Note
 On restricted edge-connectivity of graphs

Jun-Ming Xu, Ke-Li Xu
Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China

Received 7 July 1998; revised 19 July 1999; accepted 26 February 2001

Abstract

This paper considers the concept of restricted edge-connectivity, and relates that to the edgedegree of a connected graph. The author gives some necessary conditions for a graph whose restricted edge-connectivity is smaller than its minimum edge-degree, then uses these conditions to show some large classes of graphs, such as all connected edge-transitive graphs except a star, and all connected vertex-transitive graphs with odd order or without triangles, have equality of the restricted edge-connectivity and the minimun edge-degree. (C) 2002 Elsevier Science B.V. All rights reserved.

MSC: 05C40
Keywords: Connectivity; Restricted edge-connectivity; Transitive graphs

1. Introduction

We follow [2] for graph-theoretical terminology and notation not defined here. A graph $G=(V, E)$ always means a simple graph (without loops and multiple edges), where $V=V(G)$ is the vertex-set and $E=E(G)$ is the edge-set. In the present paper, we consider the restricted edge-connectivity, which is a new graph-theoretical concept and introduced by Esfahanian and Hakimi [4].

In this paper, we call a disconnected graph, a triangle, or a star trivial and all other graphs non-trivial. Let G be a non-trivial graph and $S \subseteq E(G)$. If $G-S$ is disconnected and contains no isolated vertices, then S is called a restricted edge-cut of G. The restricted edge-connectivity of G, denoted by $\lambda^{\prime}(G)$, is defined as the minimum cardinality over all restricted edge-cuts of G. The restricted edge-connectivity provides a more accurate measure of fault-tolerance of networks than the classical edge-connectivity (see [3]). Thus, it has received much attention recently (see, for example, [3,4,6-9,11,13-15]).

[^0]Let G be a graph. For $e=x y \in E(G)$, let $\xi_{G}(e)=d_{G}(x)+d_{G}(y)-2$ and $\xi(G)=$ $\min \left\{\xi_{G}(e): e \in E(G)\right\}$. The parameter $\xi(G)$ is called the minimum edge-degree of G. It has been shown in [4] that for any non-trivial graph $G, \lambda^{\prime}(G)$ certainly exists and satisfies the following inequality:

$$
\begin{equation*}
\lambda^{\prime}(G) \leqslant \xi(G) . \tag{1}
\end{equation*}
$$

Let G be a non-trivial graph. If $\lambda^{\prime}(G)=\xi(G)$, then G is called optimal; otherwise G is non-optimal. We are interested in finding some classes of optimal graphs. Some of them have been found in $[3,6-9,11,14,15]$. In this paper, we will give some necessary conditions for a non-optimal graph. From these we will obtain some large classes of optimal graphs, such as all non-trivial edge-transitive graphs, and all connected vertex-transitive graphs with odd order or without triangles. Some classes of optimal graphs given in [3,7,9,14] can easily be deduced from our results.

2. Notation and preliminary results

Let $G=(V, E)$ be a graph. For two disjoint non-empty subsets X and Y of V, let $(X, Y)=\{e=x y \in E: x \in X$ and $y \in Y\}$. For the sake of convenience, we write x for the single vertex set $\{x\}$. If $Y=\bar{X}=V \backslash X$, then we write $\partial(X)$ for (X, \bar{X}) and $d(X)$ for $|\partial(X)|$. The following inequality is well known (see [10], Problem 6.48):

$$
\begin{equation*}
d(X \cap Y)+d(X \cup Y) \leqslant d(X)+d(Y) \tag{2}
\end{equation*}
$$

A restricted edge-cut S of G is called a λ^{\prime}-cut if $|S|=\lambda^{\prime}(G)$. It is clear for any λ^{\prime}-cut S that $G-S$ has just two connected components. Let X be a proper subset of V. If $\partial(X)$ is a λ^{\prime}-cut of G, then X is called a fragment of G. It is clear that if X is a fragment of G, then so is \bar{X}. Let

