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Abstract

This paper considers the concept of restricted edge-connectivity, and relates that to the edge-
degree of a connected graph. The author gives some necessary conditions for a graph whose
restricted edge-connectivity is smaller than its minimum edge-degree, then uses these conditions
to show some large classes of graphs, such as all connected edge-transitive graphs except a star,
and all connected vertex-transitive graphs with odd order or without triangles, have equality of
the restricted edge-connectivity and the minimun edge-degree. (© 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

We follow [2] for graph-theoretical terminology and notation not defined here. A
graph G =(V, E) always means a simple graph (without loops and multiple edges),
where V' =V(G) is the vertex-set and £ =E(G) is the edge-set. In the present paper,
we consider the restricted edge-connectivity, which is a new graph-theoretical concept
and introduced by Esfahanian and Hakimi [4].

In this paper, we call a disconnected graph, a triangle, or a star trivial and all
other graphs non-trivial. Let G be a non-trivial graph and S C E(G). If G — S is
disconnected and contains no isolated vertices, then S is called a restricted edge-cut
of G. The restricted edge-connectivity of G, denoted by //(G), is defined as the min-
imum cardinality over all restricted edge-cuts of G. The restricted edge-connectivity
provides a more accurate measure of fault-tolerance of networks than the classical
edge-connectivity (see [3]). Thus, it has received much attention recently (see, for
example, [3,4,6-9,11,13—15]).
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Let G be a graph. For e=xy € E(G), let {g(e)=dg(x) + dg(y) — 2 and &(G) =
min{g(e): e € E(G)}. The parameter &(G) is called the minimum edge-degree of G.
It has been shown in [4] that for any non-trivial graph G, A'(G) certainly exists and
satisfies the following inequality:

(G) < 4G). (D
Let G be a non-trivial graph. If 2'(G)=&(G), then G is called optimal; otherwise G
is non-optimal. We are interested in finding some classes of optimal graphs. Some of
them have been found in [3,6-9,11,14,15]. In this paper, we will give some necessary
conditions for a non-optimal graph. From these we will obtain some large classes
of optimal graphs, such as all non-trivial edge-transitive graphs, and all connected
vertex-transitive graphs with odd order or without triangles. Some classes of optimal
graphs given in [3,7,9,14] can easily be deduced from our results.

2. Notation and preliminary results

Let G=(V, E) be a graph. For two disjoint non-empty subsets X and Y of V, let
(X,Y)={e=xy€E:x€X and yeY}. For the sake of convenience, we write x for
the single vertex set {x}. If Y =X =V \ X, then we write d(X) for (X,X) and d(X)
for |0(X)|. The following inequality is well known (see [10], Problem 6.48):

dXNY)+dX UY)<dX)+d(Y). 2)

A restricted edge-cut S of G is called a A'-cut if |S|=2'(G). It is clear for any
A'-cut S that G — S has just two connected components. Let X be a proper subset of
V.If (X) is a A/-cut of G, then X is called a fragment of G. It is clear that if X is
a fragment of G, then so is X. Let

r(G)=min{|X|: X is a fragment of G}.
Obviously, 2 < #(G) < 3|V|. A fragment X is called an atom of G if [X|=r(G).

Theorem 1. A non-trivial graph G is optimal if and only if r(G)=2.

Proof. Let #(G)=2. Then there exists an atom X = {x, y} such that d(X)=2'(G)=
Ec(e) with e=xy € E(G). It follows from (1) and the definition of &(G) that £(G) <
tole)= d(X)=2(G) < &G), and hence G is optimal.

Conversely, if G is optimal there exists an edge e =xy of G such that

MG)=4G)=C¢c(e)=do(x) +da(y) — 2.

Now, let X ={x, y}. Then r(G)=2 if G — d(X) has no isolated vertices. Suppose on
the contrary that G — d(X') contains an isolated vertex u. Obviously, 1 < dg(u) < 2.

If dg(u)=1, then we assume, without loss of generality, that u is adjacent to y.
Thus

dg(x) +dg(y) —2=4G) <dg(y) +de(u) —2=ds(y) — 1.
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This implies that dg(x)=1. It follows that
NG) < Hyzido(z) 2 2} <dg(y) —2=(dg(x) +da(y) —2) — 1=¢4(G) — 1,

a contradiction.
In the case dg(u)=2, the vertex u is adjacent to x and y. Then,

do(x) +d6(y) —2=4G) <dg(y) +do(u) —2=dg(y).

