SOME RESULTS ON R_2-EDGE-CONNECTIVITY OF EVEN REGULAR GRAPHS

Xu Junming

Abstract Let G be a connected k (≥ 3)-regular graph with girth g. A set S of the edges in G is called an R_2-edge-cut if $G - S$ is disconnected and contains neither an isolated vertex nor a one-degree vertex. The R_2-edge-connectivity of G, denoted by $\lambda'(G)$, is the minimum cardinality over all R_2-edge-cuts, which is an important measure for fault-tolerance of computer interconnection networks. In this paper, $\lambda'(G) = g(2k - 2)$ for any $2k$-regular connected graph $G(\neq K_5)$ that is either edge-transitive or vertex-transitive and $g \geq 5$ is given.

§ 1 Introduction

In this paper, a graph $G = (V, E)$ always means a simple graph (without loops and multiple edges) with the vertex-set V and the edge-set E. We follow [1] for graph-theoretical terminology and notation not defined here.

It is well-known that when the underlying topology of a computer interconnection network is modeled by a graph G, the connectivity of G is an important measure for fault-tolerance of the network. However, it has many deficiencies (see [2]). To compensate for the shortcomings of the traditional connectivity measure, one can make use of several generalized measures of connectedness. One of them is referred to as an R_h-edge-connectivity proposed by Latifi et al. [3].

Let G be a connected k-regular graph, $k \geq h + 1$. A set S of the edges in G is called an R_h-edge-cut if $G - S$ is disconnected and contains neither an isolated vertex nor a one-degree vertex. The R_h-edge-connectivity of G, denoted by $\lambda^{(h)}(G)$, is the minimum cardinality over all R_h-edge-cuts of G.

Observe that when $h = 0$, there will be no restriction on connected components and we have the traditional edge-connectivity. In addition, in the special case of $h = 1$, this connectivity will be reduced to the restricted edge-connectivity given in [2, 4]. Thus this con-
nectivity can be regarded as a generalization of the traditional edge-connectivity, which could provide a more accurate fault-tolerance measure of networks and has received much attention recently (for example, see [4] 6)). In this paper we restrict our attention to \(h = 2 \) and even regular graphs. For the sake of convenience, we write \(\lambda'' \) for \(\lambda(2) \).

\(G \) is called vertex-transitive if for any two vertices \(x \) and \(y \) in \(G \), there is an element \(\pi \in \Gamma(G) \), the automorphism group of \(G \), such that \(\pi(x) = y \). It is well-known that any vertex-transitive graph is regular\(^7\). \(G \) is called edge-transitive if for any two edges \(e = xy \) and \(e' = uv \) in \(G \), there is an element \(\sigma \in \Gamma(G) \) such that \(\sigma(\{x, y\}) = \{u, v\} \). For a special class of vertex-transitive graphs referred to as circulant graphs, Li Qiaoliang\(^5\) has obtained their \(R_2 \)-edge-connectivity in his Ph.D thesis. Motivated by Li's work, we will, in the present paper, show that for a connected \(2k \)-regular graph \(G \neq K_2 \), \(\lambda''(G) = g(2k - 2) \) if \(G \) is either edge-transitive or vertex-transitive and \(g \geq 5 \).

The rest of this paper is organized as follows. The next section contains several notations and preliminary results used in this paper later. In § 3, we present two lemmas used in the proofs of our main results in § 4.

§ 2 Notations and Preliminary Results

Let \(G \) be a \(k \)-regular graph. If \(k \geq 2 \), then \(G \) certainly contains a cycle. We use \(g(G) \) to denote the girth of \(G \), the length of a shortest cycle in \(G \). It is known in [8, Problem 10.11] that if \(G \) is a \(k \)-regular graph with girth \(g \), then

\[
|V(G)| \geq f(k, g) = \begin{cases}
1 + k + k(k - 1) + \ldots + k(k - 1)(g - 3)/2, & \text{if } g \text{ is odd;} \\
2[1 + (k - 1) + \ldots + (k - 1)(g - 2)/2], & \text{if } g \text{ is even.}
\end{cases}
\]

