ELSEVIER

Note

A sufficient condition for equality of arc-connectivity and minimum degree of a digraph ${ }^{\hat{2}}$

Jun-Ming Xu
Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China

Received 5 December 1991; revised 31 July 1992

Abstract

Let D be a simple digraph with order p, strong arc-connectivity $\lambda(D)$ and minimum degree $\delta(D)$. It is shown here that in order to obtain the equality $\lambda(D)=\delta(D)$, it is sufficient that there are $\left\lfloor\frac{1}{2} p\right\rfloor$ pairs of vertices x_{i}, y_{i} in D such that $d_{D}\left(x_{i}\right)+d_{D}\left(y_{i}\right) \geqslant p\left(i=1,2, \ldots,\left\lfloor\frac{1}{2} p\right\rfloor\right)$. This is a generalization of a theorem of Goldsmith and White (1978) for graphs.

Goldsmith and White [1] proved the following theorem.
Theorem 1. Let G be a simple graph with order p, edge-connectivity $\lambda(G)$ and minimum degree $\delta(G)$. If there are $\left\lfloor\frac{1}{2} p\right\rfloor$ pairs of vertices x_{i}, y_{i} in G such that

$$
d_{G}\left(x_{i}\right)+d_{G}\left(y_{i}\right) \geqslant p, \quad\left(i=1,2, \ldots,\left\lfloor\frac{1}{2} p\right\rfloor\right),
$$

then $\lambda(G)=\delta(G)$.
Let $D=(V, A)$ be a simple digraph with the vertex-set $V=V(D)$ and the arc-set $A=A(D)$. For $x \in V(D)$, the degree of vertex x, denoted by $d_{D}(x)$, is the minimum value of its out-degree and in-degree. The minimum degree of D, denoted by $\delta(D)$, is the minimum value of $d_{D}(x)$ for all $x \in V(D)$. In the present note we will generalize Theorem 1 to digraphs. Our proof would seem simple than that given by Goldsmith and White for the unidirected case.

Theorem 2. Let D be a simple digraph with order p, strong arc-connectivity $\lambda(D)$ and minimum degree $\delta(D)$. If there are $\left\lfloor\frac{1}{2} p\right\rfloor$ pairs of vertices x_{i}, y_{i} of D such that

$$
d_{D}\left(x_{i}\right)+d_{D}\left(y_{i}\right) \geqslant p, \quad\left(i=1,2, \ldots,\left\lfloor\frac{1}{2} p\right\rfloor\right),
$$

then $\lambda(D)=\delta(D)$.

[^0]Proof. Suppose that the theorem is false; let D be a digraph satisfying the conditions of the theorem, but for which $\lambda(D)<\delta(D)$. (It is always true, of course, that $\lambda(D) \leqslant \delta(D)$.) Moreover, among all such digraphs of order p, let D be one with the maximum number of arcs.

We will denote the $\left\lfloor\frac{1}{2} p\right\rfloor$ pairs of vertices in D as described in the statement of the theorem by $\pi(D)$. If the two vertices x, y of D are paired in $\pi(D)^{\circ}$ we will write $\{x, y\} \in \pi(D)$. Without loss of generality, we may suppose that the unpaired vertex is one with minimum degree when p is odd.

Let X and Y be two disjoint nonempty subsets of $V(D)$. We denote by (X, Y) the set of the arcs in D joining X to Y and by $D[X]$ the subdigraph of D induced by X.

Since the strong arc-connectivity of D is $\lambda(D)$, there exists a bipartition $\{X, Y\}$ of $V(D)$ such that $|(X, Y)|=\lambda(D)$. Let $|X|=m$ and $|Y|=n$, and so $m+n=p$. By the maximality of $|A(D)|$, it is clear that $D[X]=K_{m}, D[Y]=K_{n}$ and $(y, x) \in A(D)$ for all $x \in X$ and $y \in Y$. The symbol K_{p} denotes the complete symmetric digraph on p vertices. Consequently,

$$
\begin{aligned}
& d_{D}^{-}(x)=p-1, \quad d_{D}(x)=d_{D}^{+}(x), \quad \text { for every } x \in X, \\
& d_{D}^{+}(y)=p-1, \quad d_{D}(y)=d_{D}^{-}(x), \quad \text { for every } y \in Y .
\end{aligned}
$$

