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AN INEQUALITY RELATING THE ORDER, 
MAXIMUM DEGREE, DIAMETER 

AND CONNECTIVITY OF A 
STRONGLY CONNECTED DIGRAPH't 

XU JUNMING ( /~  ~ .  ~)~ ) 

Abstract 

We prove that if there is a strongly connected digraph of order rt, maximum degree d, 
diameter k and connectivity c, then n < Cdd~-I d "Jr d + 1. It improves the previous known 
results, and it, in fact, is the best possible for several interesting cases. A similar result for arc 
connectivity is also established. 

§1. I n t r o d u c t i o n  

To realize highly reliable and efficient communication, means to find networks (i.e., 
digraphs) with smaller diameter and larger connectivity for a given order and a maximum 
degree (see [1]). Consequently, the following problem is raised naturally: If there is a 
strongly connected digraph of order n, maximum degree d, diameter k and connectivity c, 
how axe these parameters related one to another? In this paper, we prove an inequality 
which improves previous results and show that our result is sharp for several interesting 
cases. 

A digraph O consists of a finite set of vertices V(G) and a set of arcs A(G) which is a 
subset of all ordered pairs (u, u), u, u E V(G). O may have loops but no multiple arcs. The 
order of G is the number of its vertices, the degree d(u) of a vertex v E V(G) is the maximum 
value of its out-degree and in-degree, the maximum degree of G is max{d(v) : v E V(G)}. 
A vertex cut set C of G is a proper subset of V(G) such that O - C is either not strongly 
connected or a single vertex. The (vertex) connectivity of G, denoted by c(O), is the 
minimum cardinality of all cut sets of O. The diameter of O denoted by D(G), is the 
maximum distance between any pair of vertices. From now on, a strongly connected digraph 
of order n, maximum degree d, diameter/c and connectivity c is denoted as an (n, d, k, c)- 

digraph. 
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It is easy to see that if there is an (n, d, k, c)-digraph G, then 

n< l + d + d 2  + . . . + d  k = d k + l -  1 
d . -  1 ' (1) 

and the equality holds if G is a complete digraph of order d + 1 (and k = 1) or a directed 
cycle of order k +  1 (and d = 1). For d > 2 and k > 2, Fhnsnik and Znam ([2]) showed that  
the upper bound given in (1) can be improved as 

n <  d - l '  (2) 

which was rediscovered later by Bridge and Toueg too ([3]). In this paper, we illustrate that 
the inequality (2) is the best possible for k = 2 and d > 2. 

A further relation among the parameters of an (n, d, k,c)-digraph for 1 < c < d- 1 was 
established by Imase, Soneoka and Okada ([4]). Namely, they proved that 

Cd k -- 1 ) 
n < c \ d _ l  +d  . (3) 

In this paper, the inequality (3) is improved as follows: 

d k - d 
n < c - ~ - ~ + d + l .  (4) 

We also illustrate that the inequality (4) is the best possible for c = d- 1 and some other 
interesting cases. A similar result for arc connectivity is also established. 

In the following section, a class of digraphs Gx (n, d) is considered. In Section 3, our 
main result is derived, namely, the inequality {4} is proved. In Section 4, several examples are 
given to show that our result is the best possible and an analogy of (4) for arc connectivity 
is considered in Section 5. 

§2. A Class  o f  D i g r a p h s  

In this section we consider a class of digraphs Gs(n, d) propo.~ed by Imase and Itoh ([5]); 
where n,d are given integers, 1 < d < n- 1. The vertex set of Gz(n,d) is V(Gi(n,d)) = 
{0, 1 , . . .  , n  -- 1} and ( i , j )  e A(G_r(n,d)} if and only if 

j = d ( n - l - i ) + r ( m o d n )  for 0<i<n-1, 0 < r < d - 1 .  

It is clear that Gx(n,d) is a d-regular digraph. In [5] it is proved that the diameter of 
G1(n, d) satisfies D(GI(n, d}) <_ [log d n], where [z] is the minimum integer not smaller than 
z. In particular, if n = d k ÷ d k-q (where k is an arbitrary integer and q is an odd number 
less than or equal to k), D(GI(n, d)) = [log d n]- I = k. A d-regular digraph with diameter 
k and order n(= d k + d k-l) was first constructed by Reddy et ai. ([61). 

