution on

Cj is uniformly distributed over bj +C. Therefore every assignment f +bj for f ∈ C appears

in the pseudo-distribution of P (Φ′) on Cj with probability 1/|C|. As the same reason,

every assignment f + bj appears in the pseudo-distribution of Φ′ with the same probability
|Qd∩C|
C

= p0. Because ~0 ∈ C, the probability Cj contains ~0 +~bj in the pseudo-distribution

of Φ′ is p0 by the analysis. Using the solution of Φ′ in the Ω(βn)-level Lasserre hierarchy as

the solution of Φ, it is easy to see Φ’s value is at least p0|R|.

Proof of Claim 10.2.9. Let yS(f), ~vS(f) for all S ⊆
(

[n]×Fq
t

)
and f ∈ {0, 1}S be the

solution of pseudodistribution and vectors in the t-level Lasserre hierarchy for Φ. We define
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zS(f), ~uS(f) for all S ⊆
(

[n]×Fq
t

)
([N ] = [n]×Fq) and f ∈ {0, 1}S to be the pseudodistribution

and vectors for the vertex expansion problem as follows:

~uS(f) = ~vS(~1− f), zS(f) = yS(~1− f).

The verification of the fact that ~u explains the matrix (10.3) of z in the Lasserre

hierarchy is straightforward. Another property from the construction is∑
(xi,b)

~u(xi,b)(1) =
∑
(xi,b)

~v(xi,b)(0) =
∑
(xi,b)

(~v∅−~v(xi,b)(1)) =
∑
i∈[n]

∑
b ∈Fq

(~v∅−~v(xi,b)(1)) =
∑
i

(q~v∅−k~v∅) = ρN ·~v∅,

which implies the matrix in (10.4) is positive semidefinite by Lemma 10.1.1.

The value of the vertex expansion problem given z, ~u is
∑

j∈[R](1 − zN(j)(~0)) =∑
j∈[R](1− y(N(j))(~1)) = R−

∑
j∈[R] y(N(j))(~1) = R− r.

On the other hand, it is easy to prove a random bipartite graph has very good vertex

expansion by using Chernoff bound and union bound.

Lemma 10.2.10. For any constants d, ρ, ε > 0, and c ≥ 20q
(1−ρ)d·ε2 , with high probability, a

random bipartite graph on [N ]∪ [M ](M = cN) that is d-regular in [M ] guarantees that every

ρN-subset in [N ] contains at least 1− (1 + ε)(1− ρ)d different vertices in [M ].

Proof. For any subset S ⊆ [N ] of size ρN , the probability that a vertex in [M ] is not a

neighbor of S is at most (1 − ρ)d + o(1). Applying Chernoff bound on M independent

experiments, the probability that S contains less than (1− (1 + ε)(1− ρ)d) neighbors in [M ]

is at most exp(−ε2(1− ρ)dM/12) ≤ 2−M . From union bound, every ρN subset has at least

(1− (1 + ε)(1− ρ)d) neighbors with high probability.
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10.2.1 Integrality Gaps for Dispersers

Theorem 10.2.11. For any ε > 0 and ρ ∈ (0, 1), there exist infinitely many d such that

a random bipartite graph on [N ] ∪ [M ] that is d-regular in [M ] satisfies the following two

properties with high probability:

1. It is a
(
ρN, (1− (1− ρ)d − ε)M

)
-disperser.

2. The objective value of the Ω(N)-level Lasserre hierarchy for ρ is at most
(
1 − C0 ·

1−ρ
dρ+1−ρ

)
M for a universal constant C0 ≥ 1/10.

Proof. Let M ≥ 20q
(1−ρ)d·ε2N , a random bipartite graph G is a

(
ρN, (1 − (1 − ρ)d − ε)M

)
-

disperser from Lemma 10.2.10 with very high probability.

On the other hand, choose a prime power q and k in the base cases of Lemma 10.1.3

or Lemma 10.1.4 such that ρ′ = 1 − k/q > ρ and p0 be the probability that the subspace

C staying in a k-subset. From the construction, p0 ≥ 1
3

1−ρ′
dρ′+1−ρ′ ≥

1
9
· 1−ρ
dρ+1−ρ . From Lemma

10.2.1, a random graph G that is d-regular in [M ] has vertex expansion at most (1−p0)M for

ρ′ with high probability. Because ρ′ ≥ ρ, this indicates The objective value of the Ω(N)-level

Lasserre hierarchy for ρ is at most (1− 1
9
· 1−ρ
dρ+1−ρ)M .Therefore, a random bipartite graph G

satisfies the two properties with high probability.

We generalize the above construction to d = Θ(logN) and prove the Lasserre hier-

archy cannot approximate the entropy of a disperser in the rest of this section. Because

d = Θ(logN) is a super constant, we relax the strong requirement in the variable expansion

of constraints and follow the approach of [Tul09]. We also notice the same observation has

independently provided by Bhaskara et.al. in [BCV+12].

