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Abstract

Let & and h be two integers, 0<h<k. Let G be a connected graph with minimum degree at
least k. The conditional h-edge-connectivity of G, denoted by A(")(G), is defined as the minimum
cardinality |S| of a set S of edges in G such that G—S is disconnected and is of minimum degree
at least h. This type of edge-connectivity is a generalization of the traditional edge-connectivity
and can more accurately measure the fault-tolerance of networks. In this paper, we will first
show that A2 (@)<g(k—2) for a k(>3)-regular graph G provided G is neither K, and K5 nor
K3,3, where g is the length of a shortest cycle of G, then show that A" (Q,)=(k—hk)2" for a

k-dimensional cube Q.
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1. Introduction

In this paper, a graph G = (V, E) always means a simple graph (without loops and
multiple edges) with the vertex-set V and the edge-set E. We follow [1] for graph-theoretical
terminology and notation not defined here.

It is well known that when the underlying topology of a computer interconnection
network is modeled by a graph G, the edge-connectivity A(G) of G is an important measure
for fault-tolerance of the network. However, it has many deficiencies (see [2]). Motivated
by the shortcomings of the edge-connectivity measure, Harary[®! introduced the concept of
conditional edge-connectivity by requiring some property for every connected component
of G — S for a minimum edge-cut S of G. In this paper we will specify a property that
every connected component has minimum degree at least h. In fact, requiring this property
for every connected component is particularly important for applications where parallel
algorithms can run on subnetworks with a given topologyl4.

Let G be a connected graph with minimum degree at least k, h be an integer, 0 < h < k.
A set S of edges in G is called a Ch-cut if G — S is disconnected and is of the minimum
degree at least h. The conditional h-edge-connectivity of G, Cj-edge-connectivity briefly,
denoted by A(") (@), is defined as the minimum cardinality |S| of a C-cut S of G. A Cj-cut
S of G is called a AM)-cut if || = AP)(G) > 0.

Observe that when h = 0, no conditions or restrictions are imposed on the connected
components and we have the traditional edge-connectivity. In addition, in the special
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case of h = 1, this connectivity will be reduced to the restricted edge-connectivity in-
troduced by Esfahanian and Hakimi in [2,5]. This connectivity for k-regular graph will
be the Rj-edge-connectivity proposed by Latifi, Hegde and Naraghi-Pour in [4]. Thus the
Ch-edge-connectivity can be regarded as a generalization of the above three types of edge-
connectivities and can provide a more accurate fault-tolerance measure of networks and has
received much attention recently. Esfahanian and Hakimi in [5] presented a polynomial-time
algorithm for the computation of A(Y). However, one has not known yet if the problem of
computing A" is NP-hard as there is no known polynomial-time algorithm to find AM(@)
for a given graph G with h > 2. For the sake of convenience, we write A’ for A1) and write
X for X(2), The X’ and X" for some special classes of graphs have been determined by several
authors®46-11],

Use K,, to denote a complete graph with n vertices, and K, to denote a complete
bipartite graph with m + n vertices. Observe that some connected graphs do not have AR
for some h > 1. For instance, K3 and K, do not have X, and K4, K5 and K33 do not
have A”. Thus for a given connected graph G with h(> 1), the existence of A(*)(G) is
an important problem. The existence of A’ has been solved by Esfahanian and Hakimil®l,
However, the existence of A(*) has not been solved yet for h > 2 even if G is regular.

In this paper, we will restrict ourselvies to k-regular graphs and first show that A"(G)
certainly exists and \'(G) < g(k — 2) for any connected k-regular graph G as long as G is
neither K,, K5 nor K33, where g = g(G) is the length of a shortest cycle of G, then show
that A(*)(Q) = (k — h)2" for any k-dimensional cube Qj, and any h, 0 < h < k.

