Active galactic nuclei (AGNs): a brief observational tour

Yongquan Xue (薛永泉)

Department of Astronomy University of Science and Technology of China http://staff.ustc.edu.cn/~xuey

Summary of lectures

- Early history, AGN ABCs, finding AGNs, AGN terminology and unification
- Dissecting AGNs (I): black hole, accretion disk, broad line region
- Dissecting AGNs (II): torus, narrow line region, stars and starburst regions, jets
 - Focused lecture: Lifting the veil of deeply buried supermassive black holes in the Universe

Summary of lectures

- Early history, AGN ABCs, finding AGNs, AGN terminology and unification
- Dissecting AGNs (I): black hole, accretion disk, broad line region
- Dissecting AGNs (II): torus, narrow line region, stars and starburst regions, jets
- Focused lecture: Lifting the veil of deeply buried supermassive black holes in the Universe

Lifting the Veil of Deeply Buried Supermassive Black Holes in the Universe

Outline

- Highly-obscured/Compton-thick AGNs
- Recent efforts in searching for these AGNs in the CDF-S
- Summary
- Prospects

Outline

- Highly-obscured/Compton-thick AGNs
- Recent efforts in searching for these AGNs in the CDF-S
- Summary
- Prospects

Orientation-based unified models for AGNs

Obscuring torus

Highly-obscured AGNs/CT-AGNs

 $\tau \sim n\sigma l \sim N_H \sigma_T \sim 1$, so $N_H \sim 10^{24}$

浮

• Highly-obscured AGNs: >3e23 cm^(-2)

Why do we care about CT-AGNs?

 Observational evidence suggesting that a large fraction of local AGNs are obscured by CT gas (e.g., Maiolino+98, Risaliti+99, Matt+00)

Why do we care about CT-AGNs?

- Observational evidence suggesting that a large fraction of local AGNs are obscured by CT gas (e.g., Maiolino+98, Risaliti+99, Matt+00)
- Required by AGN synthesis models for X-ray background (e.g., Gilli+07); number density being the same order as that of moderately obscured AGNs

Why do we care about CT-AGNs?

- Observational evidence suggesting that a large fraction of local AGNs are obscured by CT gas (e.g., Maiolino+98, Risaliti+99, Matt+00)
- Required by AGN synthesis models for X-ray background (e.g., Gilli+07); number density being the same order as that of moderately obscured AGNs
- Distant heavily obscured AGNs represent a crucial black-hole growth phase

Most of them escape even from the deepest X-ray surveys! Don't even know their space density and cosmological evolution!

• Presence of a strong iron K-alpha line complex at ~6.4 keV

• Presence of a strong iron K-alpha line complex at 6.4-7 keV

学校

• Characteristic reflection spectrum

- Presence of a strong iron K-alpha line complex at 6.4-7 keV
- Characteristic reflection spectrum
- IR-excess emission

Home in on the waste heat – AGN heated dust

B

たい子

- Presence of a strong iron K-alpha line complex at 6.4-7 keV
- Characteristic reflection spectrum
- IR-excess emission
- Stacking analysis

Outline

- Highly-obscured/Compton-thick AGNs
 Recent efforts in searching for these AGNs in the CDF-S
- Summary
- Prospects

- X-ray: nearly universal signature of luminous AGNs
- Reduced absorption bias for majority population
- Minimal dilution by host starlight
- X-ray spectra of AGNs: rich of diagnostics

Chandra and XMM-Newton

- Up to 80-400 times sensitive than previous missions
- Good-to-great positions (0.2-2.5 arcsec)
- Broad bandpass and respectable filed-of-views
- Hundreds-to-thousands of sources for powerful statistical studies
- Chandra has better angular resolution, lower background, and largely no source confusion

泽

- ~25 major Chandra and XMM-Newton surveys
- Cover most of the practically accesible discovery space
- Provide a comprehensive understanding of X-ray source populations

(20161028@USTC)

The 2016 Rossi Prize was awarded to Professor **Niel Brandt** of The Pennsylvania State University, who led the effort to obtain the **deepest Chandra fields**, enabling the most sensitive cosmological X-ray surveys to date. His work traces the accretion history of SMBH and their coevolution with host galaxies across cosmic time.