Theorem 10.2.12. (Restatement of Theorem 4.3 in [Tul09]) Let C be the dual space of

a linear codes with dimension d and distance l over Fq. Let Φ with n variables and m
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constraints be an instance of the CSP Λ with d, k = 1, Fq and predicate C. If for every

subset S of at most t constraints in Φ, it contains at least (1 − l/2 + .2)d · |S| different

variables. Then the value of Φ is m in the Ω(t)-level Lasserre hierarchy.

Lemma 10.2.13. For any prime power q, ε > 0, δ > 0, and any constant c, a random

bipartite graph on [N ]∪ [M ] that is d = c logN-regular in M has the following two properties

with high probability:

1. It is a (δN, (1− 2(1− δ)d)M)-disperser.

2. The objective value of the NΩ(1)-level Lasserre hierarchy for ρ = q−1
q

is at most (1 −

q−εd + 1
N1/3 )M .

Proof. Let A be a linear code over Fq with dimension d, rate (1− ε)d and distance 3γd for

some γ > 0. C is the dual space of A with size |C| = qεd. Let M = 20q·N
(1−δ)d , which is poly(N)

here. From Lemma 10.2.10, a random bipartite graph G on [N ] ∪ [M ] that is d-regular in

M is a (δN, (1− 2(1− δ)d)M)-disperser with very high probability.

In the rest of proof, it is enough to show that for every subsets S ⊆
( [M ]

≤Nγ/2

)
in Φ, the

constraints in S contain at least (1− γ)|S|d variables. By union bound, the probability that

does not happen is bounded by

Nγ/2∑
l=1

(
M

l

)(
N

(1− γ)d · l

)
(
(1− γ)dl

N
)dl ≤

∑
l≤Nγ/2

M lN (1−γ)dl(
dl

N
)dl ≤

∑
l≤Nγ/2

M l

Nγ·dl/2
(dl)dl

Nγ·dl/2 ≤ 0.1.

By Lemma 10.2.1, the value of G with ρ = q−1
q

is at most (1− 1/|C|+ d2q√
N

)M ≤ (1− q−εd +

1
N1/3 )M in the Ω(nγ/2)-level Lasserre hierarchy.

We show the equivalence between the vertex expansion problem and the problem of

approximating the entropy in a disperser:
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Problem 10.2.14. Given a bipartite graph ([N ], [M ], E) and ρ, determine the size of the

smallest neighbor set over all subsets of size at least ρN in [N ].

Problem 10.2.15. Given a bipartite graph ([N ], [M ], E) and γ, determine the size of the

largest subset in [N ] with a neighbor set of size ≤ γM .

We prove the equivalence of these two problems with parameters ρ + γ = 1. For

a bipartite graph ([N ], [M ], E) and a parameter γ, let T be the largest subset in [N ] with

|Γ(T )| ≤ γM . Let S = [M ] \ Γ(T ). Then |S| ≥ (1 − γ)M and Γ(S) ⊆ [N ] \ T . Since T

is the largest subset with |Γ(T )| ≤ γM , S is the subset of size at least (1 − γ)M with the

smallest neighbor set. The converse is similar, which shows the equivalence between these

two problems.

Theorem 10.2.16. For any α ∈ (0, 1), any δ ∈ (0, 1) and any prime power q, there exists

a constant c such that a random bipartite graph on [N ] ∪ [M ] that is D = c logN-regular in

[N ] has the following two properties with high probability:

1. It is an (Nα, (1− δ)M)-disperser.

2. The objective value of the SDP in the NΩ(1)-level Lasserre hierarchy for obtaining M/q

distinct neighbors is at least N1−α/2.

Proof. Let ε =
log 1

1−δ
4α log q

= O(1) and d = logN
4ε log q

such that |C| = qεd = N1/4 and M = 20q·N
(1−δ)d ≥

N1/α. So d = O(logM).

From Lemma 10.2.13, a random bipartite graph on [N ] ∪ [M ] d-regular in [M ] is a

(δN,M−Mα)-disperser, but the value of NΩ(1)-level Lasserre hierarchy for G with ρ = 1−1/q

is at most M −M1−α/2. From the equivalence, any subset of size Mα in [M ] has a neighbor

set of size at least (1 − δ)N . On the other hand, it is possible that there exists a M1−α/2-

subset of [M ] with a neighbor set of size at most [N ]/q in the Lasserre hierarchy, from the
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fact that the NΩ(1)-level Lasserre hierarchy has a value at most M −M1−α/2 for ρ = 1−1/q.

To finish the proof, swap [N ] and [M ] in the bipartite graph such that D = d in the new

bipartite graph.

Corollary 10.2.17. (Restatement of Theorem 10.0.3) For any α ∈ (0, 1), any δ ∈ (0, 1),

there exists a constant c such that a random bipartite graph on [N ] ∪ [M ] with D = c logN-

regular in [N ] has the following two properties with high probability:

1. It is an (Nα, (1− δ)M)-disperser.

2. The objective value of the SDP in the NΩ(1)-level Lasserre hierarchy for obtaining δM

distinct neighbors is at least N1−α.