Later, Imase, Soneoka and Okada ([4]) proved that c(Gx(n, d)) > d - I. Recently, Du 
and Hwang ([7]) have shown that c(Gl(n, d)) is either d- 1 if d and n are relatively prime 
or d if both d and d+ I divide n. Thus c(Gz(d k -b 1, d)) = d- 1 if k(_> 3) is an odd number 
and e(Gt(d k + dk- l ,d ) )  = d, where k is the diameter. 

Noting that G1(n, d) may have loops, Du and Hwang ([7]) have made some study on the 
number of loops of G1(n, d). The proof of the following result is easy and is left to reader. 

Theorem I. G1(n, d) has no loops when d + i divides n. 
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§3. Main Results 

T h e o r e m  2.  If there is an (n, d, k, c)-digraph,  c < d - 1, d > 2 and k > 2, then  

~ - d  
n < c - - ~ - ~ + d + l .  {4) 

Proo/. Let G be an (,% d, k, c)-digraph. By the definition of (vertex) connectivity, 
there is a cut vertex set V0 such that IV01 = c. The set V(G)\Vo can be partitioned into 
two disjoint nonempty subsets 111 and V2 such that G - V0 has no arcs from VI to V2. Let 

~ = tV~l and  ~ = IV~{, and  Vo = { .~ ,~ , - . -  ,*o}. 
Let  

m=max{d(v, Vol}, l =  {d(Vo, u)}, m ° =  } 
where d(v, Vo) (or d"(v)Vo)) is the minimum (or maximum) distance from v to any vertex 
in Vo, while d(Vo, u} is the minimum distance from any vertex in V0 to u. It is easy to see 
t ha t  rn* _> m > 0 and  l > 0 since Vi f7 Vo = ~ and V 2 N Vo = ~. 

Let  u be a ve r t ex  in V i such tha t  d(v, Vo) = rn and  let u be  a ve r t ex  in V2 such t ha t  
d(Vo, u) = L Since any d i rec ted  p a t h  from v to  u goes th rough  Vo and  the d i a m e t e r  of G is 
k, there  exis ts  a ve r t ex  z in Vo such t ha t  d(v, z) + d(z, u) = d(v, u) < k. By our  choice of  
v, d(v, z) > m. Therefore ,  

t = d(Vo, ~) < d(z ,  ~) < k -  d(~, z)  < k - m.  (6) 

If rn = k - I, l = I, we consider the transpose G' of G which is the digraph with 
V(G') = V(G) and (u, v) E A(G') ~ (% u) E A(G). It is easy to reduce the case m = k - 1 
in G to the case rn = 1 in G'. So it suffices to consider the case 1 _~ m < k - 2. 

Let 
Qi={veV1:d(v, Vo)=i}, l < i < m .  

Also let  

Then  

T h e n  

Since l < k - m by (6), 

rrl m Jm+ 1 d 
nI=IVII_EIQ, I~cE di=c'~ -d._-i (7) 

/=i i=i 

Pj = {~ e v2 : d(Vo, ~) = y}, i _< y _< L 

t d t+ l  - d 
,~ = lV~{_< ~ e ;  = ~ a-i 

y~:L 

d k-m+i - d 
t% 2 <_ c ' d - 1  

We first show the  following l e m m a  which is s t ronge r  t han  T h e o r e m  2. 
L e m m a .  For  rn > 2 or  m = 1 and rn* > 2, 

(s) 

d k - 1 
n < c  

d - l "  
(9) 
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In fact, the function f ( m )  = d m+l  --Fd k - m + 1  is concave upward on the interval [2, k - 2 ]  
and 

f ( m )  <_ f (2)  = f ( k -  2) = d 3 + d k-1.  (10) 

It follows that ,  if 2 _< m _< k - 2, then f rom (7), (8) and (10), 

d ~ + 1  -- d d k - ' ~ + l  - d 
n = n  I --~ C ~- n 2 _~< C "~ C-}" C 

d - 1  d - 1  
d 3 + d  k - l _ d _ l  d k - 1  

__c < c 
d - 1  d - 1  

The  reason why the last inequality is valid is tha t  d k - d k - t - d Z + d  = d ( d - 1 ) ( d k - 2 - d  - 1) > 0 
because d >_ 2 and k _> 4. 