Table 1: Properties of the $CDFs^{a}$							
	CDF-S	CDF-N	E-CDF-S				
Galactic N _H (cm ⁻²)	8.8×10^{19}	1.6×10^{20}	8.8×10^{19}				
Observational timespan	1999/10 - 2016/03 (16.4 yrs)	1999/11 - 2002/02 (2.3 yrs)	2004/02 - 2004/11 (0.8 yrs)				
Total number of observations	102	20	9				
Effective exposure (ks)	6727 1896		235/209/240/241 ^b				
Solid angle covered (arcmin ²)	484.2	484.2 447.5					
Source detection criteria	WAVDETECT at 10 ⁻⁵	WAV DETECT at 10 ⁻⁵	WAVDETECT at 10 ⁻⁵				
	and $P < 0.007^{c}$	and $P < 0.004$	and $P < 0.002$				
Number of sources detected	1008	683	1003				
FB detected counts	(11.2, 98.9, 56916.2) ^d	(8.1, 66.2, 19748.4)	(3.3, 27.1, 4010.6)				
SB detected counts	(6.1, 47.4, 38817.0)	(5.4, 35.0, 14227.3)	(2.2, 18.9, 2802.6)				
HB detected counts	(9.2, 94.6, 18137.8)	(7.7, 57.5, 5540.6)	(3.4, 20.4, 1210.8)				
l TX-ray positional uncertainty (")	(0.11, 0.47, 1.28)	(0.10, 0.47, 2.02)	(0.10, 0.63, 1.30)				
Logarithm of FB flux (erg cm ⁻² s ⁻¹)	(-16.76, -15.50, -12.96)	(-16.35, -15.09, -12.70)	(-15.73, -14.79, -12.88)				
Logarithm of SB flux (erg cm ⁻² s ⁻¹)	(-17.11, -16.19, -13.29)	(-16.83, -15.79, -13.07)	(-16.13, -15.27, -13.26)				
Logarithm of HB flux (erg cm ⁻² s ⁻¹)	(-16.46, -15.25, -13.13)	(-16.15, -14.95, -12.95)	(-15.73, -14.70, -13.02)				
Faintest sources	1 count per ≈ 10 days	1 count per \approx 4 days	l count per ≈ 1 day				
Logarithm of $L_{0.5-7 \text{ keV}}$ (erg s ⁻¹) ^e	(39.01, 42.48, 45.05)	(39.28, 42.94, 45.07)	(39.89, 43.34, 45.50)				
% of multiwavelength identifications	98.4%	98.1%	95.5%				
% of $z_{\text{spec}} (z_{\text{adopted}})^{\overline{f}}$	67.2% (97.8%)	51.4% (93.4%)	47.5% (80.8%)				
adopted	(0.000, 1.156, 5.776)	(0.000, 1.130, 5.365)	(0.000, 1.193, 7.203)				
% of AGNs/galaxies/stars	70.5%/28.3%/1.2%	86.5%/11.0%/2.5%	90.6%/6.7%/2.7%				
AGN/galaxy/star density (deg ⁻²)g	13600/12100/250	12400/4200/100	5200/500/100				

^{*a*} For source properties, here we refer only to the main-catalog sources from Luo et al. (2017) and Xue et al. (2016). ^{*b*} The E-CDF-S consists of four distinct, contiguous pointings that flank the CDF-S proper (see Fig. 1).

^c P indicates the probability of a source not being real (i.e., due to background fluctuations).

^d The three numbers in parentheses denote the minimum, median, and maximum values.

^e This is the absorption-corrected rest-frame 0.5-7 keV luminosity.

f zadopted denotes the adopted redshifts, with zspec (spectroscopic redshifts) preferred over photometric redshifts.

⁸ These are observed source densities calculated within the respective central $r \leq 3$ arcmin areas.

(All catalogs and relevant data products are publicly available!)