This yields that dg(x)=2, and analogously, we obtain dg(y)=2. Therefore, G is a
triangle. This contradiction completes the proof. [J

3. Properties of atoms of non-optimal graphs

Lemma 2. Let G be a non-optimal graph, F a fragment of G, U a proper subset of
F, and I the set of all isolated vertices in G—o(U). If I C U and |(I,F)| = |(I, F\U),
then F\I is a fragment of G.

Proof. If I =0, then there is nothing to prove. Suppose I # () below. Let ¥ = F\I and
F'=F\U. Then Y #0 and F’ #0, since I C U and U is a proper subset of F. Let Z
be the set of all isolated vertices in G — d(Y). If Z =0, then Y is a restricted edge-cut
of G. By the assumption |(Z,F)| > |(I,F")|, we have

J(G) <d(Y)=d(F)—|(LF)|+ |(IF")| <d(F)=1(G).

This implies that ¥ is a fragment of G, and so the conclusion holds if Z =(.

The rest is to show Z = (). Suppose on the contrary that Z # (). Our aim is to deduce
a contradiction.

First, we show that (x, ) # () for any x € 1. At the end, we let I’ = {x € I: (x,F)=(}.
If I’ #0, then Ng(I') C F’, since (I, U\I)={ by the assumption. Let Z'=(Z N F")\
Ng(I'), and let W = (YUI’\Z’. Then it is easy to see that G—J(W) has no isolated ver-
tices. Thus, d(W) is a restricted edge-cut of G. Noticing [(I\N', F)| = |(L,F)| = |(L.F")| =
|(I',F")| = |I'| >0, we have I\I’ #0, and

(NI )| = [(LFD| = | FA\ZD| + [\ FAZD| > [\ FINZ).
Thus we have
N(G) <dW)=d(F) —|(Z',F)| = [U\I",F)| + [\, F'\Z")|
<d(F)—|[(Z',F)| <d(F)=2(G).
The contradiction implies I’ =0, i.e., (x,F)#( for any x € I. Thus we have
()| = INe() NI < [(Na() NI F), ¥V yez I"CL. (3)

Second, we assert that Z=Ng(/) N F’'. The fact I’ =() implies Z C Y. Since Z is
the set of all isolated vertices in G — d(F'\I) and G — d(F) has no isolated vertices,
Z C Ng(I). But Ng(I)NU=0 since I C U is the set of the isolated vertices in
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G — 0(U) by the assumption. Thus we have Z C Ng(I) N F’. On the other hand, if
(Na(INF'\Z #0, then Y\Z # () and G—2(Y\Z) contains no isolated vertices, because
F is a fragment of G. It is clear that (I,Z)#0 since I #0 and 0 #£Z C Ng(I) N F'.
Combining these with the assumption |(7,F)| = |(I,F’)|, we have

2(G) < d(Y\Z)=d(F) = [(1L.F)| = (Z.F)| + (1L F'\Z)]
<d(F) = (LB = |(LF))) < d(F)=2(G).

The contradiction implies (Ng(I) N F')\Z=0. Thus Z=Ng(I[)NF’.
Third, we have that (z,F)#( for any z € Z. Otherwise z is an isolated vertex in
G — 0(U), which implies z € I, a contradiction. Thus we have

|(x,Z")| = |Nc(x)NZ"| < |Ne(x)NZ",F)|, Vxel, Z'CZ (4)
Lastly, let y€Z and let x € Ng(y) N 1. A contradiction can be deduced as follows:
&G) < dg(x) +dg(y) = 2= (6. F)| + [, Z\{y D] + (. F) + [(n 1\ {x})]
< |G )+ [(N6(x) 0V Z N\, B + (0 )]+ [(Ng(2) N U\ {x}), )|

= (| B + [(No(») N (I \{x}), F)]|)
+ (B + [(Ne(x) N (Z\{y}), F)])
= |(Ng(») N 1), F| + |(N6(x) N Z,F)|
<L)+ |(ZF) < |(F.F)|=d(F)=2(G) < &G),

where the first equality holds because of the fact Z=Ng(I)NF’ and (Z,Y\Z) =0, and
the second inequality holds from (3) and (4). The proof is complete. [J

Theorem 3. Let G be a non-optimal graph. Then any two distinct atoms of G are
disjoint.