For m = 1 and m* > 2 we consider the two cases k = 2 and k _> 3, separately.  As for 
case k = 2, the proof is easy and is left to  the reader.  To complete the proof  of L e m m a  for 
k > 3, it suffices to prove tha t  

dtC _ d 
n2_<c d - 1  - hi" i l l )  

If there is some j ( i  _< 3" -< k - 3) such tha t  IPJl < ca i ,  then 

d k - d d k - d 
n2_<c d - 1  - ( 1 + d + d 2 )  -< ¢ d "  1 - ( l + d W c d )  

d k - d d k - d 
<c  d : i  - - ( l + d + n l ) <  e d - 1  - - h i ,  

and the inequality (11) holds. Next, let Po = Vo and assume that  

IP;I = c2;, o _< y < k - 3. (12) 

Let Po(Zi) -'- {z,}, i -- 1 ,2 , . - -  ,c, and let 

Py(z~)={uEV2:d(z,,u) =f } ,  3"= 1,2, . . . ,k-1,  i :  1,2,'",c. 

Then  f rom (12), we have 

IPi(~,) l  = d~, 1 < i < c, 0 _< 3" <- k - 3, (13) 

Py(z,)nPi(z.,)=¢, l < i ~ r n _ <  c, O _ < j <  k - S ,  (14) 

Ie;+~(~)l = IP~(:~)Id, 1 < i < c, 0 _< 3 _< k - 4. (15) 

Let N+(v) = {u E V(G-v): (v,u) E A(G)} for a vertex v in V(G). By the assumption 
m* _ 2, there exist some vertices, say v E g l  and zt E Vo such that  Zl ~ N + {v). Let 

Pk-2(zl) = Pk-2(zl) n Pk-2. 

Then  

Let 

IP--~-~(zl)l < IPk-2(zl)l < d ~-2 

IP-~-~(zl)I = 2 ~-2 - :. (16) 
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A n d  le t  

Then .  f rom (16), 

s :,',-:<:,1 n 
i--.,--=2 

w =e-7=7-:(~,)\s, 
u = { =  e N + ( ~ )  n P k - l :  to e W}. 

, = Isl, 

I W [  = [ P - - - ~ - ~ ( z l ) l -  s = d k - ~  - = - s,  (17 )  

I U I  = l W I d  - t = (d  k - =  - = - ~ ) d  - t .  ( 18 )  

Taking any one of the vertices in U, say u, we consider the shortest directed path R 
from u to u. The length of R is d(u, u), which is the number of arcs occurring in R. Let the 
successor of v on R is some vertex z~ o E Vo. Then Zio ~ zl since zl ~ N+(v). From (14) the 
]th successor ofzio on R is not in Pj(zl)NPj for 0 _~ 3" _( k-3 and WNPk_~(Z~o ) -- 0. Hence 
d ( v , u )  = k, and  so the  ( k -  1)th successor of z~ o on R is u, i.e., u E P ~ - l ( z l )  ~ P~-~(z~o).  
By an a r b i t r a r y  choice of the  ve r tex  u ~ U, it  follows t h a t  

P~-~(zl)n(UP~-~(z,) >_ I l, 
i=2 

I P , : - : I  _< ~d ~-I  -lUl- ( =  + ~ ) d - t .  

Thus  by  (18), k > 3 and  c _ d - 1, we have 

+ : + lUl + t +  ( x +  s ) d - -  x + s + (d  ~ - ~  - x - s ) d -  t + t  + ( : r +  a)d 

=d ~-~ + z + s > dc > n~. 

Therefore  
d k - d d k - d  

- 2 < C d = l - ( : + s + t u l + t + ( x + s ) d ) < c  d ~  m .  

The inequa l i ty  (11) is proved and L e m m a  is es tab l i shed .  
To prove T h e o r e m  2, we only want  to cons ider  the  case m* = m = '1 by L e m m a .  

-d~-d  from (8). Thus  if c = 1, then  the  t h e o r e m . h o l d s  In th is  case, nx ~ d and n2 <_ c - j : "  i- 
obviously.  Next ,  we suppose  c _~ 2. 

