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Abslrlld The double loop network G ( N ; r, s) has N vertices and 2 N directed edges. A mural question is how to 
choose r and s such that G( N ; r, s) has diameter as short as possible for a given N. In 1993, Li, Xu and Zhang pro- 
posed a method of constructing double loop networks with the minimum diameter for the case of r = 1. The method is de- 
veloped to construct such networks that none of their minimum diameters can be reached at �9 = 1. As a })y-product, a 
flaw in an assertation by Esqu~ et a/. is pointed out. 
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It is well known that the topological structure of a computer interconnection network or a commu- 

nication system can be modeled by a digraph G in which the vertex set represents the set of processors 

or switch elements and the directed edge set represents the set of unilateral communication links con- 

necting one processor with another. An important parameter to measure the efficiency of a network is 

transmission delay of information, which can be measured by the diameter of a corresponding digraph. 

Double loop networks have been widely used in the topological structures of computer interconnection 

networks and communication systems because of their symmetry, simplicity and extensionality. The 

graphical model of a double loop network is a digraph G ( N ; r ,  s ) with N vertices t 0 , 1 , 2 , ' " ,  N - 

1} and 2 N  directed edges {i--~i + r ( m o d  N) ,  i--~i + s ( m o d  N ) :  i = 0 , 1 , 2 , " ' , N -  1} ,  where 

r and s are two given integers with 1 ~< r ~ s < N .  From the definition, it is clear that a double loop 

network G ( N ;  r ,  s ) can only be determined by N ,  r and s ,  and so can its diameter. A natural ques- 

tion is as follows. For a given positive integer N ,  how can we choose r and s such that G( N ; r ,  s ) 

has diameter as short as possible? 

It is well known that G ( N ; r ,  s ) has a finite diameter if and only if G ( N ; r ,  s ) is strongly con- 

nected if and only if N ,  r ,  s satisfy the following condition: 

g . c . d . ( N , r , s )  = 1. (1)  

We use d ( N ; r ,  s ) to denote the diameter of G ( N ;  r ,  s ) if G ( N ;  r ,  s ) has a finite diameter. Let 

d~(N) - - -  mi n Id (N ;1 , s ) :  1 < s < N},  

d ( N ) =  m i n t d ( N ; r , s ) :  1 <~ r ~ s < N}. 
Obviously, d1(N)>~ d ( N ) .  If  J I (N)  > d ( N ) ,  then d ( N )  cannot be reached at r = 1. An N is 

s a i d t o b e s i n g u l a r i f d l ( N ) >  d ( N ) .  G ( N ; I , s )  is said to be good ff d ( N ; 1 , s ) =  dx (N) .  
G ( N ;  r ,  s ) is said to be optimal if d ( N ; r ,  s ) = d ( N ) .  For a positive real number m ,  we use 
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r m-~ to denote the least integer greater than or equal to m.  

In ref. [ 1 ] ,  Wang and Coppersmith proved that 

dx ( N )  - 2,  (2)  

and proposed a combinatorial optimization problem as follows. For any given N ~> 4,  determine the 

value of d 1 ( N )  and construct a good G( N ; 1 ,  s ) .  This problem did not bring to reseachers' enough 

attention until 1987 due to the difficulties in itself and the limitations of its applications. With the 

wide applications of computers and the advent of VLSI circuits and fiber optics technology, great at- 

tention has been paid to it and 16 infinite families of good double loop networks were successively 

found [2-a] . However, these infinite families still cannot include every N ~< 50. A breakthrough oc- 

curred in 1993. Li et al. [7. s] presented a systematic method of finding infinite families of good double 

loop networks. As illustrations, they exhibited 102 such infinite families constructed by their method, 

which contain 16 known infinite families and all positive integers within 300. 

In ref. [ 6 ] ,  Fiol et al. showed that the lower bound in (2)  still holds for general double loop 

networks G ( N ; r ,  s ) ,  i . e .  

d ( N )  ~> F~/'3-N'~ - 2. (3)  

Also, they found singular N '  s exist indeed with the aid of a computer, of which the minimum is 450. 