Next, we give some notation to be used in this paper later. A vertex x of G is called
singular if its degree is less than h for a given h. Let X and Y be two disjoint nonempty
proper subsets of V(G) and let (X,Y) = {e € E(G): there are + € X and y € Y such that
e=zy € E(@Q)}. fY =X = V(G)\ X, then we write E(X) for (X,X) and d(X) for
|E(X)|. X is called a A(®)-fragment of G if E(X) is a A(®)-cut of G. It is clear that if X is
a A\®_fragment of G, then G[X] and G[X] are connected. A M) _fragment X of G is called
a XM-atom if X has a minimum cardinality.

The rest of this paper is organized as follows. In the next section we will show the
existence of \"(G) for a regular graph G. In Section 3 we will determine the value of A"
for a k-dimensional cube. Some remarks will be given in Section 4.

2. The Existence of \" for Regular Graphs

In this section, we use g to denote the length of a shortest cycle in G.

Theorem 1. Let G be a connected k(> 3)-regular graph but neither K4 and K5 nor
K;3. Let X be the vertex-set of a shortest cycle in G. If E(X) is not a Cz-cut of G, then
M(G) < g(k—2)with3 < g<4.

Proof. Suppose G is a connected k-regular graph but neither K4 and K5 nor K33
and X is the vertex-set of a shortest cycle of G, k > 3 and g = g(G) > 3. Then X # 0 and
E(X) is an edge-cut of G since k > 3 and every vertex of X has only two neighbors in X.
If E(X) is not a Ca-cut of G, then all singular vertices in G — E(X) are certainly contained
in X. Let y be a singular vertex with minimum degree in G — E(X). Noting the minimality
of X, it is clear that |[Ng(y) N X| < 2ifg=4and [Neg(y)NX| <1lifg>5. Ifyisan
isolated vertex in G — E(X), then 3 < k =dg(y) = |Ne(y) N X| £ 3 whereby k =3, g=3
and X = {y}. And so G = K, which contradicts our assumption. It follows that y is an
one-degree vertex in G — E(X) whereby 3 < g < 4. Let Y = X U{y}. Then Y # @ since y
is a one-degree vertex in G[X]. Let ¢(G) = g(k — 2).

Case 1. ¢ = 3. In this case k =3 or 4.
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If £ = 3, then ((G) = 3 and d(Y") = 2. If there is no singular vertex in G — E(Y'), then
E(Y) is a Ca-cut of G and \'(G) < d(Y) = 2 < 3 = ((G). If there is some singular vertex
z in G — E(Y), then z is only such a vertex and is of degree one in G — E(Y). Thus z is
adjacent to y. Let Z =Y U{z}. Then Z # 0, d(Z) = 1, and G — E(Z) contains no singular
vertex. It follows that E(Z) is a Cp-cut of G and so M'(G) < d(Z) =1 < 3 = ¢{(G).

If k = 4, then ((G) = 6 and d(Y) = 4. If there is no singular vertex in G — E(Y'), then
E(Y) is a Cy-cut of G, and X'(G) < d(Y) = 4 < 6 = {(G). Suppose that there is some
singular vertex z in G — E(Y). If z is an isolated vertex in G — E(Y'), then G = K5, which
contradicts our assumption. Thus 2 is a one-degree vertex in G — E(Y). Let Z =Y U {z}.
Then Z # 0, d(Z) = 2 and G — E(Z) contains no singular vertex. It follows that E(Z) is a
Ca-cut of G. So M'(G) <d(Z) =2 < 6 =((G).

Case 2. g > 4. In this case |[Ng(y) N X|=2,k=3,g=4and {(G) = 4.

If there is no sigular vertex in G — E(Y'), then E(Y')} is a Ca-cut of G, and X'(G) <
d(Y) = 3 < 4 = ¢(G). Suppose that there is some singular vertex z in G — E(Y). If z is
a isolated vertex in G — E(Y), then z is certainly adjacent to y and so G = K33, which
contradicts our assumption. It follows that z is an one-degree vertex in G — E(Y). Let
Z =Y U{z}.

If z is a one-degree vertex in G — E(X), then z is not adjacent to y and so Z # 0,
d(Z) =2 and G — E(Z) contains no singular vertex. It follows that E(Z) is a Ca-cut of G,
and X'(G) < d(2) =2 < 4= ((G).