Proof. Let X and X’ be two distinct atoms of G. Then d(X)=d(X')=1'(G) < &(G)
and |[X|=|X'|=r(G) = 3 by Theorem 1. Let

A=XNX', B=XNX, C=XNX, and D=XNX".

Then |B|=|C|=r(G)—|4| = 1 and |D| = |A|. Suppose on the contrary that 4 # (). We
will derive contradictions by considering two cases, separately.

Case 1: If G — 0(4) contains some isolated vertices, then let I be the set of all
isolated vertices in G — d(4). Then obviously, I C 4, (I,B)7# 0 and (I,C)# 0, because
0(X) and 0(X') are A’'-cuts of G. We can assume, without loss of generality, that
|(I,C)| = |(I,B)|]. Let F=X, U=A4 C F. Then X\I(=F\I) is a fragment of G by
Lemma 2. However, X\I is a proper subset of X. This contradicts the assumption that
X is an atom of G.
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Case 2: If G — 0(A4) contains no isolated vertices, then A is a restricted edge-cut of
G. This implies that |[4] = 2 and d(4) > 2/(G). By (2) we have

d(D)=d(X UX') <d(X)+dX') —d(X NX") < )(G). (5)

This implies that G — d(D) certainly contains some isolated vertices, so let / be the
set of all isolated vertices in G — d(D). Obviously, I C D. If D' =D\I #1), then (D)
is a restricted edge-cut of G since G — d(D’) has no isolated vertices, and so from (5)
we have

H(G) <d(D')=d(D) - da(u) <d(D) < X(G).
uel
This contradiction implies / =D. Without loss of generality, we assume that (D, B)| =
|(D,C)|. Let F=X,[=U=D CF. Thus, C(=X\D =F\I) is a fragment of G that
is properly contained in X’ by Lemma 2. This contradicts the assumption that X’ is
an atom of G. The proof is complete. [

Remark. Any cycle of length greater than three shows that Theorem 3 is not valid if
G is optimal.

Theorem 4. Let G be a non-optimal graph. If G is k-regular, then r(G) = k = 3.

Proof. By Theorem 1, »(G) = 3, and obviously £ > 3. Let X be an atom of G. Then
r=r(G)=|X| and d(X)=7'(G) < &(G)=2k — 2. Considering the sum of degrees of
all vertices in X, we have

kr:ch;(x)<r(r— D+dX)<r? —r+2k—2=kr—(k—r—1)(r—2).
xeX

This implies #»(G) = k since £k > 3. O

Theorem 5. Let G be a connected vertex-transitive graph with degree k (= 3), and
let X be an atom of G. If G is non-optimal, then,

(i) G[X] is a vertex-transitive subgraph of G with degree of k — 1 containing a
triangle;

(i) G has even order and there is a partition {X1, Xa,..., X} of V such that G[X;] =
G[X] for each i=1,2,...,m, m = 2.

Proof. (i) Since a vertex-transitive graph is regular, we have |X|>=k >3 by
Theorem 4. Let x and y be two distinct vertices in X. Then there exists n € I'(G), the
automorphism group of G, such that n(x)=y because G is vertex-transitive. Hence
7(X) is also an atom of G. Let X' =n(X). Then X N X' #0 since y € X N X’. This
implies X’ =X by Theorem 3. Let

N={nel(G): nX)=X}, VY={necll:xeX = n(x)=x}.
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Clearly II is a subgroup of I'(G), and the constituent of II on X acts transitively
and ¥ is a normal subgroup of I1. Thus there is an injective homomorphism from
the quotient group IT/¥ to I'(G[X]) whereby each coset of ¥ is associated with the
restriction to X of any representative. This shows that G[.X'] is vertex-transitive.

Let G[X] have degree ¢. Then ¢t < k — 1; from this and Theorem 4 we have

2k —1)=dX)+ 1= — O (G)+ 1 > (k — t)k + 1.

This implies that
k* — 2k +3
SYECEE .