In fact, da (450) = 36 and so G(450;  1 ,59)  is good. However, d ( 4 5 0 ; 2 , 1 8 5 )  = [- 3 ~ - 1 -  2 = 

35 and so G(450 ;2 ,185 )  is optimal according to ( 3 ) .  

For N ~ 4 ,  let lb ( N )  = [-~/'3-N-] - 2. G ( N ; r, s ) is said to be tight optimal if d ( N ;  r ,  s ) = 

lb ( N ) .  It is clear that if G ( N ; r ,  s ) is tight optimal, then it must be optimal. The converse is false 

in general. A tight optimal G ( N ;  r ,  s ) is said to be singular if N is singular. For instance, G(450; 

2 ,185)  is singularly tight optimal. 

At the end of ref. [ 3 ] ,  Esqu6 et al. "claimed to find an infinite family of singularly tight optimal 

double loop networks { G ( N ( e ) ; r ( e ) ,  s ( e ) ) : e E Z I,  where N ( e ) = 2 700e2 + 2 220 e + 450, 

r (e )  = 30e + 2, s ( e )  = 420e + 185, Z is the infinite set of all nonnegative integers. Let Z' = 

{157k § 136: k E  Z} ,  then Z ' C  Z and { G ( N ( e ) ; r ( e ) , s ( e ) ) :  e E  Z'I is an infinite subfami- 

ly of { G ( N ( e ) ; r ( e ) ,  s ( e ) ) : e E Z }. However, it is not difficult to show that 

g . c . d . ( N ( e ) , r ( e ) , s ( e ) )  >~ 157, V e  E Z ' .  

According to the condition in ( 1 ) ,  none of the networks in { G ( N ( e ) ; r ( e ) ,  s ( e ) ) : e E Z' } is 

strongly connected. This fact means that Esqu6 et al. ' s  assertation is false. 

In the present paper, we develop Li et al. ' s method to construct an infinite family of tight opti- 

mal double loop networks { G ( N ( t ) ; r ( t ) ,  s ( t ) ) : t E U C_ Z }, which contains a singularly inf'mite 

subfamily { G ( N ( t ( e ) ) ; r ( t ( e )  ) ,  s ( t ( e ) ) ) : e E E C_ Z } such that they take a given singularly 

tight optimal G( No ; r0, So) as their initial element. This kind of property of double loop networks has 

not been revealed by the previous approaches. As an illustration, we further discuss and correct the 

above-mentioned assertation by Esqu6 et al. 

1 Definitions and lemmas 

To obtain the diameter of G ( N ;  r ,  s ) we need only consider the distance from the vertex 0 to 

other vertices since G( N;  r ,  s ) is vertex-transitive (see ref. [ 10] ) .  For research purpose, let the 

unit on X axis be r (or s ) and the unit on Y axis be s (or r )  in Cartesian rectangular coordinates 
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system. We put al l  lattice-point ( x  , y ) ' s  in the first quadrant in order as follows. ( 0 , 0 ) ,  ( 1 , 0 ) ,  

( 0 , 1 ) , ( 2 , 0 ) , ( 1 , 1 ) , ( 0 , 2 ) , ' " , ( j , 0 ) , ( j -  1 , 1 ) , ' " , ( j -  i , i ) , ' " , ( 1 , j -  1 ) , ( 0 , j ) , ' " .  We 

then successively arrange a number k E { 0 , 1 , 2 , ' " ,  N - 1 ~ in the unit square of the upper right- 

hand corner of the lattice-point ( x ,  y )  such that k •- xr + y s ( m o d N ) .  If k appeared in some square 

what we have considered, then let this square empty and consider the next square. Such a process of 

arrangement does not end until all 0 , 1 , 2  , " " ,  N - 1 appear in the squares. 