If 2 is a~two-degree vertex in G — E(X), then z is certainly adjacent to y and so Z # @
and d(Z) = 2. If G — E(Z) contains no singular vertex, then E(Z) is a Ca-cut of G, and
so M'(GQ) < d(Z) =2 < 4 =¢(G). If G— E(Z) contains some singular vertex u, then u is

_only such a vertex. u is adjacent to z and has one neighbor in G — E(Z). Let U = Z U {u}.
Then U # 0, d(U) = 1 and G — E(U) contains no singular vertex. It follows that E(U) is a
Cy-cut of G and X'(G) < d(U) =1 < 4 ={(G).

The proof of Theorem 1 is completed.

Theorem 2. Let G be a connected k(> 3)-regular graph. If G is neither K4 and K3
nor K33, then A'(G) exists and A"(G) < g(k - 2).

Proof. ~ 'We want only to show X"(G) < g(k —2). To this purpose, let X be the
vertex-set of a shortest cycle of G. Then X # 0 and E(X) is an edge-cut of G since
k > 3 and each vertex of X has only two neighbors in X. If E (X) is a Cy-cut of G, then
N'(G) £d(X) = g(k—2). If E(X) is not a Ca-cut of G, then \'(G) < g(k — 2) by Theorem
1.

Theorem 3. Let G be a connected k(> 3)-regular graph but neither K and K5 nor
K3 3. Then M'(G) = g(k — 2) if and only if G[X] is a shortest cycle of G for any \"-atom X
of G.

Proof. Clearly \"'(G) exists by Theorem 2 and d(X) = \'(G) and §(G[X]) > 2 for
any A”’-atom X of G since G[X] does not contain any singular vertex in G — E(X). Thus
G[X] certainly contains a cycle C.

Suppose G[X] = C is a shortest cycle of G. Then clearly A"(G) = d(X) = g(k — 2).

Conversely suppose that A”(G) = g(k — 2) and C is a proper subgraph of G[X]. Let
X' be the vertex-set of C. Then E(X’) is not a Ca-cut of G since X is a A”-atom of G.
N(G) < g(k—2) by Theorem 1, which contradicts our assumption. Thus G[X] is a shortest
cycle of G.

3. Ch-Edge-Connectivity of k-Dirﬂensional Cubes

The k-dimensional cube, denoted by Qp, is widely used in the desingn and analysis of
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computer interconnection networks and is defined and characterized in a number of waysl%,
By a common definition, @y is such a graph with the vertex-set

V(Qk) = {(z1z2---xx) s i € {0,1},1 < i <k},

where one vertex x = (x1z2--- %) and another vertex y = (y1y2---yx) are linked if and
only if they differ in exactly one coordinate. By the operation of the Cartesian products
of graphs, an equivalent definition of @ can be expressed as the Cartesian product Qy =
Ky x Ky x++-x Ky of k Ky (see [12]). Using this definition, we can express Q as K2 X Qk—1,
denoted by (see [5])

Ql - KZ, Qk - Qk—l ® Qk-—17 k Z 2.

It is well known that Qy, is a k-regular and k-connected bipartite graph with 2¥ vertices.

Lemma 4. Let X be the vertex-set of any subgraph of @ isomorphic to Q. Then
|X| = 2", E(X) is a Cp-cut of Qx and A" (Qx) < (k — h)2" for any k and h, 0 < h < k.

Proof. Tt is clear that | X| = 2" and Qi — E(X) is disconnected. We want to prove that
E(X) is a Ch-cut of Q. To this purpose we want only to verify that Qx — E(X) contains
no singular vertex. Since Q[X] is isomorphic to Qp, every vertex of X has h neighbors in
X and so X contains no singular vertex of Qx — E(X).