10.2.2 Integrality Gaps for Expanders

We prove that a random bipartite graph is almost D-reguar on the right hand side

and use the fact dN ≈ DM .

Theorem 10.2.18. For any prime power q, integer d < q and constant δ > 0, there exist

a constant D and a bipartite graph G on [N ] ∪ [M ] with the largest left degree D and the

largest right degree d has the following two properties for ρ = 1/q:

1. It is a (ρN, (1−ε′−2δ)D)-expander with ε′ = (1−ρ)d−(1−ρd)
ρd

=
∑d−1

i=1 (−1)i−1 (d−1)···(d−i+1)
(i+1)!

ρi.

2. The objective value of the vertex expansion for G with ρ in the Ω(N)-level Lasserre

hierarchy is at most (1− ε+ δ)D · ρN with ε = ρ(d−1)
2

.

Proof. Let β be a very small constant specified later and c = 100q·log(1/β)
d(1−ρ)d·δ2 . Let G0 be a random

graph on [N ] ∪ [M ] with M = cN that is d-regular in [M ]. Let D0 = dM
N

and L denote the

vertices in [N ] with degree [(1 − δ)D0, (1 + δ)D0]. Let G1 denote the induced graph of G0
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on L ∪ [M ]. The largest degree of L is D = (1 + δ)D0 and the largest degree of M is d. We

will prove G1 is a bipartite graph that satisfies the two properties in this lemma with high

probability. Because G0 is a random graph, we assume there exists a constant γ = OM/N,d(1)

such that every subset S ∈
(
M
≤γN

)
has different (d− 1.1)|S| neighbors.

In expectation, each vertex in N has degree D0. By Chernoff bound, the fraction

of vertices in [N ] of G0 with degree more than (1 + δ)D0 or less than (1 − δ)D0 is at most

2exp(−δ2 · d
N
·M/12) ≤ β4. At the same time, with high probability, G0 satisfies that any

β3N -subset in [N ] has total degree at most βdM because
(
N
β3N

)
· exp(−( 1

β2 )2(β3d) ·M/12)

is exponentially small in N . Therefore with high probability, |L| ≥ (1− β3)N and there are

at least (1− β)dM edges in G1.

We first verify the objective value of the vertex expansion for G1 with ρ = 1/q in the

Ω(N)-level Lasserre hierarchy is at most (1− ε+δ)D ·ρN). Let R be the vertices in [M ] that

have degree d. From Lemma 10.2.1, the objective value of the vertex expansion for L ∪ R

with ρ = 1/q in the Ω(γN)-level Lasserre hierarchy is at most (1 − p0)|R| where p0 is the

staying probability of C in a q−1 subset. From Lemma 10.1.4, p0 = 1−dρ+
(
d
2

)
ρ2. Therefore

(1− p0)|R| ≥ (1− 1 + dρ−
(
d
2

)
ρ2)(1− dβ)M . For the vertices in M \R, they will contribute

at most dβM in the objective value of the Lasserre hierarchy. Therefore the objective value

for G1 is at most (dρ−
(
d
2

)
ρ2 + dβ)M = (1− (d−1)ρ

2
+ β

ρ
)ρdM ≤ (1− ε+ β

ρ
)ρDM .

For the integral value, every ρN -subset in [N ] has at least (1 − (1 + β)(1 − ρ)d)M

neighbors in G0 by Lemma 10.2.10. Because G1 is the induced graph of G0 on L∪ [M ], every

ρN -subset in L has at least (1− (1 +β)(1−ρ)d)M ≥ (1− ε′− β
ρd

)ρdM ≥ (1− ε′− β
ρd

)D0 ·ρN

neighbors in G1. By setting β small enough, there exists a bipartite graph with the required

two properties.

Corollary 10.2.19. For any ε > 0 and any ε′ < e−2ε−(1−2ε)
2ε

, there exist ρ small enough and a

bipartite graph G with the largest left degree D = O(1) that has the following two properties:
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1. It is a (ρN, (1− ε′)D)-expander.

2. The objective value of the vertex expansion for G with ρ in the Ω(N)-level Lasserre

hierarchy is at most (1− ε)D · ρN .

Proof. Think ρ to be a small constant and d = 2ε
ρ

+ 1 such that ε is very close to ρd
2

. Then

the limit of ε′ = (1−ρ)d−(1−ρd)
ρd

is e−ρd−(1−ρd)
ρd

= e−2ε−(1−2ε)
2ε

by decreasing ρ.

10.3 An Approximation algorithm for Dispersers

In this section, we will provide a polynomial time algorithm that has an approximation

ratio close to the integrality gap in Theorem 10.0.4.

Theorem 10.3.1. Given a bipartite graph ([N ], [M ], E) with right degree d, if (1−∆)M is

the size of the smallest neighbor set over ρN-subsets in [N ], there exists a polynomial time

algorithm that outputs a subset T ⊆ [N ], such that |T | = ρN and Γ(T ) ≤
(
1−Ω(

min{( ρ
1−ρ )2,1}

log d
·

d(1− ρ)d ·∆)
)
M .