If there is a 3" (I (_ 3 -~ k - 2) such that IPil (_ cd y - I, we have 
t 

n2 SIP1[ + IP~.[ + ' "  + [Pj'-,[ + IP:I + " "  + IPk'-l[ 
_<cd + cd 2 + - - .  + cd +-~ + (cd i - 1)d + . . .  + (cd i - 1)d k-~-~" 

d k - d d k - y  - d 

d - 1  d - 1  ' 

and  the  inequa l i ty  (4) holds immedia te ly .  So we suppose  t h a t  

IPil  = cd~, 1 ~ 3" ~ k -- 2. (19) 

Let  z l  E Vo and  let  

T' ={~ ~ e~_:: (~, ~) e A(C) for some ~ + V,}, 

T'" ={~ ~ Pk-: : (~, ~) + A(C) for some ~ ~ Pk-:, ~ + ~}, 

s' = Is'l, 
¢ =  IT'[, 

c = IT'I, 

W = I T ' "  I. 
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Thus 

IPk-ll ~ IPk-21d - (t' + t* + t"), 
d k - d 

n2 < c d---------1 (t' + t* + t " )  (20) 

and 
s' + t* = d - nl .  (21) 

Tal~e zi E V0, i = 2, 3 , - . . ,  c. Let P~ denote the shortest directed (zi, zl)  path. From 
(19) and d(zi, z ,)  < k, every R~ must contain either a vertex in T'  or a vertex in S't.JT*uT**. 
Therefore, 

c - I < t '  + t* + t** + s'. (22) 

F r o m  (21) and (22) we have  
nl 5 tl "~ t** + d - - c +  1. (23) 

Thus from (20) and (23), the inequality (4) is proved. 
The proof of Theorem 2 is completed. 
From Theorem 2 we immediately have the following result. 
Co ro l l a ry .  

tivity 
For every (n, d, k, c)-digraph wi th  d > 2 and k > 2, the {vertex) connec-  

c > ('~ - d - 1 ) ( d -  1) 
- d k -- d 

Particularly, 
= d ,  i f n > d k + l ;  

> d 1, i f n >  ( d -  " d k - 1  
- 2 ) ~  + 4 .  

R e m a r k .  From the corollary it is directly obtained that the connectivity of Gx(n, d) 
is d if n -= d e + d k-q and q is an odd number less than k, though it can also been obtained 
from Du' and Hwang's result (see Theorem 3.2 in [7]). In particular, it is obtained that  
the connectivity of the digraph with diameter k and order n(= d k + d Ic-1) constructed by  
Reddy et al. ([61, also see [5]) is d. 

§4. The Sharpness of Results 

In this section we illustrate our results to be the best possible for several interesting 
c a s e s .  

E x a m p l e  1. the right side of the inequality (4) is d k + 1 for c = d -  1. We have already 
seen in Section 2 that the loopless digraph Gt(d k + 1, d) is a (d k + 1, d,k, d -  1)-digraph if k 
is an odd number. This example shows that  the uppper bound of n given in (4) is the best 
possible for e = d - 1 and an odd number k(>_ 3). Meanwhile this example also shows that  
the lower bound of n such that c is d in the corollary is the best possible. 

E x a m p l e  2. The right side of the inequality (4) is 2 d +  1 for c = 1, k = 2 and d >_ 2. 
Let K (i) be a complete digraph with the vertex set V(K{ j  )) = {x~i),x(j ), . . . ,  x(i)}, j = 1,2 
and K1 be a digraph consisting of a single vertex x. Let 

_{11 - d} .  U {(~, ~I~)) : ~ = 1, 2 , . . . ,  4 U { (~J ,  ~, ): ~ = 1, 2 ,  , 
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It is easily verified that  G is a (2d + 1, d, 2, 1)-digraph. This shows that the upper  bound of 
n given in (4) is the best possible for c = 1, k = 2 and d > 2. 

E x a m p l e  3. The right side of the inequality (2) is a r2 + d for k = 2. We have also seen 
in Section 2 (or from Corollary) that the loopless digraph Gl (d  2 + d, d} is a (d "2 + d, d, 2, d)- 
digraph, which shows that  the upper bound given in (2) is the best possible for  k = 2 and 
d>_2. 

§5. Arc Connectivity 

Considering arc rather than vertex connectivity in this section, we can prove an analogy 
of Theorem 2 by a similar argument. An arc cut set E of the strongly connected digraph G 
is a subset of A(G) such that G - E is not strongly connected. The arc connectivity of G, 
denoted by d{G), is the minimum cardinality of all arc cut sets of G. A strongly connected 
digraph of order n, maximum degree d, diameter k and arc connectivity d is denoted as an 
(n, d, k, d)-digraph. 