A vertex \(x \) in \(G \) is called singular if it is of degree either zero or one. Let \(X \) and \(Y \) be two disjoint nonempty proper subsets of \(V \). \((X, Y) = \{e \in E(G) : \text{there are } x \in X \text{ and } y \in Y \text{ such that } e = xy \in E(G) \} \). If \(Y = \bar{X} = V \setminus X \), then we write \(E(X) \) for \((X, \bar{X}) \) and \(d(X) \) for \(|E(X)| \). The following inequality is well-known (see [8], Problem 6.48).

\[
d(X \cap Y) + d(X \cup Y) \leq d(X) + d(Y).
\]

A \(R_2 \)-edge-cut \(S \) of \(G \) is called a \(\lambda'' \)-cut if \(|S| \geq \lambda''(G) > 0 \). Let \(X \) be a proper subset of \(V \). If \(E(X) \) is a \(\lambda'' \)-cut of \(G \), then \(X \) is called a \(\lambda'' \)-fragment of \(G \). It is clear that if \(X \) is a \(\lambda'' \)-fragment of \(G \), then so is \(\bar{X} \) and both \(G[X] \) and \(G[\bar{X}] \) are connected. Let

\[
r(G) = \min\{|X : X \text{ is a } \lambda'' \text{-fragment of } G\}.
\]

A \(\lambda'' \)-fragment \(X \) is called a \(\lambda'' \)-atom of \(G \) if \(|X| = r(G) \). Since \(G[X] \) is connected and contains no singular vertices for a given \(\lambda'' \)-atom \(X \) of \(G \), \(G[X] \) certainly contains a cycle. Thus

\[
r(G) = \min\{|X : |X| \geq g(G)\}.
\]

Theorem 1. Let \(G \) be a connected \(2k \)-regular graph, \(k \geq 2 \). If \(G \neq K_2 \), then \(\lambda''(G) \) exists and \(\lambda''(G) \leq g(2k - 2) \).

Proof. Let \(G \) be a connected \(2k \)-regular graph, \(G \neq K_2 \) and \(k \geq 2 \). We want to show
\[\lambda'(G) \leq g(2k - 2) \]. For this purpose, let \(X \) be the vertex-set of a shortest cycle \(C_s \) in \(G \). Then \(X \neq \emptyset \) and \(E(X) \) is an edge-cut of \(G \) since \(k \geq 2 \) and each in \(X \) is a two-degree vertex in \(C_s \). If \(E(X) \) is an \(R \)-edge-cut of \(G \), then \(\lambda'(G) \leq d(X) = g(2k - 2) \).

Suppose that \(E(X) \) is not an \(R \)-edge-cut of \(G \). Note the minimality of \(C_s \), it is clear that for any \(y \in X \), \(|N_G(y) \cap X| \leq 2 \) if \(g \geq 4 \), by which \(g = 3 \) and \(k = 2 \). Let \(y \) be a singular vertex in \(G - E(X) \). Then, obviously, \(y \notin X \) and \(y \) is a one-degree vertex in \(G - E(X) \). Let \(Y = X \cup \{ y \} \). Then \(d(X) = 6 \) and \(d(Y) = 4 \). If there are no singular vertices in \(G - E(Y) \), then \(E(Y) \) is an \(R \)-edge-cut of \(G \) and \(\lambda'(G) \leq d(Y) = 4 < 6 \). Suppose that there is some singular vertex \(z \) in \(G - E(Y) \). If \(z \) is an isolated vertex in \(G - E(Y) \), then \(G = K_3 \), which contradicts our assumption. Thus \(z \) is a one-degree vertex in \(G - E(Y) \). Let \(Z = Y \cup \{ z \} \), then \(Z \neq \emptyset \), \(d(Z) = 2 \) and \(G - E(Z) \) contains no singular vertices. It follows that \(E(Z) \) is an \(R \)-edge-cut of \(G \). So \(\lambda'(G) \leq d(Z) = 2 < 6 \).

\section*{§ 3 Two Lemmas}

\textbf{Lemma 1} \[\emptyset \subseteq \emptyset \subseteq K_3 \] and \(k \geq 2 \). Let \(R \) be a proper subset of \(V(G) \) and \(U \) be the set of the singular vertices in \(G - E(R) \). If \(\emptyset \neq U \subseteq R \) and \(d(R) \leq \lambda'(G) + 1 \), then \(|R| \leq g(G) \).