That shown in fig. 1 is the planar pattern of G(16 ;3 ,5 )  constructed in the above way, where N 

= 16, r = 3, s = 5. It was already proved in refs. [ 1,6 ] that if N ,  r ,  s satisfy the condition in ( 1 ) ,  

then the planar pattern consisting of N unit squares determined by G ( N;  r ,  s ) forms an L-shape 

(maybe a rectangle or a square, for instance, G(15 ;1 ,3 )  and G ( 1 6 ; 1 , 4 ) )  region as shown in fig. 

2. We use L ( N ; r , s )  to denote such an L-shape region determined by G ( N ; r , s ) .  It is clear that 

if the number k is located in the unit square of the upper right-hand corner of the lattice-point ( x ,  

y ) ,  then the distance from the vertex 0 to the vertex k is equal to x + y provided G ( N ; r ,  s ) is 

strongly connected. 
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As shown in fig. 2, an L-shape region with area N is said to be an L-tile, denoted by L ( N;  1, 

h , x , y ) , if it is determined by integers l , h , x , y , where l , h ~ 2 , O ~ x < 1, l <~ y < h ,  y <  1, 

x <~ h .  Let 

D ( L ( N ; l , h , x , y ) )  = max{h + l' - 2 , l  + h' - 2 }  

and say it to be the diameter of L ( N ; 1, h ,  x ,  y ) .  Use D ( N )  to denote the minimum value of the 

diameters of all L-tiles with area N.  Use D ( N;  r ,  s ) to denote the diameter of the L-tile 

determined by G ( N ;  r ,  s ) .  Let L = L ( N ; I , h , x , y )  be an L-tile. L is said to be tight if 

D ( L )  = l b ( N ) ,  and be ( r ,  s)-implementable if there exists a G ( N ;  r , s )  such that L ( N ;  r , s )  = 

L ( N ; l , h , x , y ) .  

According to the above notation and definitions, it is clear that the following facts hold. For any 

G( N ; r , s ) ,  d (  N ; r , s )  = D (  N ; r , s ) ,  and d (  N ) ~  D (  N ) .  If G(  N ; r , s )  is tight optimal, 

then the corresponding L-tile must be tight. 

L e m m A l  [s'7'9]. Let L =  L ( N ; l , h , x , y )  b e a n L - t i l e .  Then 

(a) L is ( 1 ,  s ) -implementable i f  and only i f  g . c . d , ( y , h - y)  = 1; 

( b ) L is ( r ,  s ) -implementable i f  and only i f  g . c . d . ( l ,  h ,  x ,  y )  = 1, where r ( or s ) m ha + 

y/9(modN), s ( or r ) ~ xa + l ~ (modN) ,  and N , r , s satisfy the condition in ( 1 ) ,  a and ~ are 

some integers that satisfy both lr - ys = aN  and - xr + hs = ~N.  

L e m m a  2 [73 . For a positive integer T ,  the interval o f  integer [ 4 , 3 T  2 + 6 T  + 3] can be parti- 
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tioned into the union o f  3 T intervals o f  integers : 
T 3 

U U Ii(t),  

w h e r e l l ( t ) = [ 3 t 2 + l , 3 t 2 + 2 t ] ,  1 2 ( t ) = [ 3 t 2 + 2 t + l , 3 t 2 + 4 t + l ] ,  1 3 ( t ) = [ 3 t 2 + 4 t + 2 ,  

3t 2 + 6t + 3] .  Furthermore, N E l i ( t )  i f  and only i f  lb(  N )  = 3 t  - 2  + i for  every i = 1 ,2 ,3 .  

By the same way as one used in the proofs of Lemma 1 and Lemma 5 (a )  in ref. [ 7 ] ,  we can 

prove the following two Lemmas. 