T h e o r e m  3. If there is an (n, d, k, d)-digraph, d < d - 1, d > 2 and k > 4, then 

(d  ~:-1 - 1 ) 
n _ < c ' \ ~  + 1  + d .  (24) 

Proof. Let G be an (n, d, k, d)-digraph. By the definition of arc connectivity, there 
exists an arc cut set E0 such that IE0) = d.  The set V ( G  - Eo) can be part i t ioned into two 
disjoint nonempty subsets U1 and U2 such that  G - Eo has no arc from U1 to U2. Let Uo 
be a set of the initial vertices of the arcs in Eo and U~ be a set of the terminal  vertices of 
the arcs in Eo. It is clear that [To c U1, U~ c U2 and IU01,1U~] < d. Let nt = [U~I and 
n2 = 1U2I. Then n = nt  + n~. 

The following notations are defined in the same manner as in the proof of Theorem 2. 
Let 

rn = max{d(v ,  Uo)}, l =  m a x { d ( U ; , u ) } .  
vEUx ~EU2 

It was proved by Imase et al. (see [4 D that 1 _< rn < k - 2 and 1 < l < k - 2. (Note that 
the assumption d < d was used in their proof.) 

Let v E UI\Uo such that d(v, Uo) = m and let u e U2\U~ such that d(U~, u) = l. Since 
any directed path from v to u contains some arc (uo, u~) E Eo, uo E Uo, u~ E U~, then 
d(v, Uo)) + d(u' o, u) = d(v, u) - 1 < k - 1. Thus 

t = d(U~, u) < d(u'o, u) < k - 1 - d(v, Uo) <_ k - 1 - m. (25) 

Let 

Then 

Qi = {v E Ul\Uo : d(v, [To) = i}, 

n I = I[fll ~__. IUol + ~ I(~i l_ I[fol (1 + 
i=1 

Noting that lUol _< e, therefore, 
n1--<c*~+1--1 

d -1  
Let 

= E r-r2\cr ;  : acrr' = 41.. 

l < i < m .  

d 'r'+l - d )  

a - i  " 

I < i < L  

(26) 
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Then 
t , d t + l  - 1 

,',2 --tu21 _< tUgl + ~ I P ; I  < tugt 7 - - 7  
i = l  

Therefore ,  f rom (25) and noting lul l  _< ~', 

, dk-rn-1  
n2 _< lU~l 7-=-~ 

<_ c '  d k - m  - -  1 

d - 1  
(27) 

The  funct ion f ( m )  = d m+1 + d k - m  is concave upward  on the interval  [2, k - 31, and  

f ( m )  = f (2)  = f ( / c - -  3) = d 3 ÷ d k -2 .  ( 2 8 )  

Therefore ,  if 2 _< rn _< k - 3, then f rom (26), (27) and (28), the inequali ty (24) is valid. 
If m --- k - 2, we consider the t ranspose  G '  of G and reduce the case rn -- k - 2 in G 

to the case rn = 1 in G'. Hence, to complete the proof of the inequality (24), it suffices to 

consider the case rn -- 1. (Note l -- k - 2 in this case.) 
If Uo C_ N+(v) for every v E UI\Uo, then nl < d% IU01 < d+ c'. Hence from (27), the 

inequality (24) is valid. 
In the following, we suppose that there exists a vertex v in UI\Uo such that IN+(v) A 

Uol < lUol. Then  ~1 <--- c'(d÷ 1). If lU$l < ~', then,  since I = k - 2 >_ 2, 

n2 _< c '  d ~ -  1 _ 1 
d - 1 (1 ÷ d ÷ d2), (29) 

and so, also from {26), (29) and c' < d, we can derive the inequality (24). 
H ]U~[ = c', in the same way as in proving the inequality (11), it can be proved that 

n2 - c' < c' d k - I  _ 1 
d - 1  

n I . 

The  details are left to the reader  and so the proof  of Theo rem 3 is completed.  
C o r o l l a r y .  For every (n, d, k, c ' ) -d igraph with d >_ 2, k > 4 and 0 < c' < d, the arc 

connect ivi tv  
(~ - ~)(d - 1) 

~' > ~--~¥~= 2 

Particularly, 

c I _-- d k- I -- 1 
_>d- l ,  ~ > ( d - 2 )  ~ - : - V + I  + d .  
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