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Abstract

This paper considers the concept of restricted edge-connectivity, and relates that to the edge-
degree of a connected graph. The author gives some necessary conditions for a graph whose
restricted edge-connectivity is smaller than its minimum edge-degree, then uses these conditions
to show some large classes of graphs, such as all connected edge-transitive graphs except a star,
and all connected vertex-transitive graphs with odd order or without triangles, have equality of
the restricted edge-connectivity and the minimun edge-degree. c© 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

We follow [2] for graph-theoretical terminology and notation not de>ned here. A
graph G=(V; E) always means a simple graph (without loops and multiple edges),
where V =V (G) is the vertex-set and E=E(G) is the edge-set. In the present paper,
we consider the restricted edge-connectivity, which is a new graph-theoretical concept
and introduced by Esfahanian and Hakimi [4].
In this paper, we call a disconnected graph, a triangle, or a star trivial and all

other graphs non-trivial. Let G be a non-trivial graph and S ⊆ E(G). If G − S is
disconnected and contains no isolated vertices, then S is called a restricted edge-cut
of G. The restricted edge-connectivity of G, denoted by �′(G), is de>ned as the min-
imum cardinality over all restricted edge-cuts of G. The restricted edge-connectivity
provides a more accurate measure of fault-tolerance of networks than the classical
edge-connectivity (see [3]). Thus, it has received much attention recently (see, for
example, [3,4,6–9,11,13–15]).
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Let G be a graph. For e= xy∈E(G), let 
G(e)=dG(x) + dG(y) − 2 and 
(G)=
min{
G(e): e∈E(G)}. The parameter 
(G) is called the minimum edge-degree of G.
It has been shown in [4] that for any non-trivial graph G, �′(G) certainly exists and
satis>es the following inequality:

�′(G)6 
(G): (1)

Let G be a non-trivial graph. If �′(G)= 
(G), then G is called optimal; otherwise G
is non-optimal. We are interested in >nding some classes of optimal graphs. Some of
them have been found in [3,6–9,11,14,15]. In this paper, we will give some necessary
conditions for a non-optimal graph. From these we will obtain some large classes
of optimal graphs, such as all non-trivial edge-transitive graphs, and all connected
vertex-transitive graphs with odd order or without triangles. Some classes of optimal
graphs given in [3,7,9,14] can easily be deduced from our results.

2. Notation and preliminary results

Let G=(V; E) be a graph. For two disjoint non-empty subsets X and Y of V , let
(X; Y )= {e= xy∈E: x∈X and y∈Y}. For the sake of convenience, we write x for
the single vertex set {x}. If Y = JX =V \ X , then we write @(X ) for (X; JX ) and d(X )
for |@(X )|. The following inequality is well known (see [10], Problem 6.48):

d(X ∩ Y ) + d(X ∪ Y )6d(X ) + d(Y ): (2)

A restricted edge-cut S of G is called a �′-cut if |S|= �′(G). It is clear for any
�′-cut S that G − S has just two connected components. Let X be a proper subset of
V . If @(X ) is a �′-cut of G, then X is called a fragment of G. It is clear that if X is
a fragment of G, then so is JX . Let

r(G)=min{|X |: X is a fragment of G}:
Obviously, 26 r(G)6 1

2 |V |. A fragment X is called an atom of G if |X |= r(G).

Theorem 1. A non-trivial graph G is optimal if and only if r(G)= 2.

Proof. Let r(G)= 2. Then there exists an atom X = {x; y} such that d(X )= �′(G)=

G(e) with e= xy∈E(G). It follows from (1) and the de>nition of 
(G) that 
(G)6

G(e)= d(X )= �′(G)6 
(G), and hence G is optimal.

Conversely, if G is optimal there exists an edge e= xy of G such that

�′(G)= 
(G)= 
G(e)=dG(x) + dG(y)− 2:

Now, let X = {x; y}. Then r(G)= 2 if G − @(X ) has no isolated vertices. Suppose on
the contrary that G − @(X ) contains an isolated vertex u. Obviously, 16dG(u)6 2.

If dG(u)= 1, then we assume, without loss of generality, that u is adjacent to y.
Thus

dG(x) + dG(y)− 2= 
(G)6dG(y) + dG(u)− 2=dG(y)− 1:
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This implies that dG(x)= 1. It follows that

�′(G)6 |{yz: dG(z)¿ 2}|6dG(y)− 2= (dG(x) + dG(y)− 2)− 1= 
(G)− 1;

a contradiction.
In the case dG(u)= 2, the vertex u is adjacent to x and y. Then,

dG(x) + dG(y)− 2= 
(G)6dG(y) + dG(u)− 2=dG(y):

This yields that dG(x)= 2, and analogously, we obtain dG(y)= 2. Therefore, G is a
triangle. This contradiction completes the proof.