Let X = V(Qx)\ X. Then X # 0 for h < k. Since Qx[X] = Q4, all vertices of X have
the same values of k — h coordinates. We can, without loss of generality, suppose that all the
first k — h coordinates are 0. Let z = (0-+-0zg_pt1---xk) and y = (0-- - OYp_pny1- - - Yx) be
any two vertices of X. If z and y have a common neighbor z in X, then there is certainly 1
in the first k — h coordinates of z. Without loss of generality, let z = (0---0lzg—pt1 - -+ 2).
Then from zz € E(Qy) we have that z; = z;,i =k —h+1,---,k and from yz € E(Qx) we
have that z; = y;,4 =k — h+1,---,k, which imply = y. Therefore any two vertices of X
have no common neighbor in X. Every vertex of X has at least k — 1(> h) neighbors in X
whereby X contains no singular vertex of Qi — E(X). Therefore, E(X) is a Cr-cut of Qx
and A (Qx) < [E(X)| = (k — h)2".

Lemma 5. Let X be a proper subset of V(Qg). If | X| > 2, Q&[X] is connected
and E(X) is a Cp-cut of Q, then there are two subgraphs QF_, and QF | of Qy, of which
each is isomorphic to Qg_1, such that Qx = QL © QF , and X = X NV(QE_,) # 0
and Xp = X NV(QE_,) # 0. Furthermore, E(X) and E(Xg) are Cp—1-cuts of Qf_l and
Qf_l, respectively.

Proof. Since |X| > 2 and Qx[X] is connected, there are two vertices  and y of X
such that zy € E(Qx). By the common definition of Q4, just one coordinate of z and y
is different. Without loss of generality, suppose the first coordinate of x is 0 and the first
coordinate of y is 1. Let QF_, be the subgraph of Q induced by the set of vertices whose
first coordinates are 0 and let Qf_; be the subgraph of Qj induced by the set of vertices
whose first coordinates are 1. Then QF_, and QFf ; are isomorphic to Qx—_; and there is an
edge between the two vertices whose coordinates are of the same value except for the first
in Q. It follows that Qx = QF_, ® QF ;.

Let Xz, = XN V(Qf_l). Since X is a Cp-cut of Qy, every vertex of X, has at least
h neighbors in X and every vertex of X has at least A neighbors in X. Note that every
vertex of @F_, has just one neighbor in QR |, every vertex of X and X has at least h—1

" neighbors in QL_, — E(XL). This implies E(XL) is a Cp—1-cut of Qf_;. We can, similarly,
show that E(Xg) is a Cp_1-cut of QF ;.

Theorem 6. \®(Q}) = (k — h)2" for any k and h, 0 < h < k.
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Proof. By Lemma 4 we want only to show that A("(Qy) > (k — h)2". By induction
on k > 1, clearly the conclusion holds for £ = 1,h = 0 and k = 2,h = 0,1. Suppose
the conclusion is true for all n < k, and A < n. Let X be a A(*)-atom of Q. Then
d(X) = XPM(Qy), E(X) is a A\M-cut of Qi and so E(X) is a Cp-cut of Q. If | X| =1, then
h = 0 and so d(X) = k; the conclusion holds. Suppose |X| > 2. Then Qx[X] is connected.
So by Lemma 5 Q can be expressed as Qr = QF_; ® QF |, E(X.) and E(XRg) are Ch_;-
cuts of Q& _, and QF ,, respectively, where X;, = X NV(QE_,) and Xg = X nV(QF_)).
Let X, =XnN V(QL_,) and Xpr=XnV(QF )). By the induction hypothesis we have

|2, Xo)| 2 (= m2, |(XR XR)| 2 (k= )2 1)

It follows from (1) that A"(Qx) = d(X) > |(X, X1)| + |(Xr, Xr)| = (k — h)2".

Corollary 712, A\(Qy) = k and X (Qy) = 2(k — 1).

Theorem 8. Let X be a A®)-fragment of Q4. Then |X| > 2" and the equality holds
if and only if Qx[X]| X @), for any k and h, 0 < h < k.