L e m m a 3 .  Let L = L ( N ; l , h , x , y ) be an L-tile . I f  l y - x l ~ l ,  then 

D ( L ) >>. - - s  

L ~ n n m 4 .  L e t L = L ( N ; 1 , h , x , y )  b e a n L - t i l e ,  w h e r e N = 3 t 2 + A t + B E l i ( t ) ,  l = 2 t  

+ a ,  h = 2 t +  b. I f z = - y - x > ~ O ,  t h e n L i s t i g h t i f a n d o n l y i f  

( a  + b - i ) ( a  + b - i + z )  - ab + ( A  + z -  2 i ) t  + B = 0. (4) 

2 M e t h o d  and i l lustrat ions 

Our method presented here aims at constructing an infinite family of tight optimal double loop 

networks that contains a singular infinite subfamily. There are two cases to consider. In the first case, 

some singularly tight optimal double loop network G (No; r0, So) is known (it can be found by a com- 

puter, for instance, G (450 ;2 ,185 ) ) .  Let Z be the infinite set of all nonnegative integers. We at- 

tempt to construct an infinite family of tight optimal double loop networks 

{ G ( N ( t ) ; r ( t ) ,  s ( t ) ) : t E U C Z t with initial element G ( No ; r0, s0) such that it contains a sin- 

gularlyinfinitesubfamily { G ( N ( t ( e ) ) ; r ( t ( e ) ) , s ( t ( e ) ) ) : e E E C Z } , and t ( O ) = t o , 

N ( t o )  = No,  r ( t o )  = ro, s ( t o )  = so. In the second case, we construct such infinite families under 

the condition that an initial element is unknown. 

We first sketch out our strategy to deal with the former case. Let G( No; r0, So) be a singularly 

tight optimal double loop network, and take it as an initial element. 

Step 1. Appropriately choose A, B and to such that for any t ~> to, N ( t ) = 3 t 2 + At + B E 

l i ( t ) ,  1 < ~ i ~ 3 ,  and N ( t o )  = No.  

Step 2. Find out all tight L-tiles L ( t )  = L ( N ( t ) ; l ( t ) , h ( t ) , x ( t ) , y ( t ) )  with area N ( t )  

= 3 t 2 + At + B by making good use of Lemma 3 and Lemma 4, and then decide whether they are 

( r ( t ) , s ( t ) ) d m p l e m e n t a b l e  or not by making good use of Lemtna 1 ( b ) .  If there exists some 

( r ( t )  , s (  t ) )-implementable L(  t ) ,  then appropriately choose a and /~ in order to determine r ( t )  

and s ( t )  such that r ( t o )  = ro and s ( t  o) = So. Whereby an infinite subset U of Z is determined, 

and an infinite family I G ( N ( t ) ; r ( t ) ,  s ( t ) ) : t E U } of tight optimal double loop networks with 

the initial element G( No; ro , so )  is obtained. Otherwise, go to step 1 and rechoose A , B  and to. 

Step 3. Find out the sufficient conditions that t must satisfy such that all L-tile L ( t )  ' s  found in 

step 2 are ( r ( t ) ,  s ( t))-implementable but not (1 ,  s ( t))-implementable by making good use of 

Lernma l ( a ) .  Otherwise, go to step 1 and rechoose A, B and t o. 

Step 4. Appropriately choose a function t = t ( e )  with t (0 )  = to such that it satisfies the suffi- 

cient conditions found out in step 3. Determine an infinite subset E of Z such that t ( e ) E U for all 

e E E .  Whereby, a singularly infinite subfamily { G ( N ( t ( e ) ) ; r ( t ( e ) ) ,  s ( t ( e ) ) ) : e E E } of 
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t G( N ( t )  ; r ( t ) ,  s ( t ) )  : t E U t is constructed. Otherwise, go to step 1 and rechoose A,  B and 

t O �9 

Next, we cite a concrete illustration of this method. For instance, take the singularly tight opti- 

mal double loop network G (450 ;2 ,185 )  as an initial element of the infinite family which we want to 

construct. 