3. Properties of atoms of non-optimal graphs

Lemma 2. Let G be a non-optimal graph; F a fragment of G; U a proper subset of
F; and I the set of all isolated vertices in G−@(U ). If I ⊆ U and |(I; JF)|¿ |(I; F\U )|;
then F \I is a fragment of G.

Proof. If I = ∅, then there is nothing to prove. Suppose I �= ∅ below. Let Y =F\I and
F ′ =F\U . Then Y �= ∅ and F ′ �= ∅, since I ⊆ U and U is a proper subset of F . Let Z
be the set of all isolated vertices in G− @(Y ). If Z = ∅, then Y is a restricted edge-cut
of G. By the assumption |(I; JF)|¿ |(I; F ′)|, we have

�′(G)6d(Y )=d(F)− |(I; JF)|+ |(I; F ′)|6d(F)= �′(G):

This implies that Y is a fragment of G, and so the conclusion holds if Z = ∅.
The rest is to show Z = ∅. Suppose on the contrary that Z �= ∅. Our aim is to deduce

a contradiction.
First, we show that (x; JF) �= ∅ for any x∈ I . At the end, we let I ′ = {x∈ I : (x; JF)= ∅}.

If I ′ �= ∅, then NG(I ′) ⊆ F ′, since (I; U \I)= ∅ by the assumption. Let Z ′ =(Z ∩ F ′)\
NG(I ′), and let W =(Y∪I ′)\Z ′. Then it is easy to see that G−@(W ) has no isolated ver-
tices. Thus, @(W ) is a restricted edge-cut of G. Noticing |(I\I ′; JF)|= |(I; JF)|¿ |(I; F ′)|¿
|(I ′; F ′)|¿ |I ′|¿ 0, we have I \I ′ �= ∅, and

|(I \I ′; JF)|¿ |(I; F ′)|¿ |(I ′; F ′\Z ′)|+ |(I \I ′; F ′\Z ′)|¿ |(I \I ′; F ′\Z ′)|:
Thus we have

�′(G)6 d(W )=d(F)− |(Z ′; JF)| − |(I \I ′; JF)|+ |(I \I ′; F ′\Z ′)|
¡d(F)− |(Z ′; JF)|6d(F)= �′(G):

The contradiction implies I ′ = ∅, i.e., (x; JF) �= ∅ for any x∈ I . Thus we have

|(y; I ′′)|= |NG(y) ∩ I ′′|6 |(NG(y) ∩ I ′′; JF)|; ∀ y∈Z; I ′′ ⊆ I: (3)

Second, we assert that Z =NG(I) ∩ F ′. The fact I ′ = ∅ implies Z ⊆ Y . Since Z is
the set of all isolated vertices in G − @(F \I) and G − @(F) has no isolated vertices,
Z ⊆ NG(I). But NG(I) ∩ U = ∅ since I ⊆ U is the set of the isolated vertices in
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G − @(U ) by the assumption. Thus we have Z ⊆ NG(I) ∩ F ′. On the other hand, if
(NG(I)∩F ′)\Z �= ∅, then Y\Z �= ∅ and G−@(Y\Z) contains no isolated vertices, because
F is a fragment of G. It is clear that (I; Z) �= ∅ since I �= ∅ and ∅ �=Z ⊆ NG(I) ∩ F ′.
Combining these with the assumption |(I; JF)|¿ |(I; F ′)|, we have

�′(G)6 d(Y \Z)=d(F)− |(I; JF)| − |(Z; JF)|+ |(I; F ′\Z)|
¡d(F)− (|(I; JF)| − |(I; F ′)|)6d(F)= �′(G):

The contradiction implies (NG(I) ∩ F ′)\Z = ∅. Thus Z =NG(I) ∩ F ′.
Third, we have that (z; JF) �= ∅ for any z ∈Z . Otherwise z is an isolated vertex in

G − @(U ), which implies z ∈ I , a contradiction. Thus we have

|(x; Z ′′)|= |NG(x) ∩ Z ′′|6 |(NG(x) ∩ Z ′′; JF)|; ∀ x∈ I; Z ′′ ⊆ Z: (4)

Lastly, let y∈Z and let x∈NG(y) ∩ I . A contradiction can be deduced as follows:


(G)6 dG(x) + dG(y)− 2= |(x; JF)|+ |(x; Z \{y})|+ |(y; JF)|+ |(y; I \{x})|
6 |(x; JF)|+ |(NG(x) ∩ (Z \{y}); JF)|+ |(y; JF)|+ |(NG(y) ∩ (I \{x}); JF)|
= (|(x; JF)|+ |(NG(y) ∩ (I \{x}); JF)|)

+ (|(y; JF)|+ |(NG(x) ∩ (Z \{y}); JF)|)
= |(NG(y) ∩ I); JF |+ |(NG(x) ∩ Z; JF)|
6 |(I; JF)|+ |(Z; JF)|6 |(F; JF)|=d(F)= �′(G)¡
(G);

where the >rst equality holds because of the fact Z =NG(I)∩F ′ and (Z; Y\Z)= ∅, and
the second inequality holds from (3) and (4). The proof is complete.