The 7 Ms CDF-S

⁽Xue, Luo, Brandt et al. 2011; Luo, Brandt, Xue et al. 2017)

- 102 observations over
 16+ yrs
- Pencil-beam: ~484 arcmin^2
- Longest exposure (~81d)
- Most sensitive: 6.4E-18 cgs at SB; 1 photon/10 d
- 1055 X-ray sources
- Tremendous multiwavelength investment

Spectroscopic data

Enormous progress over the past 16 yr using multi-object spectrographs, but remains a persistent challenge and bottleneck (especially at faint fluxes).

Continues to improve rapidly, keeping the science exciting; e.g., MUSE, LMT, MOONS, JWST, LSST, ELTs.

Importance of multiwavelength data

B

子

- Source identification; spectroscopic and photometric redshifts
- Host-galaxy properties
 - Large samples of non-active galaxies for comparison

CDF-N & H-HDF-N: photometric redshifts

versity of Science and Technology of China

- Compton-thick AGN plus strongly star-forming host
- Key phase in SMBH/galaxy co-evolution where obscured SMBH rapidly growing in forming bulge
- Measuring number density of such AGNs crucial to reconstruct early coevolution history

子

(Luo, Brandt, Xue et al. 2011)

4 Ms CDF-S: z~0.5-1 highly-obs. AGNs

4 Ms CDF-S: z~0.5-1 highly-obs. AGNs

(Luo, Brandt, Xue et al. 2011)

- CXRB resolved fraction roughly constant (~80%)
- Minor contribution from ISX sources (<5% of unresolved 6-8 keV emission)
- Unresolved 0.5-6 keV fraction: cosmic variance? extended X-ray emission?
- Unresolved 6-8 keV fraction: missing Compton-thick population?

- Source population responsible for the unresolved 6-8 keV CXRB:
 - top of blue cloud, 1<z<3, 25<z_850<28, 2e8<M_stellar/M_sun<2e9!

Outline

- Highly-obscured/Compton-thick AGNsRecent efforts in searching for these
 - AGNs in the CDF-S
- Summary
- Prospects

- Highly-obscured/CT AGNs: required by AGN synthesis model for XRB; predicted to be numerous and ubiquitous
- Only a small fraction detected/identified on cosmological distances
 - --- (1) record AGN number counts
 - ---- (2) a *z*=4.76 CT-AGN
 - --- (3) z~2 highly-obscured AGNs
 - --- (4) z~0.5-1 highly-obscured AGNs
 - --- (5) source population responsible for unresolved 6-8 keV XRB
 - --- (6) 1<z<3 MIR luminous, highly-obscured, CT quasars
- Missed highly obscured AGNs and their contribution to SMBH growth
 - At high z, even a small number of such objects can provide critical leverage in modeling early SMBH growth

Outline

- Highly-obscured/Compton-thick AGNs
- Recent efforts in searching for these AGNs in the CDF-S
- Summary
- Prospects
 - extensive and effective exploitation of CDF-S data
 - great future field: Wide CDF-S area (W-CDF-S)

う

- Scaling relations involving SFR, M*, and z (vs. SFR only): better characterize average X-ray emission of normal galaxy populations at z~0-7
- First empirical constraints on z evolution of LMXB and HMXB X-ray emission:

 $L_{2-10 \text{ keV}}(\text{LMXB})/M_{\star} \propto (1+z)^{2-3}$ and $L_{2-10 \text{ keV}}(\text{HMXB})/\text{SFR} \propto (1+z)$

Emission from XRBs could provide an important source of heating to IGM in early universe, exceeding that of AGNs

The deepest X-ray view of high-redshift galaxies: constraints on low-rate black hole accretion

(Vito et al. 2016)

- Most sensitive stacking of X-ray emission from high-z (3.5<z<6.5) massive galaxies:
 - ->3.7 sigma at $z\sim4$; 2.7 sigma at $z\sim5$ (highest sig. in such z); no sig. at even higher z
- These high-z X-ray signals mostly due to SF; negligible low-rate BH accretion compared to X-ray detected AGNs at high z
- First constraints on faint-end (Lx~1e42) of AGN XLF at z>4 (fairly flat slopes)