Proof. If Qx[X] = Qp, then the theorem holds obviously. We want only to prove that
|X] > 2" and Q4[X] = Qp, if | X| = 2". By induction on k > 1, clearly the conclusion holds
for k=1, h=0and k =2, h =0,1. Suppose the conclusion is true for all n < k, and
h < n. :
Since X is a A(*)_fragment of Qx, Qx[X] is connected. If |X|=1, then h = 0 and the
conclusion holds obviously. Suppose that |X| > 2. Then by Lemma 5 @ can be expressed
as Qr = QF_{©QF |, E(X,) and E(Xg) are Cp_y-cuts of Qf_, and QF _,, respectively,
where X7, = X NV(QE_,) and Xg = X NV(QF_,). Thus (1) still holds by Theorem 6. It
follows from Theorem 6 and (1) that

» |(XL,—XL)| = (k - h)2h_1, I(XR,YR)l = (k —_ h)2"‘1. (2)

This implies by Theorem 6 that X; and Xg are A(*~1-fragments of QF_; and QF |,
respectively. By the induction hypothesis we have

{ |Xz| > 2P, and |Xp|=2""1 <= QL ,[X1] = Qn-1,
|Xg| > 2", and |Xg|=2""1 < QF |[Xg] & Qn-1.

It follows from (3) that | X| = |XL| + | X&| > 2"

If | X| = 2", then by (3) we have |Xz| = |Xg| = 27! and QF_,[X.] & Qp-1 =
QP _,[Xg]. From Theorem 6 and (2) we have (Xr,Xg) # ® and (Xg,X1) # 0. So
Qi[X] = Qr[X1] © Qu[XR] = Qro1 © Qr—1 = Q.

Theorem 9. A subset X is a A(®)-atom of Qy if and only if Qx[X] = Q for any k
and h, 0 < h <k.

Proof. |X| < 2" by Lemma 4 and |X| > 2" by Theorem 8. Thus |X| = 2" if and only
if Qx[X] = Qn by Theorem 8.

3)

4. Some Remarks on the Existence of \®

Let G be a connected graph. For e = zy € E(G), £g(e) = da(x) + dg(y) — 2 is defined
as the degree of e. £(G) = min{ég(e) : e € E(G)} is defined as the minimum edge-degree of
G. Then ¢(G) < A(G) + §(G) — 2, where A(G) and §(G) are the maximum and minimum
degree of G, respectively. In particular, if G is k-regular, then £(G) = 2(k — 1).

If 5(G) > 2, then G certainly contains a cycle. We use ¢ = g(G) to denote the
length of a shortest cycle in G. Let X be the vertex-set of a shortest cycle in G. Define
¢(G) = Y dg(z) ~ 29(G). In particular, if G is k-regular, then ((G) = g(k — 2).

zeX .
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If 5(G) > k and for any h (0 < h < k) there is an h-regular subgraph of G, then we call
an h-regular subgraph H of G normal if the vertex-set of H is of minimum cardinality a(G).
Define 7(G) = 5. dg(z) — hap. In particular, if G is k-regular, then 7(G) = an(k — h).

z€V(H)

Observe the three special cases of h = 0,1,2. Any normal O-regular subgraph of G is a
single vertex and so ao(G) = 1, 7(G) = 6(G). We have that A\(G) < §(G) = 7(G) for any
connected graph G by Theorem 3.1 in [1]. Any normal l-regular subgraph is a single edge
and so a;(G) = 2 and 7(G) = £(G). We have that X' (G) < £(G) = 7(G) for every connected
graph G except for K3 and K;, by Lemma 2.1 in [5]. Any normal 2-regular subgraph of
G is a shortest cycle and so a3(G) = ¢(G) and 7(G) = ((G). By Theorem 2 in the present
paper we have that A'(G) < ((G) = 7(G) for any connected k-regular graph G provided
G is neither K4 and K35 nor K3 3. Motivated by these observations, we can propose the
conjecture as follows. ‘

Conjecture. If G has minimum degree at least k and A(*)(G) exists, then A(®)(G) <
7(G); in particular, A(?)(G) < ap(G)(k — h) if G is k-regular.
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