Step 1. Take A = 2 ,  B =  - 6  and to=  12. Then N ( t )  = 3 t 2 + 2 t  - 6 ,  N ( 1 2 )  =450 .  Also 

I b ( N ( t ) )  = 3t  - 1 since N ( t )  = 3t  2 + 2 t  - 6 E  l i ( t )  provided t~> 12 = to. 

3tep 2. Let L ( t ) = L ( N ( t ) ; l ( t ) , h ( t ) , x ( t ) , y ( t ) ) be a tight L-tile with area N ( t ) = 

3 t 2 + 2 t - 6 .  Then D ( L ( t ) )  = l b ( N ( t ) )  = 3 t  - 1. Let z = Ix - y l .  If z ~ > l ,  then when t~>7, 

we have 

3 N ( t ) - ~ - - - 8  + 6 t - 1 8 - - ~ - =  3 t +  + 3 t - 1 9 >  3 t +  

Thus by Lemn~ 3 when t ~ 7,  we have 

D ( L ( t ) ) > ~  3 N ( t )  - --~- + - 2 ~ 3 t - 2 + 2 = 3 t .  

This contradicts the fact that D ( L ( t ) ) = 3 t - 1. Therefore, z = 0 .  Considering the equality (4)  for 

A = 2 , B =  - 6 ,  i = 1 ,  z = 0 ,  we have 

b 2 + ( a  - 2 ) b  + a 2 - 2 a  - 5 = 0. (5) 

The Diophantine equation (5)  in the unknowns a and b has the solutions 

( a , b )  = ( - 2 , 1 ) ,  ( - 2 , 3 ) ,  ( 1 , 3 ) ,  ( 1 , - 2 ) ,  ( 3 , - 2 ) ,  ( 3 , 1 ) .  

All tight L-tiles L ( N ( t ) ; l ( t ) ,  h ( t ) ,  x ( t ) ,  y ( t ) ) corresponding to these solutions are L1 ( t ) = 

L ( N ( t ) ; 2 t - 2 , 2 t  + l , t - 2 ,  t - 2 ) ,  L 2 ( t )  = L ( N ( t ) ; 2 t - 2 , 2 t  + 3 , t , t )  and L 3 ( t ) =  

L ( N ( t )  ;2 t  + 1 ,2 t  + 3, t + 3, t + 3) as well as their transposes. It is easy to check whichever of 

these six L-tiles satisfies 

g . c . d . ( l ( t ) , h ( t ) , x ( t ) , y ( t ) ) = l ,  V t E Z ,  t>~7. 

By Lemma l ( b ) ,  each of them is ( r ( t ) ,  s ( t ) ) - implementab le  for any t E  Z provided t ~ 7 .  

Consider the L-tile Ll ( t ) = L ( N ( t ) ; l ( t ) , h ( t ) , x ( t ) , y ( t ) ) , where N ( t ) = 3 t 2 + 2 t - 

6,  l ( t )  = 2 t  -='2, h ( t )  = 2 t  + 1," x ( ' t )  = y ( t )  = t - 2 .  Appropriately choose a and /3 in Lemma 

l ( b ) .  For instance, let a = 9 ,  t3 = - 4 .  Then we have 

r ( t ) = t - l O ,  s ( t ) = 1 4 t + l T ,  t E Z , t ~ 1 2 ,  

and r (12 )  = 2 ,  s (12)  = 185. 

Next, we determine the range of the variable t by making good use of the condition in ( 1 ) .  Sup- 

pose that there exists some t ,  t ~ 12 such that 

g .  c.  d.  (3 t  2 + 2t  - 6 , t  - 10 ,14t  + 17) = r a 3 2 .  

Then there exist two nonzero integers k and g such that t - 10 = km and 14t + 17 = g m .  As a re- 

suit, we have ( g  - 1 4 k ) m  = 157. Since 157 is a prime number and m ~ 2 ,  we have m = 157, t = 

157k + 10 for any k E  Z ,  k > ~ l .  Let 

U= { t : t E  Z , t ~ 1 2 1  \ {157k + 1 6 7 : k E  Z t .  