$$
r(G)=\min \{|X|: X \text { is a fragment of } G\} .
$$

Obviously, $2 \leqslant r(G) \leqslant \frac{1}{2}|V|$. A fragment X is called an atom of G if $|X|=r(G)$.
Theorem 1. A non-trivial graph G is optimal if and only if $r(G)=2$.
Proof. Let $r(G)=2$. Then there exists an atom $X=\{x, y\}$ such that $d(X)=\lambda^{\prime}(G)=$ $\xi_{G}(e)$ with $e=x y \in E(G)$. It follows from (1) and the definition of $\xi(G)$ that $\xi(G) \leqslant$ $\xi_{G}(e)=d(X)=\lambda^{\prime}(G) \leqslant \xi(G)$, and hence G is optimal.
Conversely, if G is optimal there exists an edge $e=x y$ of G such that

$$
\lambda^{\prime}(G)=\xi(G)=\xi_{G}(e)=d_{G}(x)+d_{G}(y)-2 .
$$

Now, let $X=\{x, y\}$. Then $r(G)=2$ if $G-\partial(X)$ has no isolated vertices. Suppose on the contrary that $G-\partial(X)$ contains an isolated vertex u. Obviously, $1 \leqslant d_{G}(u) \leqslant 2$.

If $d_{G}(u)=1$, then we assume, without loss of generality, that u is adjacent to y. Thus

$$
d_{G}(x)+d_{G}(y)-2=\xi(G) \leqslant d_{G}(y)+d_{G}(u)-2=d_{G}(y)-1 .
$$

This implies that $d_{G}(x)=1$. It follows that

$$
\lambda^{\prime}(G) \leqslant\left|\left\{y z: d_{G}(z) \geqslant 2\right\}\right| \leqslant d_{G}(y)-2=\left(d_{G}(x)+d_{G}(y)-2\right)-1=\xi(G)-1,
$$

a contradiction.
In the case $d_{G}(u)=2$, the vertex u is adjacent to x and y. Then,

$$
d_{G}(x)+d_{G}(y)-2=\xi(G) \leqslant d_{G}(y)+d_{G}(u)-2=d_{G}(y) .
$$

This yields that $d_{G}(x)=2$, and analogously, we obtain $d_{G}(y)=2$. Therefore, G is a triangle. This contradiction completes the proof.

3. Properties of atoms of non-optimal graphs

Lemma 2. Let G be a non-optimal graph, F a fragment of G, U a proper subset of F, and I the set of all isolated vertices in $G-\partial(U)$. If $I \subseteq U$ and $|(I, \bar{F})| \geqslant|(I, F \backslash U)|$, then $F \backslash I$ is a fragment of G.

Proof. If $I=\emptyset$, then there is nothing to prove. Suppose $I \neq \emptyset$ below. Let $Y=F \backslash I$ and $F^{\prime}=F \backslash U$. Then $Y \neq \emptyset$ and $F^{\prime} \neq \emptyset$, since $I \subseteq U$ and U is a proper subset of F. Let Z be the set of all isolated vertices in $G-\partial(Y)$. If $Z=\emptyset$, then Y is a restricted edge-cut of G. By the assumption $|(I, \bar{F})| \geqslant\left|\left(I, F^{\prime}\right)\right|$, we have

$$
\lambda^{\prime}(G) \leqslant d(Y)=d(F)-|(I, \bar{F})|+\left|\left(I, F^{\prime}\right)\right| \leqslant d(F)=\lambda^{\prime}(G) .
$$

This implies that Y is a fragment of G, and so the conclusion holds if $Z=\emptyset$.
The rest is to show $Z=\emptyset$. Suppose on the contrary that $Z \neq \emptyset$. Our aim is to deduce a contradiction.

First, we show that $(x, \bar{F}) \neq \emptyset$ for any $x \in I$. At the end, we let $I^{\prime}=\{x \in I:(x, \bar{F})=\emptyset\}$. If $I^{\prime} \neq \emptyset$, then $N_{G}\left(I^{\prime}\right) \subseteq F^{\prime}$, since $(I, U \backslash I)=\emptyset$ by the assumption. Let $Z^{\prime}=\left(Z \cap F^{\prime}\right) \backslash$ $N_{G}\left(I^{\prime}\right)$, and let $W=\left(Y \cup I^{\prime}\right) \backslash Z^{\prime}$. Then it is easy to see that $G-\partial(W)$ has no isolated vertices. Thus, $\partial(W)$ is a restricted edge-cut of G. Noticing $\left|\left(\Lambda I^{\prime}, \bar{F}\right)\right|=|(I, \bar{F})| \geqslant\left|\left(I, F^{\prime}\right)\right| \geqslant$ $\left|\left(I^{\prime}, F^{\prime}\right)\right| \geqslant\left|I^{\prime}\right|>0$, we have $I \backslash I^{\prime} \neq \emptyset$, and