\textbf{Proof} \[\emptyset \subseteq \emptyset \subseteq K_3 \] Let \(g = g(G) \). Since \(\lambda'(G) \leq g(2k - 2) \) by Theorem 1. Suppose to the contrary that \(|R| \geq g \). We want to derive contradictions.

If \(G[R] \) contains no cycles, then \(|E(G[R])| \leq |R| - 1 \). So we can deduce a contradiction as follows

\[g(2k - 2) + 1 \geq \lambda'(G) + 1 \geq d(R) = 2k |R| - 2 |E(G[R])| \geq 2k |R| - 2(2 |R| - 1) = |R| - 2k + 2 \geq g(2k - 2) + 2 \]

If \(G[R] \) contains cycles, then let \(R' \) be the vertex-set of the union of all blocks that contain a cycle in \(G[R] \). Thus \(U \subseteq R \setminus R' \). Note that \(|N_G(u) \cap R'| \leq 1 \) for any \(u \in R \setminus R' \) and \(k \geq 2 \). \(G - E(R') \) contains no singular vertices. This implies that \(E(R') \) is an \(R \)-edge-cut of \(G \), by which \(d(R') \geq \lambda'(G) \). By the choice of \(R' \) we have that for any two distinct vertices in \(R' \), their neighbors in \(R \setminus R' \) are disconnected in \(G[R] \) and that for any neighbor \(z \) of \(R' \) in \(R \setminus R' \), either \(z \in U \) or there is a path in \(G[R \setminus R'] \) connecting \(z \) to some vertex in \(U \). Thus \(|R[R', R']| \leq |U| \), \(d(R') \geq |U| \geq (2k - 1) \) since \(U \subseteq R \setminus R' \). We can deduce a contradiction as follows

\[\lambda'(G) \leq d(R') = d(R) - |(R \setminus R', R)| + |(R', R \setminus R')| \leq d(R) - |U| |(2k - 1) + |U| = d(R) - |U| |(2k - 2) \leq \lambda'(G) - 1 \]

The proof is complete.

\textbf{Lemma 2} \[\emptyset \subseteq \emptyset \subseteq K_3 \] Let \(G \) be a connected \(2k \)-regular graph. If \(\lambda'(G) < g(2k - 2) \), then \(X \cap X' = \emptyset \) for any two distinct \(\lambda' \)-atoms \(X \) and \(X' \) of \(G \).

\textbf{Proof} \[\emptyset \subseteq \emptyset \subseteq K_3 \] Suppose that \(\lambda'(G) < g(2k - 2) \) and \(X \) and \(X' \) are two distinct \(\lambda' \)-atoms of \(G \).
Note that $|X| = |X'| = r(G) \geq g$. If $r(G) = g$, then $G[X]$ is a cycle of length g. Thus $g(2k-2) = d(X) = \lambda'(G) < g(2k-2)$. This contradiction implies that $|X| > g$. We want to show that $X \cap X' = \emptyset$. Suppose to the contrary that $X \cap X' \neq \emptyset$. Let

$$A = X \cap X', \, B = X \cap X', \, C = X \cap X', \, D = X \cap X'.$$

Then $|B| \geq |A| \geq 1$, $|B| = |C| = r(G) - |A| \geq 1$ since X and X' are two distinct λ'-atoms of G. To derive contradictions, we consider two cases separately.

Case 1: $G- E(A)$ contains no singular vertices

It is clear that $E(A)$ is an R-edge-cut of G and $G[A]$ certainly contains cycles since $G - E(A)$ does not contain any singular vertex. It follows that

$$d(X \cap X') = d(A) > \lambda'(G), \, \square \square \, |D| \geq |A| \geq g. \quad (3)$$

Noting $d(X) = d(X') = \lambda'(G)$, by (2) and the left inequality in (3), we have

$$d(D) = d(X \cup X') \leq d(X) + d(X') - d(X \cap X') < \lambda'(G).$$

This implies that $G - E(D)$ does certainly contain some singular vertices otherwise $E(D)$ is an R-edge-cut of G whose cardinality is less than $\lambda'(G)$. These singular vertices are contained in D obviously. Thus $|D| < g$ by Lemma 1. This contradicts (3).