We consider a simple semidefinite programming for finding a subset T ⊆ [N ] that

maximizes the number of unconnected vertices to T .

max
∑
j∈[M ]

‖1

d

∑
i∈Γ(j)

~vi‖2
2 (*)

Subject to 〈~vi, ~vi〉 ≤ 1
n∑
i=1

~vi = ~0

We first show the objective value of the semidefinite programming is at least min{( ρ
1−ρ)2, 1} ·

∆. For convenience, let δ denote the value of this semidefinite programming and A denote

the positive definite matrix of the objective function in the semidefinite programming such

that δ =
∑

i,j Ai,j(~v
T
i ·~vj). If ρ ≥ 0.5, δ ≥ ∆ ·M by choosing ~vi = (1, 0, · · · , 0) for every i /∈ S
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and ~vi = (−1−ρ
ρ
, 0, · · · , 0) for every i ∈ S. But this is not a valid solution for the SDP when

ρ < 0.5. However, δ ≥ ( ρ
1−ρ)2 ·∆ ·M in this case by choosing choosing ~vi = ( ρ

1−ρ , 0, · · · , 0)

for every i /∈ S and ~vi = (−1, 0, · · · , 0) for every i ∈ S. Therefore δ ≥ min{( ρ
1−ρ)2, 1} ·∆M .

Without lose of generality, both δ and ∆M are ≥ 1
d
M , otherwise a random subset is enough

to achieve the desired approximation ratio.

The algorithm has two stages: first round ~vi to zi ∈ [−1, 1] and keep
∑

i zi almost

balanced, which is motivated by the work [AN04], then round zi to xi using the algorithm

suggested by [CMM07].

Lemma 10.3.2. There exists a polynomial time algorithm that given ‖~vi‖ ≤ 1 for every i,∑
i ~vi = ~0 and δ =

∑
j ‖

1
d

∑
i∈Γ(j) ~vi‖2

2 ≥ M/d, it finds zi ∈ [−1, 1] for every i such that

|
∑

i zi| = O(N/d) and
∑

j(
1
d

∑
i∈Γ(j) zi)

2 ≥ Ω( δ
log d

).

Proof. The algorithm works as follows:

1. Sample ~g ∼ N(0, 1)N and choose t = 3
√

log d.

2. Let ζi = 〈g,~vi〉 for every i = 1, 2, · · · , n.

3. If ζi > t or ζi < −t, cut ζi = ±t respectively.

4. zi = ζi/t.

It is convenient to analyze the approximation ratio in another set of vectors {~ui|i ∈ [n]}

in a Hilbert space such that ~ui(~g) = 〈~vi, ~g〉 and 〈~ui, ~uj〉 = E~g[〈~ui, ~g〉 · 〈~g, ~uj〉] = 〈~vi, ~vj〉. So∑
i,j Ai,j(~u

T
i · ~uj) = δ and

∑
i ~ui = ~0 again. Let ~u′i be the vector in the same Hilbert space

by applying the cut operation with parameters t on ~ui. Namely ~u′i(~g) = t (or −t) when

~ui(~g) > t (or < −t), otherwise ~u′i(~g) = ~ui(~g) ∈ [−t, t]. Therefore the algorithm is as same

as sampling a random point ~g and setting zi = ~u′i(~g)/t.
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Fact 10.3.3. For every i, ‖~u′i − ~ui‖1 = O(1/d4.5) and ‖~u′i − ~ui‖2
2 = O(1/d4).

The analysis uses the second fact to bound
∑

i,j Ai,j((~ui − ~u′i)
T · ~uj) ≤ O(m/d2)

as follows. Notice that A is a positive definite matrix and consider
∑

i,j Ai,j(~w
T
i · ~w′j) for

any unit vectors ~wi and ~w′j. It reaches the maximal value when ~wi = ~w′i by the property

of positive definite matrices. And
∑

i,j Ai,j(~w
T
i · ~wj) =

∑
j∈[M ] ‖

1
d

∑
i∈Γ(j) ~wi‖2

2 is always

bounded by M , because ~wi are unit vectors. So
∑

i,j Ai,j(~w
T
i · ~w′j) ≤ max{‖~w1‖2, · · · , ‖~wn‖2}·

max{‖ ~w′1‖2, · · · , ‖ ~w′n‖2} ·M .∑
i,j

Ai,j(~u
T
i · ~uj)−

∑
i,j

Ai,j(~u′
T

i · ~u′j)

=
∑
i,j

Ai,j(~u
T
i · (~uj − ~u′j)) +

∑
i,j

Ai,j((~ui − ~u′i)
T · ~u′j)

≤O(M/d2)

Therefore
∑

i,j Ai,j(
~u′
T

i · ~u′j) ≥ 0.99
∑

i,j Ai,j(~u
T
i · ~uj) ≥ 0.99M/d. And it is upper bounded

by t2 ·M . So with probability at least .49
dt2

, g satisfies
∑

i,j Ai,j · (~u′i(g) · ~u′j(g)) ≥ .49δ. On

the other hand, |
∑

i
~u′i(g)| ≥ N/d with probability at most 1/d3 from the first property

‖
∑

i
~u′i‖1 ≤ O(N/d4).