$$
\left|\left(I \backslash I^{\prime}, \bar{F}\right)\right| \geqslant\left|\left(I, F^{\prime}\right)\right| \geqslant\left|\left(I^{\prime}, F^{\prime} \backslash Z^{\prime}\right)\right|+\left|\left(I \backslash I^{\prime}, F^{\prime} \backslash Z^{\prime}\right)\right|>\left|\left(I \backslash I^{\prime}, F^{\prime} \backslash Z^{\prime}\right)\right|
$$

Thus we have

$$
\begin{aligned}
\lambda^{\prime}(G) & \leqslant d(W)=d(F)-\left|\left(Z^{\prime}, \bar{F}\right)\right|-\left|\left(I \backslash I^{\prime}, \bar{F}\right)\right|+\left|\left(I \backslash I^{\prime}, F^{\prime} \backslash Z^{\prime}\right)\right| \\
& <d(F)-\left|\left(Z^{\prime}, \bar{F}\right)\right| \leqslant d(F)=\lambda^{\prime}(G) .
\end{aligned}
$$

The contradiction implies $I^{\prime}=\emptyset$, i.e., $(x, \bar{F}) \neq \emptyset$ for any $x \in I$. Thus we have

$$
\begin{equation*}
\left|\left(y, I^{\prime \prime}\right)\right|=\left|N_{G}(y) \cap I^{\prime \prime}\right| \leqslant\left|\left(N_{G}(y) \cap I^{\prime \prime}, \bar{F}\right)\right|, \quad \forall y \in Z, \quad I^{\prime \prime} \subseteq I . \tag{3}
\end{equation*}
$$

Second, we assert that $Z=N_{G}(I) \cap F^{\prime}$. The fact $I^{\prime}=\emptyset$ implies $Z \subseteq Y$. Since Z is the set of all isolated vertices in $G-\partial(F \backslash I)$ and $G-\partial(F)$ has no isolated vertices, $Z \subseteq N_{G}(I)$. But $N_{G}(I) \cap U=\emptyset$ since $I \subseteq U$ is the set of the isolated vertices in
$G-\partial(U)$ by the assumption. Thus we have $Z \subseteq N_{G}(I) \cap F^{\prime}$. On the other hand, if $\left(N_{G}(I) \cap F^{\prime}\right) \backslash Z \neq \emptyset$, then $Y \backslash Z \neq \emptyset$ and $G-\partial(Y \backslash Z)$ contains no isolated vertices, because F is a fragment of G. It is clear that $(I, Z) \neq \emptyset$ since $I \neq \emptyset$ and $\emptyset \neq Z \subseteq N_{G}(I) \cap F^{\prime}$. Combining these with the assumption $|(I, \bar{F})| \geqslant\left|\left(I, F^{\prime}\right)\right|$, we have

$$
\begin{aligned}
\lambda^{\prime}(G) & \leqslant d(Y \backslash Z)=d(F)-|(I, \bar{F})|-|(Z, \bar{F})|+\left|\left(I, F^{\prime} \backslash Z\right)\right| \\
& <d(F)-\left(|(I, \bar{F})|-\left|\left(I, F^{\prime}\right)\right|\right) \leqslant d(F)=\lambda^{\prime}(G) .
\end{aligned}
$$

The contradiction implies $\left(N_{G}(I) \cap F^{\prime}\right) \backslash Z=\emptyset$. Thus $Z=N_{G}(I) \cap F^{\prime}$.
Third, we have that $(z, \bar{F}) \neq \emptyset$ for any $z \in Z$. Otherwise z is an isolated vertex in $G-\partial(U)$, which implies $z \in I$, a contradiction. Thus we have

$$
\begin{equation*}
\left|\left(x, Z^{\prime \prime}\right)\right|=\left|N_{G}(x) \cap Z^{\prime \prime}\right| \leqslant\left|\left(N_{G}(x) \cap Z^{\prime \prime}, \bar{F}\right)\right|, \quad \forall x \in I, \quad Z^{\prime \prime} \subseteq Z . \tag{4}
\end{equation*}
$$