- Longest timescales probed for X-ray variabilities of distant AGNs
 - photometric analyses: widespread (90%) photon flux variability
 - spectral fitting: 74% show Lx variability, 16% show nH variability
- A CTAGN: high-E X-ray flux variation \rightarrow size of reflecting material <~0.3 pc
 - An AGN: X-ray unobscured \rightarrow obscured while always being optical type I

- X-ray variable amplitude seems to be stronger in the softer band
- no difference of variability is detected between obscured and unobscured samples
- negative correlation between normalized excess variance and X-ray luminosity,
- which can be explained by a broken power-law PSD model with beta~1.2 below f_br

Census of highly-obscured AGNs in CDFs @

(*Li*, *Xue*, *et al.*, *in prep.*)

25 Mpc/ 115 95 W-CDF-S 4.1 deg² 41 °

Study SMBH growth across the full range of cosmic environments voids to massive clusters.

Great Future Field: Wide CDF-S Area

Band	Survey Name and Solid-Angle Coverage	Comments		
Radio	Australia Telescope Large Area Survey (ATLAS ; 3.7 deg ²) ^a MIGHTEE Survey (Scheduled; 4.5 deg ²) ^b	15 μ Jy rms depth at 1.4 GHz 1 μ Jy rms depth at 1.4 GHz		
FIR	Herschel Multi-tiered Extragal. Survey (HerMES; 0.6–11 \deg^2) ^c	5–60 mJy depth at 100–500 $\mu \mathrm{m}$		
MIR	Spitzer Wide-area Infra Red Extragal. Survey $({\bf SWIRE};6.6~{\rm deg}^2)^{\rm d}$	3.6–160 $\mu \mathrm{m}$		
NIR	Spitzer Extragal. Representative Volume Survey (SERVS; 4.5 deg ²) ^e VISTA Deep Extragal. Observations Survey (VIDEO; 4.5 deg ²) ^f	2 $\mu {\rm Jy}$ depth at 3.6 and 4.5 $\mu {\rm m}$ $ZYJHK_s$ to $m_{\rm AB}\approx 23.525.7$		
Optical Photometry	Dark Energy Survey (DES ; 9 deg ² in 3 W-CDF-S fields) ^g Pan-STARRS1 Medium-Deep Survey (PS1MD ; 7 deg ²) ^h VST Optical Imaging of CDF-S and ES1 (VOICE ; 4.5 deg ²) ⁱ SWIRE optical imaging (6.6 deg ²) ^d LSST deep-drilling field (Planned; 10 deg ²) ^j	Multi-epoch $griz; m_{AB} \approx 28$ co-added Multi-epoch $grizy; m_{AB} \approx 26$ co-added Multi-epoch $ugri; m_{AB} \approx 26$ co-added ugrizy; 20000 visits total		
Optical/NIR Spectroscopy	Carnegie-Spitzer-IMACS Survey (CSI; 6 deg ²) ^k PRIsm MUlti-object Survey (PRIMUS; 1.95 deg ²) ¹ VLT MOONS Survey (Scheduled; 4.5 deg ²) ^m Spectroscopy of ≈ 900 radio and IR-luminous galaxies in ATLAS ⁿ	40 000 redshifts, 3.6 $\mu{\rm m}$ selected 20 800 redshifts to $i_{\rm AB}\approx23.5$ 80 000 redshifts		
UV	GALEX Deep Imaging Survey (7 deg ²) ^o	Depth $m_{AB} \approx 25$		

Table 1: Current	/Scheduled	$1-10 \text{ deg}^2$	Multiwavelength	Coverage	of the	W-CDF-S
------------------	------------	----------------------	-----------------	----------	--------	---------

- LSST deep-drilling field: 5300-13800 visits per band (*ugrizy*) over ~ 10 year period.
- 4MOST (4-metre Multi-Object Spectroscopic Telescope)? MSE (Maunakea Spectroscopic Explorer)?

The end