Note that if D is changed to its inverse digraph \vec{D} obtained from D by reversing the directions on all arcs, then $\lambda(D)=\lambda(\vec{D})$. Without loss of generality, we may, therefore, suppose $m \leqslant n$, otherwise we may consider \vec{D}. It does not add to the difficulties of the statement below whether the unpaired vertex, if it exists, is in X or Y. We may, therefore, suppose that the unpaired vertex is in X when p is odd. Thus

$$
\begin{equation*}
\lambda(D)<\delta(D)=m-1 . \tag{1}
\end{equation*}
$$

Let $x, x^{\prime} \in X$ and $\left\{x, x^{\prime}\right\} \in \pi(D)$. Since $d_{D}(x)+d_{D}\left(x^{\prime}\right) \geqslant p=m+n$, we have

$$
\begin{aligned}
\left|\left(\left\{x, x^{\prime}\right\}, Y\right)\right| & =d_{D}^{+}(x)+d_{D}^{+}\left(x^{\prime}\right)-2(m-1) \\
& \geqslant d_{D}(x)+d_{D}\left(x^{\prime}\right)-2(m-1) \geqslant n-m+2 .
\end{aligned}
$$

Assume that there are r pairs of vertices x, x^{\prime} of X for which $\left\{x, x^{\prime}\right\} \in \pi(D)$ and denotes by X^{\prime} the set of these vertices in X. Then $\left|X^{\prime}\right|=2 r$ and $\left|\left(X^{\prime}, Y\right)\right| \geqslant r(n-m+2)$. Let

$$
\begin{equation*}
\left|\left(X^{\prime}, Y\right)\right|=r(n-m+2)+s . \tag{2}
\end{equation*}
$$

Let $X_{i}=\left\{x \in X \backslash X^{\prime}: d_{D}^{+}(x)=m-1+i\right\}, i=0,1$, and let $X_{2}=X \backslash\left(X^{\prime} \cup X_{0} \cup X_{1}\right)$. So

$$
\begin{equation*}
\left|\left(X_{1}, Y\right)\right|=\left|X_{1}\right| \tag{3}
\end{equation*}
$$

and $\left|\left(X_{2}, Y\right)\right| \geqslant 2\left|X_{2}\right|$ Let

$$
\begin{equation*}
\left|\left(X_{2}, Y\right)\right|=\left|X_{2}\right|+t, \tag{4}
\end{equation*}
$$

then

$$
\begin{equation*}
t \geqslant\left|X_{2}\right| \tag{5}
\end{equation*}
$$

It follows from (2)-(4) that

$$
\begin{aligned}
\left|X_{0}\right| & =|X|-\left|X^{\prime}\right|-\left|X_{2}\right|-\left|X_{1}\right| \\
& =m-2 r-\left|\left(X_{2}, Y\right)\right|+t+\left|\left(X_{1}, Y\right)\right| \\
& =m-\left|\left(X^{\prime}, Y\right)\right|+r(n-m)+s-\left|\left(X_{2}, Y\right)\right|+t-\left|\left(X_{1}, Y\right)\right| \\
& =m-\left|\left(X^{\prime}, Y\right) \cup\left(X_{2}, Y\right) \cup\left(X_{1}, Y\right)\right|+r(n-m)+s+t \\
& =m-|(X, Y)|+r(n-m)+s+t
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\left|X_{0}\right|=m-\lambda(D)+r(n-m)+s+t \tag{6}
\end{equation*}
$$

Let $Y^{\prime}=\left\{y \in Y\right.$: there is $y^{\prime} \in Y$ such that $\left.\left\{y, y^{\prime}\right\} \in \pi(D)\right\}$ and let $Y_{i}=\{y \in Y$: there is $x \in X_{i}$ such that $\left.\{x, y\} \in \pi(D)\right\}, i=0,1,2$. Then

$$
\begin{equation*}
\left|Y_{2}\right|=\left|X_{2}\right|, \quad\left|Y_{1}\right|=\left|X_{1}\right|, \quad\left|Y_{0}\right|=\left|X_{0}\right|-q \tag{7}
\end{equation*}
$$

where

$$
q= \begin{cases}0 & \text { for } p \text { even } \\ 1 & \text { for } p \text { odd }\end{cases}
$$

And so

$$
\begin{aligned}
\left|Y^{\prime}\right| & =n-\left|Y_{0}\right|-\left|Y_{1}\right|-\left|Y_{2}\right| \\
& =n-\left(\left|X_{0}\right|-q\right)-\left|X_{1}\right|-\left|X_{2}\right| \\
& \geqslant m-\left|X_{0} \cup X_{1} \cup X_{2}\right|+q \\
& =\left|X^{\prime}\right|+q .
\end{aligned}
$$

Observing that both $\left|X^{\prime}\right|$ and $\left|Y^{\prime}\right|$ are even, we have

$$
\begin{equation*}
\left|Y^{\prime}\right| \geqslant 2(r+q) \tag{8}
\end{equation*}
$$