Namely G[X] has degree (k — 1). Note that G[X] certainly contains cycles since
G[X] is (k — 1)-regular and k > 3, and has at least 2k — 2 vertices if it contains
no triangles (see Exercise 1.7.4(a) in [2]). In this case, however, we see that 2k —
2 < |X|=2(G) < 2k — 3, a contradiction. It follows that G[X] contains a triangle.

(ii) Let y be any element in X. Since G is vertex-transitive, there exists o € I'(G)
such that o(x)=y for a fixed x in X. ¢(X) is an atom of G. Let X, =o(X). Then
X NX,=0 by Theorem 3 since y ¢ X, and G[X] = G[X,] since there exists an
isomorphism ¢ between G[X] and G[X,]. Thus there are at least two atoms of G. It
follows that for each vertex y in G there is an atom X, that contains y such that
G[X,] = G[X], and either X, =X, or X, N X. =( for any two distinct vertices y and
z of G. These atoms X}, X5,...,X, of G form a partition of V(G), and G[X;] = G[X]
for each i=1,2,...,m,m > 2. So

V| =mlX| = [Vl — mlX|(k — 1) =2|E(G)| — 2m|E(GIXT).

This implies that G has even order. The proof is complete. []

4. Some classes of optimal graphs

Theorem 6 (Xu, [14]). Let G be a connected vertex-transitive graph. If it either con-
tains no triangles or has odd order, then G is optimal.

This is a direct consequence of Theorem 5.

A well-known class of vertex-transitive graphs, very frequently employed in the con-
struction of distributed-memory parallel computing systems, is the k-cube Oy (k = 2).
It is k-regular bipartite, and so contains no triangles. Thus from Theorem 6 we have
the following result immediately.

Corollary 7 (Esfahanian, [3]). The k-cube Qy is optimal.

Let C; be a cycle of length d. The k-dimensional toroidal mesh C(d,d>,...,d};),
studied by Ishigami [5], can be represented as the cartesian product Cy, X Cg, X - - - X Cy,.



J.-M. Xu, K.-L. Xul Discrete Mathematics 243 (2002) 291-298 297

It is vertex-transitive, and contains no triangles if d; >4 (see, for example, [12]).
Hence, from Theorem 6 we deduce the following result immediately.

Corollary 8. The k-dimensional toroidal mesh C(d,d>,...,dy) is optimal if d; = 4
for each i=1,2,... k.

Another important class of vertex-transitive graphs used in the design of networks are
the circulant graphs. A circulant graph, denoted by G(n;a,ay,...,a;), where 0 < a; <
-+ < ar < n/2, has vertices 0,1,2,...,n—1 and edge ij if and only if |j—i| = a; (mod n)
for some 7, 1 <t <k (see, for example, [1]). If ay #n/2, it is 2k-regular. Otherwise,
it is (2k — 1)-regular.

Corollary 9 (Li and Li, [7]). Any connected circulant graph G(n;ay,ay,...,a;), n = 4,
is optimal if either it contains no triangles or ay # n/2.

Proof. Let G=G(n;ay,as,...,a;). By Theorem 6, we need to only prove that G is
optimal if a; # n/2. Suppose on the contrary that G is non-optimal. Then, by Theorem
5, there is an integer m > 2 such that for any atom X of G, n=m|X| and G[X]
is (2k — 1)-regular. Thus there is a subset {by,bs,...,b,} of the set {aj,az,...,a;}
such that g.c.d.(n,by,by,...,b,)=m and G[X] = G(n/m;b/m,by/m,...,b,/m), where
by < by <--- <b;. Since a;# 5 we have b,/m#n/2m. Thus G[X] is even regular,
which contradicts the fact that G[.X] is (2k — 1)-regular. [

Theorem 10 (Li and Li, [10]). A/l non-trivial edge-transitive graphs are optimal.

Proof. Let G be a non-trivial edge-transitive graph. Suppose on the contrary that G is
non-optimal. Let X be an atom of G. Then |X|=r(G) = 3 by Theorem 1. Let e=xy
be an edge in G[X] and ¢’ = yz be an edge in d(X), z€ X. Since G is edge-transitive,
there is o € I'(G) such that o({x, y})={»,z}. Hence o(X) is also an atom of G.
Let X' =0g(X). Then X #X’ since z€ X’ and z ¢ X. But since y € X N X', we have
X =X’ by Theorem 3. This is a contradiction and so G is optimal. This completes
the proof. O
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