Case 2: $G - E(A)$ contains singular vertices

Let y be a singular vertex in $G - E(A)$, then $y \in A$ obviously. Let $Y = X \setminus \{y\}$ if $|(y, C)| > |(y, B)|$ (or let $Y = X \setminus \{y\}$ if $|(y, C)| < |(y, B)|$, then $|Y| = |X| - 1$ and $d(Y) \leq d(X) - |(y, D)| - |(y, C)| + |(y, B)| + 1 \leq d(X) = \lambda'(G). \quad (4)$

Note that X is a λ'-atom of G and $Y \subseteq X$, there exist singular vertices in $G - E(Y)$, then they all are contained in Y. so $|Y| < g$ by Lemma 1, by which $|X| = |Y| + 1 \leq g$. This contradicts the fact that $|X| > g$.

We can similarly obtain a contradiction if we consider the case of $|(y, C)| < |(y, B)|$.

Next, we want to consider the case of $|(y, C)| = |(y, B)|$. Note that in this case the equality in (4) does not hold only when $|(y, D)| = 0$ and y is a one-degree vertex in $G - E(A)$. It follows that $d_G(y) = 1 + |(y, C)| + |(y, B)|$, which is odd. This contradicts our assumption that the regularity of G is even.

The proof of Lemma 2 is complete.

§ 4 Main Results

Theorem 2: Let G be a connected $2k$-regular edge-transitive graph, $G \neq K_s$ and $k \geq 2$, then $\lambda'(G) = g(2k - 2)$.

Proof: By our assumption, $\lambda'(G)$ exists and $\lambda'(G) \leq g(2k - 2)$ by Theorem 1. Suppose that $\lambda'(G) < g(2k - 2)$. Let X be a λ'-atom of G, then $|X| > g \geq 3$. Let $e = xy$ be an edge in $G[X]$ and $e' = yz$ be an edge in $E(X)$, $z \in \overline{X}$. Since G is edge-transitive, there is $\sigma \in \Gamma(G)$ such that $\sigma(x, y) = (y, z)$. Hence $\sigma(X)$ is also a λ'-atom of G. Let $X' = \sigma(X)$, then $X \neq X'$ since $z \in X'$ and $z \notin X$. On the other hand, since $y \in X \cap X'$, $X = X'$ by Lemma-
Theorem 3 Let G be a connected $2k$-regular vertex-transitive graph, $g \geq 5$ and $k \geq 2$, then $\lambda'(G) = g(2k - 2)$.

Proof It is clear that $\lambda'(G)$ exists and $\lambda'(G) \leq g(2k - 2)$ by Theorem 1. Suppose that $\lambda'(G) < g(2k - 2)$ and X is a λ'-atom of G. We claim that $G[X]$ is vertex-transitive. To the end we let

$$\Pi = \{ \pi \in \Gamma(G) : \pi(x) = x \}, \quad \Psi = \{ \pi \in \Pi : x \in X \Rightarrow \pi(x) = x \}.$$

It is clear from Lemma 2 that Π is a subgroup of $\Gamma(G)$, and the constituent of Π on X acts transitively and Ψ is a normal subgroup of Π. Thus there is an injective homomorphism from the quotient group Π / Ψ to $\Gamma(G[X])$ where by each coset of Ψ is associated with the restriction to X of any representative. This proves that $G[X]$ is vertex-transitive.

Let the regularity of $G[X]$ be t, then $2 \leq t \leq 2k - 1$ and

$$g(2k - 2) > \lambda'(G) = d(X) = (2k - t) |X|$$

Since $G[X]$ is t-regular and $t \geq 2$, $G[X]$ certainly contains a cycle of length at least g. It follows from (1) and (5) that

$$0 < g(2k - 2) - (2k - t)f(t, g).$$

The right side of (6) is an increasing function with respect to t and is a descending function with respect to g. It is not difficult to show that there exists no $t \in [2, 2k - 1]$ such that (6) holds if $g \geq 5$. This proves Theorem 3.

References

Dept. of Math., Univ. of Science and Technology of China, Hefei 230026
Email: XU JM@U STC. EDU. CN