Overall, with probability at least .5
dt2
− 1/d3, zi satisfies |

∑
zi| = O(N/d) and∑

j(
1
d

∑
i∈Γ(j) zi)

2 = Ω( δ
t2

) = Ω( δ
log d

).

It is not difficult to verify that independently sampling zi ∈ {−1, 1} for every i

according to its bias zi will not reduce the objective value but keep the same bias overall i.

Without lose of generality, let zi ∈ {−1, 1} from now on.

Lemma 10.3.4. There exists a polynomial time algorithm that given zi with |
∑

i zi| =

O(N/d), outputs xi ∈ {0, 1} such that
∑

i xi = (1 − ρ)(1 ± 1/d1.5)N and
∑

j 1∀i∈Γ(j):xi=1 ≥

Ω(d(1− ρ)d) ·
∑

j(
1
d

∑
i∈Γ(j) zi)

2.
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Proof. The algorithm works as follows:

1. δ = (1− ρ)
√

2/d. Execute Step 2 or Step 3 with probability 0.5 and 0.5 separately.

2. For every i ∈ [N ], xi = 1 with probability 1− ρ+ δzi.

3. For every i ∈ [N ], xi = 1 with probability 1− ρ− δzi.

Let yj = 1
d

∑
i∈Γ(j) zi. The probability xi = 1 for every i in Γ(j) is

1

2

(
(1− ρ+ δ)

1+yj
2

d · (1− ρ− δ)
1−yj

2
d + (1− ρ− δ)

1+yj
2

d · (1− ρ+ δ)
1−yj

2
d)

=
1

2
(1− ρ+ δ)d/2(1− ρ− δ)d/2

(
(
1− ρ+ δ

1− ρ− δ
)yj ·d/2 + (

1− ρ− δ
1− ρ+ δ

)yj ·d/2
)

=
1

2
(1− ρ)d(1− δ2

(1− ρ)2
)d/2 · cosh(yj · d/2 · ln(

1− ρ+ δ

1− ρ− δ
))

≥1

2
(1− ρ)d(1− 2/d)d/2 · 0.9 ·

(
yj · d/2 · ln(

1− ρ+ (1− ρ)
√

2/d

1− ρ− (1− ρ)
√

2/d
)
)2

≥1

2
(1− ρ)d(1− 2/d)d/2 · 0.9 · y2

j · (d/2)2 · (
√

2/d)2

≥Ω((1− ρ)d · y2
j · d).

At the same time,
∑

i xi is concentrated around E[
∑

i xi] =
∑

i(1 − ρ ± δzi) = (1 − ρ)N ±

δ
∑

i zi = (1 − ρ)(1 ± 1/d1.5)N with very high probability. Therefore {x1, · · · , xn} satisfies∑
i xi = (1 − ρ)(1 ± 1/d1.5)N and

∑
j 1∀i∈Γ(j):xi=1 ≥ Ω(d(1 − ρ)d) ·

∑
j y

2
j with constant

probability.

Proof of Theorem 10.3.1. Let δ be the value from SDP (∗), which is≥ min{( ρ
1−ρ)2, 1}·∆ from

the analysis above. By Lemma 10.3.2, round vi into zi ∈ [−1, 1] such that |
∑

i zi| = O(N/d)

and
∑

j(
1
d

∑
i∈Γ(j) zi)

2 ≥ Ω( δ
log d

). By Lemma 10.3.4, round zi into xi ∈ {0, 1} such that∑
i xi = (1− ρ)(1± 1/k1.5)N and

∑
j 1∀i∈Γ(j):xi=1 ≥ Ω(d(1− ρ)d · δ

log d
).
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Let T = {i|xi = 0}. Then |T | = ρ(1 ± O( 1
k1.5 ))N and Γ(T ) ≤ (1 − C · min{( ρ

1−ρ )2,1}
log d

·

d(1 − ρ)d · ∆)M for some absolute constant C. At last, adjust the size of T by randomly

adding or deleting O( N
k1.5 ) vertices such that the size of T is ρN . Because at most O( N

k1.5 )

vertices are added to T , with constant probability, Γ(j) ∩ T = ∅ if Γ(j) ∩ T = ∅ for a node

j ∈ [M ] before the adjustment. Therefore Γ(T ) ≤ (1−C0 ·
min{( ρ

1−ρ )2,1}
log d

· d(1− ρ)d ·∆)M for

some absolute constant C0.
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A Ommitted Proofs in Chapter 3

We fix z1, · · · , zk to be complex numbers on the unit circle and use Q(z) to denote

the degree-k polynomial
k∏
i=1

(z − zi). We first bound the coefficients of rn,k(z) for n ≥ k.

