Apr. 1999

A Very Short Proof of Vizing 's Theorem

XU Junming

(Department of Mathematics, USTC)

Abstract The classical Vizing 's edge-colouring theorem states that for a loopless multigraph G of multiplicity μ and of maximum degree μ + μ colours suffice to colour the edges of G such that adjacent edges have got different colours. A very short proof of the theorem is presented.

Key words multigraphs, edge-colourings, vizing's theorem

AMS Classification (1991) 05C15

For all the terminologies and notations used and not defined here we follow [1]. Let G = (V(G), E(G)), E(G) be a loopless multigraph of the multiplicity $\mu(G)$, and of the maximum degree G(G) and the edge chromatic number G(G). The classical Vizing 's theorem can be stated as follows.

Vizing 's theorem^[2] If G is loopless, then $(G) \leq (G) + \mu(G)$.

The lower bound is clear. There are (for example [2],[3] and [4]) proofs for the upper bound. However, every one of them contains so many examinations for several cases that it is not included in any graph theory textbook. A very short proof is presented here.

Proof By contradiction. Suppose that there exist a graph G of the edge chromatic number $(G) = k > (G) + \mu(G)$ and an edge $e_0 = E(G)$ such that $G - e_0$ has a proper (k - 1) -edge-colouring $= (E_1, E_2, ..., E_{k-1})$.

For u = V(G), denote by C(u) (resp. C(u)) the set of the colours appearing (resp. not appearing) at u under . Then C(u) Øbecause $d_{G-e_0}(u) \le (G) < k - \mu(G)$. Let $_G(e_0)$ = xy_0 . A subset $F_x(n, 0)$ of the edges incident with x is constructed as follows.

$$F_{x}(n,) = \{e_{0}, e_{1}, ..., e_{n}\},$$

where $n \ge 1$, and

$$_{G}(e_{i}) = xy_{i}, i = 0,1,2,...,n,$$

^{*} 收稿日期:1997-10-13

^{*}国家自然科学基金资助项目(19671057) 徐俊明:男,1949年10月生,副教授.邮编:230026,合肥

$$(e_i)$$
 $C(y_{i-1}), i = 1,2,...,n.$

 $F_x(n, \cdot)$ is said to be a $\neg(e_0, e_n)$ - fan. A $\neg(e_0, e_n)$ - fan $F_x(n, \cdot)$ is said to be a fundamental fan if y_0 , y_1 , y_2 , ..., y_n are distinct. Recolouring a fundamental fan $F_x(n, \cdot)$ implies such a colouring procedure that colours e_{i-1} the colour (e_i) for i=0,1,2,...,n and makes e_n uncoloured. Notice that recolouring $F_x(n, \cdot)$ gives $G - e_n$ a proper (k-1) -edge colouring. Let

$$F_x() = \{e \in E_G(x) : \text{there exists a } \neg (e_0, e) \neg \text{fan}\},$$

where $E_G(x)$ is a set of the edges incident with x in G. Let

$$A(x) = \{ y \mid N_G(x) : \text{there exists } e \mid F_x() \text{ with } G(e) = xy \}.$$

We have the following two claims.

i
$$C(x)$$
 $C(y) = \emptyset$ for $\forall y \quad A(x)$.

Suppose that there are a colour and some vertex y = A(x) such that C(x) = C(y). Then there are an edge $e = F_x(x)$ such that G(x) = xy and a fundamental fan $F_x(x) = xy$, $e_1, \ldots, e_n(x) = e_n(x)$. A proper (x - 1) edge colouring of G(x) can be obtained by recolouring G(x) = xy and by colouring G(x) = xy and G(x) = xy are colouring G(x) = xy.

ii
$$C(y) = \emptyset$$
 for $\forall y, y = A(x), y = y$

Suppose that there are a colour and two vertices y and y in A(x) such that C(y) C(y). Then there are two edges e and e in $F_x(y)$ such that G(e) = xy and G(e) = xy, and there are two fundamental fans $F_x(l,y) = \{e_0, e_1, ..., e_l(e)\}$ and $F_x(t,y) = \{e_0, e_1, ..., e_l(e)\}$. Take y and y such that both l and t are as small as possible. Without loss of generality, suppose that $l \le t$.

Let
$$C(x)$$
. Then , $C(x)$, $C(y)$ $C(y)$ by i . Let $H = G[E(x)]$

E]. Then $d_H(x) = d_H(y) = d_H(y) = 1$. Let H be the connected component containing x in H. Then H is a path and at least one of y and y is not in H. A proper (k-1) - edge colouring of G can be obtained either by interchanging the colours and in the component containing y in H if y is not in H and recolouring $F_x(l, y)$ and colouring e_l the colour or by interchanging the colours and in the component containing y in H if y is in H and recolouring $F_x(t, y)$ and giving e_l the colour . This contradicts the hypothesis that (G) = k.

Take $F_x(\cdot)$ such that $|F_x(\cdot)|$ is as large as possible. Let $A(x) = \{y_0, y_1, y_2, ..., y_n\}$. By ii each colour in $C(y_i)$, i = 0, 1, ..., n, must be used on an edge from x to A(x). Thus there are $|C(y_0)| + |C(y_1)| + ... + |C(y_n)| \ge (n+1)(k-1-) + 1$ edges from x to A(x). At least k - of them must go to the same y_i , which is a contradiction, since k - $> \mu$.

The proof is completed.

References

- Bondy J A, Murty U S R. Graph theory with applications. London and Bingstoke: Macmillan Press, 1976, 257—264
- [2] Vizing V G. The chromatic class of a multigraph. Kibernatica , 1965 ,3:29-39
- [3] Berge C, Fournier J C. A short proof for a gener-
- alization of Vizing 's theorem. J. Graph Theory, 1991.15(3):333-336
- [4] Fournier J C. Methode et th éor ène g én éal de coloration des ar êes d'un multigraphne. J. Math. Pures Appl., 1977,56:437—453

Vizing 定理的简单证明

徐俊明

(中国科学技术大学数学系)

摘要 经典的 Vizing 边染色定理断言:对于任何一个重数为 μ 且最大度为 的重图 G,只须用 μ + 种颜色就可以将 G中的边进行染色,使得相邻边的颜色不同.该文给出它的一个简单证明.

关键词 重图 ,边染色 ,Vizing 定理中图法分类号 0157.5