Let $y, y^{\prime} \in Y^{\prime}$ with $\left\{y, y^{\prime}\right\} \in \pi(D)$. Since $d_{D}(y)+d_{D}\left(y^{\prime}\right) \geqslant p=m+n$, we have

$$
\begin{aligned}
\left|\left(X,\left\{y, y^{\prime}\right\}\right)\right| & =d_{D}^{-}(y)+d_{D}^{-}\left(y^{\prime}\right)-2(n-1) \\
& \geqslant d_{D}(y)+d_{D}\left(y^{\prime}\right)-2(n-1) \\
& \geqslant m-n+2
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\left|\left(X, Y^{\prime}\right)\right| \geqslant(r+q)(m-n+2) \tag{9}
\end{equation*}
$$

On the one hand, let $Y_{0}=\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}, X_{0}=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ and $\left\{x_{i}, y_{i}\right\} \in \pi(D)$,
$i=1,2, \ldots, k$. Since $d_{D}^{+}\left(x_{i}\right)+d_{D}^{-}\left(y_{i}\right) \geqslant m+n$ for every $i=1,2, \ldots, k$, we have

$$
\begin{aligned}
\left|\left(X, Y_{0}\right)\right| & =\sum_{i=1}^{k}\left(d_{D}^{-}\left(y_{i}\right)-d_{D[Y]}^{-}\left(y_{i}\right)\right) \\
& \geqslant \sum_{i=1}^{k}\left(\left(m+n-d_{D}^{+}\left(x_{i}\right)\right)-(n-1)\right) \\
& =\sum_{i=1}^{k}(m+n-(m-1)-n+1) \\
& =2\left|Y_{0}\right|
\end{aligned}
$$

On the other hand, from (7), (2) and (4), we have

$$
\begin{aligned}
\left|\left(X, Y_{0}\right)\right| & =\left|\left(X, Y_{o}\right)\right|+\left|Y_{1}\right|-\left|X_{1}\right| \\
& \leqslant\left|\left(X, Y_{0}\right)\right|+\left|\left(X, Y_{1}\right)\right|-\left|\left(X_{1}, Y\right)\right| \\
& \leqslant\left|\left(X^{\prime}, Y\right)\right|+\left|\left(X_{2}, Y\right)\right|-\left|\left(X, Y^{\prime}\right)\right| \\
& =r(n-m+2)+s+\left|X_{2}\right|+t-\left|\left(X, Y^{\prime}\right)\right| .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\left|Y_{0}\right| \leqslant \frac{1}{2}\left(r(n-m+2)+s+\left|X_{2}\right|+t-\left|\left(X, Y^{\prime}\right)\right|\right) \tag{10}
\end{equation*}
$$

It follows from (6), (7) and (10) that

$$
\lambda(D) \geqslant m+\frac{1}{2}\left(r(n-m)+s+t-\left|X_{2}\right|+\left|\left(X, Y^{\prime}\right)\right|\right)-r-q .
$$

Considering that $s \geqslant 0$ and (5), we have

$$
\begin{equation*}
\lambda(D) \geqslant m+\frac{1}{2}\left(r(n-m)+\left|\left(X, Y^{\prime}\right)\right|\right)-r-q . \tag{11}
\end{equation*}
$$

We will consider two cases, depending on the parity of p.
Suppose first that p is even. In this case $q=0$. If $n=m$, then we have $\left|\left(X, Y^{\prime}\right)\right| \geqslant 2 r$ by (9). It follows from (11) that $\lambda(D) \geqslant m$, which contradicts (1). If $n \geqslant m+2$, then it is obvious from (11) that $\lambda(D) \geqslant m+r+\left|\left(X, Y^{\prime}\right)\right| \geqslant m$, but again this contradicts (1).

Suppose then that p is odd. In this case, $q=1$ and $n \geqslant m+1$. If $n=m+1$, we have $\left|\left(X, Y^{\prime}\right)\right| \geqslant r+1$ by (9). It follows from (11) that

$$
\lambda(D) \geqslant m+\frac{1}{2}(r+r+1)-r-1>m-1,
$$

which contradicts (1). If $n \geqslant m+2$, we immediately from (11) have

$$
\lambda(D) \geqslant m+\frac{1}{2}(2 r)-r-1=m-1
$$

which again contradicts (1).
The proof of Theorem 2 is completed.

Reference

[1] D.L. Goldsmith and A.T. White, On graphs with equal edge-connectivity and minimum degree, Discrete Math. 23 (1978) 31-36.

[^0]: ${ }^{\#}$ This work was supported by the Natural Science Foundation of China.