Then U is an infinite subset of Z ,  and 

g . c . d . ( N ( t ) , r ( t ) , s ( t ) ) = l ,  V t E U .  

So G ( N ( t ) ; r ( t ) ,  s ( t ) ) is tight optimal and is of diameter lb ( N ( t ) ) = 3 t - 1 for any t E U, 
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where N ( t )  = 3 t 2 + 2 t  - 6 ,  r ( t )  = t - 10 and s ( t )  = 14t + 17. 

Step 3. Making good use of Lemma 1 ( a ) ,  we can easily vertify that if t simultaneously satisfies 

the following three conditions: 

t =__ 0( rood2) ,  t ~- 0 ( m o d 3 ) ,  t -= 2 ( rood5) ,  (6)  

then for any t E Z and t ~ 12, none of these six L-tiles with area N ( t ) = 3 t 2 + 2 t - 6 is ( 1, s ( t ) )- 

implementable; namely, the conditions in ( 6 )  are the sufficient conditions that t must satisfy for 

which any L-file with area N ( t )  = 3t  2 + 2t  - 6 is not ( 1, s ( t ) )-implementable. 

Step 4.  To determine a function t = t ( e )  that satisfies the conditions in ( 6 ) ,  let us take t = 

2 g ,  g = 3 f ,  f =  5 e .  Then t = 30e + 12, t ( 0 )  = 12 = to and t satisfies the three conditions in ( 6 ) .  

To determine the range of the variable e such that t ( e ) E U,  we first determine the range of such an 

e that 30e + 12--= 10(mod157) .  For this purpose, we suppose that there exist some e E Z and some 

m E  Z such that 30e + 12 = 157m + 10. As a result, we have e = 5m + ( 7 m  - 2 ) / 3 0 ,  Since e E  

Z there exists some k E  Z such that m = 30k + 26. Thus, e = 157k + 136, k E  Z .  Let 

E = Z  \ { 1 5 7 k + 1 3 6 : k E Z } .  

Noting that the minimum value of t that simultaneously satisfies the three conditions in (6)  is 12, we 

c a n  t ake  

t = t ( e ) = 3 O e + 1 2 ,  V e E E .  

Then t satisfies the three conditions in ( 6 ) ,  t ( 0 )  = 12=  t o and t ( e ) E  U for any e E  E .  In this 

c a s e ,  we h a v e  

N ( t ( e ) )  = 2 7 0 0 e  2 + 2 2 2 0 e  + 4 5 0 ,  V e  E E ;  

r ( t ( e ) )  = 30e + 2 ,  s ( t ( e ) )  = 420e + 185, V e  E E ;  

l b ( N ( t ( e ) ) )  = 3 t ( e ) -  1 = 90e + 3 5 ,  V e  E E .  

By the choice of t ( e ) ,  we have d l ( N ( t ( e ) ) )  > l b ( N ( t ( e ) ) )  = 90e + 35 for ~iny'e E E .  Thus 

N ( t ( e ) )  is singular and { G ( N ( t ( e ) ) ; r ( t ( e ) ) , s ( t ( e ) ) ) :  e E  Et is a singularly infinite sub-, 

family of { G ( N ( t ) ; r ( t ) , s ( t ) ) :  t E  Ut with the initial element G ( 4 5 0 ; 2 , 1 8 5 ) ,  

Summing up the above statements, we prove the following theorem. 

T h e o r e m l .  Let Z be the infinite set of aU nonnegative integers , U = ~ t : t E Z , t ~ 1 2  } \ 

{ 1 5 7 k + 1 6 7 :  k E  Z t ,  E= Z \ { 1 5 7 k +  136: k E  Z} .  Then { G(3t2 + 2t - 6 ;  t . -  lO, 1 4 t +  

17) : t E Ut is an infinite family of tight optimal double loop networks with diameter 3t - 1 ; whereas 

{ G(2  700e 2 + 2 220e + 450; 30e + 2 , 4 2 0 e  + 185) : e E E} /s its singularly infinite subfamily with 

diameter 90e + 35, their initial elements are G(450;  2 ,185)  with diameter 35. 

