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Abstract

Let D be a simple digraph with order p, strong arc-connectivity A(D) and minimum degree
d(D). It is shown here that in order to obtain the equality A(D)=4(D), it is sufficient that there
are | $p | pairs of vertices x;,y; in D such that dp(x;)+dp(y:)2p (i=12,..., 5p)). This is
a generalization of a theorem of Goldsmith and White (1978) for graphs.

Goldsmith and White [1] proved the following theorem.

Theorem 1. Let G be a simple graph with order p, edge-connectivity A(G) and minimum
degree 5(G). If there are | % p | pairs of vertices x;,y; in G such that

do(x))+dg(y)=p, (i=12..|%p),
then A(G)=4(G).

Let D=(V,A) be a simple digraph with the vertex-set V'=V(D) and the arc-set
A= A(D). For xe V(D), the degree of vertex x, denoted by dj(x), is the minimum value
of its out-degree and in-degree. The minimum degree of D, denoted by &(D), is the
minimum value of dp(x) for all xeV (D). In the present note we will generalize

Theorem 1 to digraphs. Our proof would seem simple than that given by Goldsmith
and White for the unidirected case.

Theorem 2. Let D be a simple digraph with order p, strong arc-connectivity A(D) and
minimum degree 6(D). If there are | 5 p | pairs of vertices x;, y; of D such that

dp(xi)+dp(y)=p, (i=12,....3p)),
then A(D)=4(D).
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Proof. Suppose that the theorem is false; let D be a digraph satisfying the conditions
of the theorem, but for which A(D)<d(D). (It is always true, of course, that
A(D)< 6(D).) Moreover, among all such digraphs of order p, let D be one with the
maximum number of arcs.

We will denote the | § p | pairs of vertices in D as described in the statement of the
theorem by =n(D). If the two vertices x,y of D are paired in n(D) we will write
{x, y}en(D). Without loss of generality, we may suppose that the unpaired vertex is
one with minimum degree when p is odd.

Let X and Y be two disjoint nonempty subsets of V(D). We denote by (X, Y)
the set of the arcs in D joining X to Y and by D[X ] the subdigraph of D induced
by X.

Since the strong arc-connectivity of D is A(D), there exists a bipartition {X, Y} of
V(D) such that |(X, Y)|=A(D). Let | X|=m and |Y|=n, and so m+n=p. By the
maximality of | A(D)|, it is clear that D[ X1=K,,, D[Y]=K, and (y, x)e A(D) for all
xeX and ye Y. The symbol K, denotes the complete symmetric digraph on p vertices.
Consequently,

dy (x)=p—1, dp(x)=dp (x), for every xeX,
dp (y)=p—1, dp(y)=dp (x),  for every ye¥.

Note that if D is changed to its inverse digraph D obtained from D by reversing the
directions on all arcs, then A(D)=A(D). Without loss of generality, we may, therefore,
suppose m < n, otherwise we may consider D. It does not add to the difficulties of the
statement below whether the unpaired vertex, if it exists, is in X or Y. We may,
therefore, suppose that the unpaired vertex is in X when p is odd. Thus

MD)<8(D) =m—1. (1
Let x,x'eX and {x,x'}en(D). Since dp(x)+dp(x')>p=m+n, we have
I({x,x"}, Y)|=dp (x)+dp (x')—2(m—1)
>dp(x)+dp(x')—2(m—1)=n—m+2.

Assume that there are r pairs of vertices x, x' of X for which {x, x’}en(D) and denotes
by X' the set of these vertices in X. Then |X'|=2r and (X, Y)|=r(n—m+2). Let

(X', Y)|=r(n—m+2)+s. (2)

Let X;={xeX\X": df (x)=m—1+i}, i=0,1, and let X,=X\(X"v Xou X;).
So
[(Xy, YV)=]X,y), (3)

and |(X,, Y)[=2|X,|. Let

(X2, Y)I=|Xz[+1, )
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then
t=|X,] %)
It follows from (2)H4) that
[ Xo|=[X|=|X"[—|X2|—[X]
=m—2r—|(X,, Y)[+t+](X1, V)|
=m—{(X", V)| +rin—m+s—{(X,, V)| +1—|(X,, V)|
=m—|(X,Y)u (X3, V)U(Xy, Y)|+r(n—m)+s+t

=m—|(X,Y)|+r(n—m)+s+1t,
ie.,
[Xol=m—A(D)+r(n—m)+s+t. (6)

Let Y'={yeY: there is y’eY such that {y,y'}en(D)} and let ¥;={yeY: there is
xeX; such that {x,y}en(D)}, i=0,1,2. Then

[ Yal=[X,|, [Yil=|X4l, [Yol=|Xol—4q, (7
where

_§0 for p even,

1= 1 for p odd.
And so

V| =n—| Yol=| V1|~ Y]
=n—(1Xo|=g)=IX[~| X;|
z2m—|XouX,vX;sl4g
=|X'|+q.
Observing that both | X'| and | Y| are even, we have
[ Y\ =2(r+4q). 8)
Let y,y'e Y’ with {y,y’}en(D). Since dp(y)+dp(y')=p=m+n, we have
(X, {y,y' DIi=dp (P +dp (y')—2(n—1)
2dp(y)+dp(y')—2(n—1)

Zm—n+2.
Thus we have

(X, Y N=(r+g)(m—n+2) 9)

On the one hand, let Yo={y;,y2,..., ¥ }» Xo={X1,X2,..., %} and {x;, y;}en(D),
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i=1,2, ... k. Since d (x;)+dp (y;)=m+n for every i=1,2,...,k, we have

x
(X, Yo)l= Y, (dp (y)—dpry1(¥1))
=1

i=

k

2 Y, ((m+n—dg (x))—(n—1))
i=1
K

=Y (m+n—(m—1)—n+1)
i=1

On the other hand, from (7), (2) and (4), we have
(X, Yo)|=|(X, Yo)| +] Y1| -] X4]
<X Yo) +1(X, Y= (X, Y)
<IXY, V) + (X2, V) =X, Y]

=r(n—m+2)+s+|X,|+t—{(X, Y'}{.
Thus,

| Yol <E(r(n—m+2)+s5+| X, +1—|(X, Y'))). (10)
It follows from (6), (7) and (10) that

ADYzm+%(rin—m)+s+t—| X1+ (X, Y))—r—q.
Considering that s 20 and (5), we have

AD)zm+5(r(n—m)+|(X, Y))—r—q. (1)

We will consider two cases, depending on the parity of p.

Suppose first that p is even. In this case g=0. If n=m, then we have |(X, Y")|=2r
by (9). It follows from (11) that 4(D)=m, which contradicts (1). If n>m+ 2, then it is
obvious from (11) that A(D)=m+r+|(X, Y')|=m, but again this contradicts (1).

Suppose then that p is odd. In this case, g=1 and n>m+1. If n=m+1, we have
(X, Y’)|=r+1 by (9). It follows from (11) that

MDyzm+ir+r+)—r—1>m—1,
which contradicts (1). If n>m+ 2, we immediately from (11) have
AD)zm+32r)—r—1=m—1,

which again contradicts (1).
The proof of Theorem 2 is completed. O
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