Lemma A.1. Given z1, · · · , zk, for any positive integer n, let rn,k(z) =
∑k−1

i=0 r
(i)
n,k · zi denote

the residual polynomial of rn,k ≡ zn mod
∏k

j=1(z − zj). Then each coefficient in rn,k is

bounded: |r(i)
n,k| ≤

(
k−1
i

)
·
(
n
k−1

)
for every i.

Proof. By definition, rn,k(zi) = zni . From the polynomial interpolation, we have

rn,k(z) =
k∑
i=1

∏
j∈[k]\i

(z − zj)zni∏
j∈[k]\i

(zi − zj)
.

Let SymS,i be the symmetry polynomial of z1, · · · , zk with degree i among subset S ⊆ [k],

i.e., SymS,i =
∑

S′⊆(Si)

∏
j∈S′

zj. Then the coefficients of zl in rn,k(z) is

rn,k(l) = (−1)k−1−l
k∑
i=1

Sym[k]\i,k−1−l · zni∏
j∈[k]\i

(zi − zj)
.

We omit (−1)k−1−l in the rest of proof and use induction on n, k, and l to prove |r(l)
n,k| ≤(

k−1
l

)(
n
k−1

)
.

Base Case of n: For any n < k, from the definition, r(z) = zn and |r(l)
n,k| ≤ 1.

Suppose it is true for any n < n0. We consider rln0,k
from now on. When k = 1,

rn,0 = zn1 is bounded by 1 because z1 is on the unit circle of C.

Given n0, suppose the induction hypothesis is true for any k < k0 and any l < k.

For k = k0, we first prove that |r(k0−1)
n0,k0

| ≤
(
n0

k0−1

)
then prove that |r(l)

n0,k0
| ≤

(
k0−1
l

)(
n0

k0−1

)
for
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l = k0 − 2, · · · , 0.

r
(k0−1)
n0,k0

=

k0∑
i=1

zn0
i∏

j∈[k0]\i
(zi − zj)

=

k0−1∑
i=1

zn0
i∏

j∈[k0]\i
(zi − zj)

+
zn0
k0∏

j∈[k0]\k0

(zk0 − zj)

=

k0−1∑
i=1

zn0
i − z

n0−1
i zk0 + zn0−1

i zk0∏
j∈[k0]\i

(zi − zj)
+

zn0
k0∏

j∈k0\k0

(zk0 − zj)

=

k0−1∑
i=1

 zn0−1
i∏

j∈[k0−1]\i
(zi − zj)

+
zn0−1
i zk0∏

j∈k0\i
(zi − zj)

+
zn0
k0∏

j∈k0\k0

(zk0 − zj)

=

k0−1∑
i=1

zn0−1
i∏

j∈[k0−1]\i
(zi − zj)

+

zk0

k0∑
i=1

zn0−1
i∏

j∈k0\i
(zi − zj)


= r

(k0−2)
n0−1,k0−1 + zk0 · r

(k0−1)
n0−1,k0
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Hence |r(k0−1)
n0,k0

| ≤ |r(k0−2)
n0−1,[k0−1]|+ |r

(k0−1)
n0−1,k0

| ≤
(
n0−2
k0−2

)
+
(
n0−2
k0−1

)
=
(
n0−1
k0−1

)
. For l < k0− 1, we have

r
(l)
n0,k0

=

k0∑
i=1

Sym[k0]\i,k0−1−l · zn0
i∏

j∈[k0]\i
(zi − zj)

let l′ = k0 − 1− l

=

k0−1∑
i=1

(
Sym[k0−1]\i,l′ + Sym[k0−1]\i,l′−1 · zk0

)
zn0
i∏

j∈[k0]\i
(zi − zj)

+
Sym[k0−1],l′ · zn0

k0∏
j<k0

(zk0 − zj)

=

k0−1∑
i=1

Sym[k0−1]\i,l′ · (zi − zk0)zn0−1
i + Sym[k0−1]\i,l′ · zk0z

n0−1
i + Sym[k0−1]\i,l′−1 · zk0z

n0
i∏

j∈[k0]\i
(zi − zj)

+
Sym[k0−1],l′ · zn0

k0∏
j<k0

(zk0 − zj)

=

k0−1∑
i=1

Sym[k0−1]\i,l′ · (zi − zk0)zn0−1
i + Sym[k0−1],l′ · zk0z

n0−1
i∏

j∈[k0]\i
(zi − zj)

+
Sym[k0−1],l′ · zn0

k0∏
j<k0

(zk0 − zj)

=

k0−1∑
i=1

Sym[k0−1]\i,l′z
n0−1
i∏

j∈[k0−1]\i
(zi − zj)

+

k0−1∑
i=1

Sym[k0−1],l′ · zk0z
n0−1
i∏

j∈[k0]\i
(zi − zj)

+
Sym[k0−1],l′ · zn0

k0∏
j<k0

(zk0 − zj)

= r
(l−1)
n0−1,k0−1 + Sym[k0−1],k0−1−l · zk0 · r

(k0−1)
n0−1,k0

By induction hypothesis, |r(l)
n0,k0
| ≤

(
k0−2
l−1

)(
n0−1
k0−2

)
+
(
k0−1
l

)(
n0−1
k0−1

)
≤
(
k0−1
l

)(
n0

k0−1

)
.