Remark. The infinite family of singularly tight optimal double loop networks in Theorem 1 cor- 

rects a flaw in the assertation by Esqu6 et al. mentioned at the beginning of this paper. 

Next, we deal with the second case by the same strategy as one used in the first case except that 

an initial element G ( N o ;  ro,so) is undetermined. We simply illustrate our strategy as follows. 

Consider N ( t )  = 3 t 2 + 4 t - 5.  Then N ( t )  E 12 ( t ) and so lb ( t )  = 3 t if t ~> 3.  For t ~ 7 ,- all 

tight L-tiles with area N ( t ) = 3 t  2 + 4 t - 5  are L l ( t )  = L ( N ( t ) ; 2 t + l , 2 t - l , t - 2 ,  t - 2 ) ,  

L 2 ( t ) = L ( N ( t ) ; 2 t + 4 , 2 t + l , t + 3 , t + 3 )  and L 3 ( t ) = L ( N ( t ) ; 2 t + 4 , 2 t . - 1 , t + l , t + l )  

as well as their transposes. 

Consider the L-tile L 2 ( t ) .  It is easy to check that L 2 ( t )  is ( r ( t ) ,  s (  t ) )- implementable for 

a n y t E  Z and t ~ 7 .  Let a = - 1, f l = 2  in Lemma l ( b ) .  Then we have r ( t )  = 5 and 
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s ( t ) = 3 t + 5. It is easy to check that N ( t ) ,  r ( t ) ,  s ( t )  satisfy the condition in ( 1 ) if t ~ 5 k + 

5, k E Z .  
By Lemma 1 ( a ) ,  if t simultaneously satisfies the following three conditions: 

t -- l ( m o d 2 ) ,  

t -_- 2 (mod 3 ) ,  (7)  

t _--- 2 ( rood5) ,  

then none of these six L-tiles is ('1, s ( t ) ) - implementable .  Noting that the minimum value of t that 

satisfies the three conditions in (7)  is 17, we can take 

V = I t :  t E Z , t  >~ 17t \ t5t +20: t E Z } ,  

t = t ( e )  = 30e + 17, V e  E Z .  

Then t simultaneously satisfies the three conditions in ( 7 )  and t ( e ) E V for any e E Z .  Also 

t ( 0 )  = 17 = to, N(17)  = 930 and 

N ( t ( e ) ) = 2 7 0 0 e 2 + 3  180e + 930, V e E Z ;  

r ( t ( e ) ) = 5 ,  s ( t ( e ) ) = 9 0 e + 5 6 ,  V e E Z ;  

l b ( N ( t ( e ) ) ) = 3 t ( e ) = 9 0 e + 5 1 ,  V e E Z .  
By the choice o f t ( e ) ,  we have d l ( N ( t ( e ) ) ) >  l b ( N ( t ( e ) ) ) = 9 0 e + 5 1  for any e E Z .  Thus 

N ( t ( e ) )  is singular and { G ( N ( t ( e ) ) ; r ( t ( e ) ) , s ( t ( e ) ) ) :  e E  Zt is a singularly infinite sub- 

family of { G ( N ( t ) ; r ( t ) , s ( t ) ) :  t E  V}. For e = 0 ,  G ( 9 3 0 ; 5 , 5 6 )  is their initial element with 

diameter 51. We state this result as the following theorem. 