Theorem 3. Let G be a non-optimal graph. Then any two distinct atoms of G are
disjoint.

Proof. Let X and X ′ be two distinct atoms of G. Then d(X )=d(X ′)= �′(G)¡
(G)
and |X |= |X ′|= r(G)¿ 3 by Theorem 1. Let

A=X ∩ X ′; B=X ∩ X ′; C = JX ∩ X ′; and D= JX ∩ X ′:

Then |B|= |C|= r(G)−|A|¿ 1 and |D|¿ |A|. Suppose on the contrary that A �= ∅. We
will derive contradictions by considering two cases, separately.
Case 1: If G − @(A) contains some isolated vertices, then let I be the set of all

isolated vertices in G− @(A). Then obviously, I ⊆ A, (I; B) �= ∅ and (I; C) �= ∅, because
@(X ) and @(X ′) are �′-cuts of G. We can assume, without loss of generality, that
|(I; C)|¿ |(I; B)|. Let F =X , U =A ⊂ F . Then X \ I(=F \ I) is a fragment of G by
Lemma 2. However, X \I is a proper subset of X . This contradicts the assumption that
X is an atom of G.
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Case 2: If G − @(A) contains no isolated vertices, then A is a restricted edge-cut of
G. This implies that |A|¿ 2 and d(A)¿�′(G). By (2) we have

d(D)=d(X ∪ X ′)6d(X ) + d(X ′)− d(X ∩ X ′)¡�′(G): (5)

This implies that G − @(D) certainly contains some isolated vertices, so let I be the
set of all isolated vertices in G− @(D). Obviously, I ⊆ D. If D′ =D\I �= ∅, then @(D′)
is a restricted edge-cut of G since G− @(D′) has no isolated vertices, and so from (5)
we have

�′(G)6d(D′)=d(D)−
∑
u∈I
dG(u)¡d(D)¡�′(G):

This contradiction implies I =D. Without loss of generality, we assume that |(D; B)|¿
|(D;C)|. Let F = JX , I =U =D ⊂ F . Thus, C(= JX \D =F\I) is a fragment of G that
is properly contained in X ′ by Lemma 2. This contradicts the assumption that X ′ is
an atom of G. The proof is complete.

Remark. Any cycle of length greater than three shows that Theorem 3 is not valid if
G is optimal.

Theorem 4. Let G be a non-optimal graph. If G is k-regular; then r(G)¿ k¿ 3.

Proof. By Theorem 1, r(G)¿ 3, and obviously k¿ 3. Let X be an atom of G. Then
r= r(G)= |X | and d(X )= �′(G)¡
(G)= 2k − 2. Considering the sum of degrees of
all vertices in X , we have

kr=
∑
x∈X
dG(x)6 r(r − 1) + d(X )¡r2 − r + 2k − 2= kr − (k − r − 1)(r − 2):

This implies r(G)¿ k since k¿ 3.

Theorem 5. Let G be a connected vertex-transitive graph with degree k (¿ 3); and
let X be an atom of G. If G is non-optimal; then;

(i) G[X ] is a vertex-transitive subgraph of G with degree of k − 1 containing a
triangle;

(ii) G has even order and there is a partition {X1; X2; : : : ; Xm} of V such that G[Xi] ∼=
G[X ] for each i=1; 2; : : : ; m; m¿ 2.

Proof. (i) Since a vertex-transitive graph is regular, we have |X |¿ k¿ 3 by
Theorem 4. Let x and y be two distinct vertices in X . Then there exists "∈#(G), the
automorphism group of G, such that "(x)=y because G is vertex-transitive. Hence
"(X ) is also an atom of G. Let X ′ = "(X ). Then X ∩ X ′ �= ∅ since y∈X ∩ X ′. This
implies X ′ =X by Theorem 3. Let

$= {"∈#(G): "(X )=X }; %= {"∈$: x∈X ⇒ "(x)= x}:
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Clearly $ is a subgroup of #(G), and the constituent of $ on X acts transitively
and % is a normal subgroup of $. Thus there is an injective homomorphism from
the quotient group $=% to #(G[X ]) whereby each coset of % is associated with the
restriction to X of any representative. This shows that G[X ] is vertex-transitive.
Let G[X ] have degree t. Then t6 k − 1; from this and Theorem 4 we have

2(k − 1)¿d(X ) + 1= (k − t)r(G) + 1¿ (k − t)k + 1:

This implies that

t¿
⌈
k2 − 2k + 3

k

⌉
= k − 1:

Namely G[X ] has degree (k − 1). Note that G[X ] certainly contains cycles since
G[X ] is (k − 1)-regular and k¿ 3, and has at least 2k − 2 vertices if it contains
no triangles (see Exercise 1.7.4(a) in [2]). In this case, however, we see that 2k −
26 |X |= �′(G)6 2k − 3, a contradiction. It follows that G[X ] contains a triangle.
(ii) Let y be any element in JX . Since G is vertex-transitive, there exists (∈#(G)

such that ((x)=y for a >xed x in X . ((X ) is an atom of G. Let Xy = ((X ). Then
X ∩ Xy = ∅ by Theorem 3 since y �∈ X , and G[X ] ∼= G[Xy] since there exists an
isomorphism ( between G[X ] and G[Xy]. Thus there are at least two atoms of G. It
follows that for each vertex y in G there is an atom Xy that contains y such that
G[Xy] ∼= G[X ], and either Xy =Xz or Xy ∩ Xz = ∅ for any two distinct vertices y and
z of G. These atoms X1; X2; : : : ; Xm of G form a partition of V (G), and G[Xi] ∼= G[X ]
for each i=1; 2; : : : ; m; m¿ 2. So

|V |=m|X |= |V |k − m|X |(k − 1)=2|E(G)| − 2m|E(G[X ])|:
This implies that G has even order. The proof is complete.

4. Some classes of optimal graphs

Theorem 6 (Xu, [14]). Let G be a connected vertex-transitive graph. If it either con-
tains no triangles or has odd order; then G is optimal.

This is a direct consequence of Theorem 5.
A well-known class of vertex-transitive graphs, very frequently employed in the con-

struction of distributed-memory parallel computing systems, is the k-cube Qk (k¿ 2).
It is k-regular bipartite, and so contains no triangles. Thus from Theorem 6 we have
the following result immediately.

Corollary 7 (Esfahanian, [3]). The k-cube Qk is optimal.

Let Cd be a cycle of length d. The k-dimensional toroidal mesh C(d1; d2; : : : ; dk),
studied by Ishigami [5], can be represented as the cartesian product Cd1×Cd2×· · ·×Cdk .
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It is vertex-transitive, and contains no triangles if di¿ 4 (see, for example, [12]).
Hence, from Theorem 6 we deduce the following result immediately.

Corollary 8. The k-dimensional toroidal mesh C(d1; d2; : : : ; dk) is optimal if di¿ 4
for each i=1; 2; : : : ; k.

Another important class of vertex-transitive graphs used in the design of networks are
the circulant graphs. A circulant graph, denoted by G(n; a1; a2; : : : ; ak), where 0¡a1¡
· · ·¡ak6 n=2, has vertices 0; 1; 2; : : : ; n−1 and edge ij if and only if |j−i| ≡ at (mod n)
for some t, 16 t6 k (see, for example, [1]). If ak �= n=2, it is 2k-regular. Otherwise,
it is (2k − 1)-regular.

Corollary 9 (Li and Li, [7]). Any connected circulant graph G(n; a1; a2; : : : ; ak); n¿ 4;
is optimal if either it contains no triangles or ak �= n=2.

Proof. Let G=G(n; a1; a2; : : : ; ak). By Theorem 6, we need to only prove that G is
optimal if ak �= n=2. Suppose on the contrary that G is non-optimal. Then, by Theorem
5, there is an integer m¿ 2 such that for any atom X of G, n=m|X | and G[X ]
is (2k − 1)-regular. Thus there is a subset {b1; b2; : : : ; bt} of the set {a1; a2; : : : ; ak}
such that g.c.d.(n; b1; b2; : : : ; bt)=m and G[X ] ∼= G(n=m; b1=m; b2=m; : : : ; bt=m), where
b1¡b2¡ · · ·¡bt . Since ak �= n

2 we have bt=m �= n=2m. Thus G[X ] is even regular,
which contradicts the fact that G[X ] is (2k − 1)-regular.

Theorem 10 (Li and Li, [10]). All non-trivial edge-transitive graphs are optimal.

Proof. Let G be a non-trivial edge-transitive graph. Suppose on the contrary that G is
non-optimal. Let X be an atom of G. Then |X |= r(G)¿ 3 by Theorem 1. Let e= xy
be an edge in G[X ] and e′ =yz be an edge in @(X ), z ∈ JX . Since G is edge-transitive,
there is (∈#(G) such that (({x; y})= {y; z}. Hence ((X ) is also an atom of G.
Let X ′ = ((X ). Then X �=X ′ since z ∈X ′ and z �∈ X . But since y∈X ∩ X ′, we have
X =X ′ by Theorem 3. This is a contradiction and so G is optimal. This completes
the proof.
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