Similarly, we could bound the coefficients of z−n mod
∏k

j=1(z − zj).

Lemma A.2. Given z1, · · · , zk, for any integer n with n ≥ 0, let r−n,k(z) =
∑k−1

i=0 r
(i)
−n,k · zi

denote the residual polynomial of r−n,k ≡ z−n mod
∏k

j=1(z − zj). Then each coefficient in

rn,k is bounded: |r(i)
−n,k| ≤

(
k−1
i

)
·
(
n+k−1
k−1

)
for every i.

B Ommitted Proofs in Chapter 7

We finish the proof of the Leftover Hash Lemma 7.0.3 and the proof of Theorem 7.1.2

in this section.
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Proof of Lemma 7.0.3. Given a subset Λ of size 2k, we first consider∑
h∈H

∑
α∈[2m]

( Pr
g∼H,x∼Λ

[h = g and h(x) = α]− Pr
g∼H

[h = g]/2m)2

=
∑
h∈H

∑
α∈[2m]

Pr
g∼H,x∼Λ

[h = g and h(x) = α]2 − 2 Pr
g∼H,x∼Λ

[h = g and h(x) = α] · Pr
g∼H

[h = g]/2m + ( Pr
g∼H

[h = g]/2m)2

=
∑
h∈H

∑
α∈[2m]

Pr
g∼H,x∼Λ

[h = g and h(x) = α]2 − 1

T · 2m
.

Notice that
∑

h,α Pr
g∼H,x∼Λ

[h = g and h(x) = α]2 is the collision probability

Pr
g∼H,h∼H,x∼Λ,y∼Λ

[h = g and g(x) = h(y)]2

=
1

T
· Pr
x∼Λ,y∼Λ

[x = y] +
1

T
· Pr
x∼Λ,y∼Λ

[x 6= y] · Pr
h∼H

[h(x) = h(y)|x 6= y]

=
1

T

(
2−k + (2−m + 2−k)(1− 2−k)

)
≤ 1

T

(
2 · 2−k + 2−m

)
.

Thus
∑

h∈H
∑

α∈[2m]( Pr
g∼H,x∼Λ

[h = g and h(x) = α] − Pr
g∼H

[h = g]/2m)2 ≤ 2
T ·2k . From the

Cauchy-Schwartz inequality,∑
h∈H

∑
α∈[2m]

| Pr
g∼H,x∼Λ

[h = g and h(x) = α]− Pr
g∼H

[h = g]/2m| ≤
√
T · 2m·

√
2

T · 2k
≤
√

2·2−
k−m

2 ≤
√

2ε.

Thus Ext(x, a) = ha(x) is a strong extractor error
√

2ε
2

(in statistical distance).

Then we apply symmetrization and Gaussianization to prove Theorem 7.1.2.

Proof of Theorem 7.1.2. We first symmetrize it by

E
x1,··· ,xn

[
max

Λ

n∑
j=1

f(Λ, xj)

]
= E

x1,··· ,xn

[
max

Λ

(
n∑
j=1

f(Λ, xj)− E
x′1,··· ,x′n

[
n∑
j=1

f(Λ, x′j)] + E
x′1,··· ,x′n

[
n∑
j=1

f(Λ, x′j)]

)]

≤ max
Λ

E
x′

[
n∑
j=1

f(Λ, x′j)

]
+ E

x

[
max

Λ

∣∣∣∣∣
n∑
j=1

f(Λ, xj)− E
x′

[
n∑
j=1

f(Λ, x′j)]

∣∣∣∣∣
]
.
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Then we apply Gaussianization on the second term.

Claim B.1. Let g = (g1, · · · , gn) denote the Gaussian vector sampled from N(0, 1)n,

E
x

[
max

Λ

∣∣∣∣∣
n∑
j=1

f(Λ, xj)− E
x′

[
n∑
j=1

f(Λ, x′j)]

∣∣∣∣∣
]
≤
√

2π · E
x

[
E
g

[
max

Λ

∣∣∣∣∣
n∑
j=1

f(Λ, xj)gj

∣∣∣∣∣
]]

.