Theorem 2. Let Z be the infinite set of all nonnegative integers, V = t t : t E Z ,  t ~ 17 t \ 

{ 5 t + 20: t E Z t .  Then { G (3 t 2 + 4 t - 5 ; 5, 3 t + 5) : t E V t is an infinite family of tight optimal 

double loop networks with diameter 3t ; whereas I G(2  700e 2 + 3 180e + 930; 5 ,  90e + 56) : e E 

Z} is its singularly infinite subfamily with diameter 90e + 51, their initial elements are G(930 ;5 ,56 )  

with diameter 51. 
If we consider N ( t )  = 3 t z + 4 t  - l l E I 2 ( t ) ,  t ~ 6 .  Then when t ~ 1 3 ,  all tight L-tiles with 

a r e a N ( t ) = 3 t 2 + 4 t - l l  are L l ( t ) =  L ( N ( t ) ; 2 t - 2 , 2 t  + l , t - 3 , t - 3 ) ,  L 2 ( t ) =  L ( N ( t ) ;  

2 t + l , 2 t + 5 , t + 4 ,  t + 4 )  and L 3 ( t ) = L ( N ( t ) ; 2 t - 2 , 2 t + 5 , t + l , t + l )  aswell  as their 

transposes. The sufficient conditions that none of these six L-tiles is ( 1, s ( t ) )-implementable are 

t = 2( rood3) ,  

t --= 3( rood4) ,  

t _= 3(rood7) .  

Consider the L-tile L z ( t ) .  It is ( 3 , 3 t  -2)- implementable .  Then when t = t ( e )  = 84e + 59, we 

can obtain the following result. The proof in detail is left to readers. 

T h e o r e m 3 .  Let Z be the infinite set of all nonnegative integers . Then { G ( 3 t2 + 4 t - 11 ;  3, 

3 t - 2) : t E Z ,  t ~> 59t /s an infinite family of tight optimal double loop networks with diameter 3 t; 

whereas t G(21 168e 2 + 30 072e + 10 688; 3 , 2 5 2 e  + 57) : e E Z I is its singularly infinite subfam- 

ily with diameter 252e + 59, their initial elements are G(10 6 8 8 ;3 ,5 7 )  with diameter 59. 

References 

1 Wong, G. K . ,  Coppersmith, D . ,  A combinatorial problem related to multimedule memory organization, y.  Assoc. Coraput. 
Math. , 1974, 21 : 392. 



No. 5 DESIGNING OF OPTIMAL DOUBLE LOOP NETWORKS 469 

2 Erdtls, P . ,  Hsu, D. F . ,  Distributed loop networks with minimum transmission delay, Theoretical Computer Sci. , 1992, 100 : 

223. 
3 Esqu~, P . ,  Aguil6, F . ,  Fiol, M. A . ,  Double commutative-step digraphs with minimum diameters, Discrete Math. , 1993, 

1 1 4  : 147. 

4 Hwang, F. K . ,  A survey of double loop networks, in Reliability of Computer and Communication Networks (eds. Roberts, F . ,  

Hwang, F. K . ,  Monma, C. ) ,  DIMACS Series in Discrete Mathematics and Theoretical Computer Science 5, American Methe- 
matical Society, Providence, RI, 1991, 143--152. 

5 Hwang, F. K . ,  Xu, Y. H . ,  Double loop networks with minimum delay, Discrete Math. , 1987, 66: 109. 

6 Fiol, M. A . ,  Yebra, J. L . ,  Alegre, I. et a l . ,  A discrete optflnization problem in local networks and data alignment, IEEE 

Trans. Comput. , 1987, 36: 702. 

7 Li, Q. , Xu, J. M. , Zhang, Z. L . ,  The infinite families of optimal double loop networks (in Chinese), Science in China, 

Series A, 1993, 23(9):  979. 

8 Li, Q. , Xu, J. M. ,  Zhang, Z. L. , The infinite families of optimal double loop networks, Discrete Applied Math. , 1993, 46 

(2) : 179. 

9 Shen, J . ,  Li, Q . ,  Two theorems on double loop networks, J.  China Univ. Sci. Tech. , 1995, 25(2) : 127. 

10 Xu Junming, Graph Theory with Applications (in Chinese), Hefei : University of Science and Technology of China Press, 1998, 
340--342. 