Proof. Let g denote a sequence of n independent Gaussian random variables. We first use
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the convexity of the | · | function to move E
x′

to the left hand side:

E
x

[
max

Λ

∣∣∣∣∣
n∑
j=1

f(Λ, xj)− E
x′

[
n∑
j=1

f(Λ, x′j)]

∣∣∣∣∣
]
≤ E

x

[
max

Λ
E
x′

∣∣∣∣∣
n∑
j=1

f(Λ, xj)−
n∑
j=1

f(Λ, x′j)

∣∣∣∣∣
]

(
use max

i
E
G

[Gi] ≤ E
G

[max
i
Gi] to move E

x′
out

)
≤ E

x,x′

[
max

Λ

∣∣∣∣∣
n∑
j=1

f(Λ, xj)−
n∑
j=1

f(Λ, x′j)

∣∣∣∣∣
]

(
use the fact E[|gj|] =

√
2/π

)
≤
√
π/2 E

x,x′

[
max

Λ

∣∣∣∣∣
n∑
j=1

(
f(Λ, xj)− f(Λ, x′j)

)
· E
gj
|gj|

∣∣∣∣∣
]

(
use the convexity of | · | to move E

g

)
≤
√
π/2 E

x,x′

[
max

Λ
E
g

∣∣∣∣∣
n∑
j=1

(
f(Λ, xj)− f(Λ, x′j)

)
· |gj|

∣∣∣∣∣
]

(
use max

i
E
G

[Gi] ≤ E
G

[max
i
Gi] to move E

g
out

)
≤
√
π/2 E

x,x′
E
g

[
max

Λ

∣∣∣∣∣
n∑
j=1

(
f(Λ, xj)− f(Λ, x′j)

)
· |gj|

∣∣∣∣∣
]

(
use the symmetry of f(Λ, xj)− f(Λ, x′j)

)
=
√
π/2E

g
E
x,x′

[
max

Λ

∣∣∣∣∣
n∑
j=1

(
f(Λ, xj)− f(Λ, x′j)

)
· gj

∣∣∣∣∣
]

(
use the triangle inequality

)
≤
√
π/2 E

x,x′
E
g

[
max

Λ

∣∣∣∣∣
n∑
j=1

f(Λ, xj)gj

∣∣∣∣∣+ max
Λ

∣∣∣∣∣−
n∑
j=1

f(Λ, x′j)gj

∣∣∣∣∣
]

(
use the symmetry of gj

)
≤
√

2πE
x
E
g

[
max

Λ

∣∣∣∣∣
n∑
j=1

f(Λ, xj)gj

∣∣∣∣∣
]
.
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Remark B.2. We use the independence between x1, · · · , xn in the third last step.

C Proof of Lemma 8.3.4

We apply an induction from i = 0 to i = k. The base case i = 0 is true because there

are at most m balls.

Suppose it is true for i = l < d. For a fixed bin j ∈ [n1− 1

2l ], there are at most

(1+β)ln
1

2l ·m
n

balls. With out loss of generality, we assume there are exactly s = (1+β)ln
1

2l ·m
n

balls from the induction hypothesis. Under the hash function hl+1, we allocate these balls

into t = n
1

2l+1 bins.

We fix one bin in hl+1 and prove that this bin receives at most

(1 + β)s/t = (1 + β) · (1 + β)ln
1

2l /n
1

2l+1 · m
n

= (1 + β)l+1n
1

2l+1 · m
n

balls with probability ≤ 2n−c−2 in a log3 n-wise δ1-biased space for δ1 = 1/poly(n) with a

sufficiently large polynomial. We use Xi ∈ {0, 1} to denote the ith ball is in the bin or not.

Hence E[
∑

i∈[s] Xi] = s/t.

For convenience, we use Yi = Xi−E[Xi]. Hence Yi = 1−1/t w.p. 1/t, o.w. Yi = −1/t.

Notice that E[Yi] = 0 and |E[Y l
i ]| ≤ 1/t for any l ≥ 2.

We choose b = 2l · β = O(log n) for a large even number β and compute the bth
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moment of
∑

i∈[s] Yi as follows.

Pr[|
∑
i∈[s]

Xi| > (1 + β)s/t] ≤ E
δ1-biased

[(
∑
i

Yi)
b]/(βs/t)b

≤ EU [(
∑

i Yi)
b] + δ1 · s2btb

(βs/t)b

≤
∑

i1,...,ib
E[Yi1 · Yi2 · · · · · Yib ] + δ1 · s3b

(βs/t)b

≤
∑b/2

j=1

(
b−j−1
j−1

)
· b!

2b/2
· sj(1/t)j + δ1 · s3b

(βs/t)b

≤ 2b/2b! · (s/t)b/2 + δ1 · s3b

(βs/t)b

Because s/t ≥ n
1

2k ≥ log3 n, b ≤ β2k ≤ β logn
3 log logn

≤ (s/t)1/3 and β = (log n)−0.2 < (s/t)0.1, we

simplify it to(
2b2 · s/t
(βs/t)2

)b/2
+ δ1 · s3b ≤

(
2(s/t)2/3 · s/t

(s/t)1.8

)b/2
+ δ1 · s3b

=(s/t)(−0.1)·b/2 + δ1 · s3b ≤ (n
2

2l+1 )−0.1·β2l + δ1(n
3

2l )3β·2l = n−c−2 + δ1n
9β ≤ 2n−c−2.

Finally we choose β = 40(c+ 2) = O(1) and δ1 = n−9β−c−2 to finish the proof.
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