Lastly, let $y \in Z$ and let $x \in N_{G}(y) \cap I$. A contradiction can be deduced as follows:

$$
\begin{aligned}
\xi(G) \leqslant & d_{G}(x)+d_{G}(y)-2=|(x, \bar{F})|+|(x, Z \backslash\{y\})|+|(y, \bar{F})|+|(y, I \backslash\{x\})| \\
\leqslant & |(x, \bar{F})|+\left|\left(N_{G}(x) \cap(Z \backslash\{y\}), \bar{F}\right)\right|+|(y, \bar{F})|+\left|\left(N_{G}(y) \cap(I \backslash\{x\}), \bar{F}\right)\right| \\
= & \left(|(x, \bar{F})|+\left|\left(N_{G}(y) \cap(I \backslash\{x\}), \bar{F}\right)\right|\right) \\
& +\left(|(y, \bar{F})|+\left|\left(N_{G}(x) \cap(Z \backslash\{y\}), \bar{F}\right)\right|\right) \\
= & \left|\left(N_{G}(y) \cap I\right), \bar{F}\right|+\left|\left(N_{G}(x) \cap Z, \bar{F}\right)\right| \\
\leqslant & |(I, \bar{F})|+|(Z, \bar{F})| \leqslant|(F, \bar{F})|=d(F)=\lambda^{\prime}(G)<\xi(G),
\end{aligned}
$$

where the first equality holds because of the fact $Z=N_{G}(I) \cap F^{\prime}$ and $(Z, Y \backslash Z)=\emptyset$, and the second inequality holds from (3) and (4). The proof is complete.

Theorem 3. Let G be a non-optimal graph. Then any two distinct atoms of G are disjoint.

Proof. Let X and X^{\prime} be two distinct atoms of G. Then $d(X)=d\left(X^{\prime}\right)=\lambda^{\prime}(G)<\xi(G)$ and $|X|=\left|X^{\prime}\right|=r(G) \geqslant 3$ by Theorem 1. Let

$$
A=X \cap X^{\prime}, \quad B=X \cap \overline{X^{\prime}}, \quad C=\bar{X} \cap X^{\prime}, \quad \text { and } D=\bar{X} \cap \overline{X^{\prime}} .
$$

Then $|B|=|C|=r(G)-|A| \geqslant 1$ and $|D| \geqslant|A|$. Suppose on the contrary that $A \neq \emptyset$. We will derive contradictions by considering two cases, separately.

Case 1: If $G-\partial(A)$ contains some isolated vertices, then let I be the set of all isolated vertices in $G-\partial(A)$. Then obviously, $I \subseteq A,(I, B) \neq \emptyset$ and $(I, C) \neq \emptyset$, because $\partial(X)$ and $\partial\left(X^{\prime}\right)$ are λ^{\prime}-cuts of G. We can assume, without loss of generality, that $|(I, C)| \geqslant|(I, B)|$. Let $F=X, U=A \subset F$. Then $X \backslash I(=F \backslash I)$ is a fragment of G by Lemma 2. However, $X \backslash I$ is a proper subset of X. This contradicts the assumption that X is an atom of G.

Case 2: If $G-\partial(A)$ contains no isolated vertices, then A is a restricted edge-cut of G. This implies that $|A| \geqslant 2$ and $d(A)>\lambda^{\prime}(G)$. By (2) we have

$$
\begin{equation*}
d(D)=d\left(X \cup X^{\prime}\right) \leqslant d(X)+d\left(X^{\prime}\right)-d\left(X \cap X^{\prime}\right)<\lambda^{\prime}(G) \tag{5}
\end{equation*}
$$

This implies that $G-\partial(D)$ certainly contains some isolated vertices, so let I be the set of all isolated vertices in $G-\partial(D)$. Obviously, $I \subseteq D$. If $D^{\prime}=D \backslash I \neq \emptyset$, then $\partial\left(D^{\prime}\right)$ is a restricted edge-cut of G since $G-\partial\left(D^{\prime}\right)$ has no isolated vertices, and so from (5) we have

$$
\lambda^{\prime}(G) \leqslant d\left(D^{\prime}\right)=d(D)-\sum_{u \in I} d_{G}(u)<d(D)<\lambda^{\prime}(G)
$$

This contradiction implies $I=D$. Without loss of generality, we assume that $|(D, B)| \geqslant$ $|(D, C)|$. Let $F=\bar{X}, I=U=D \subset F$. Thus, $C(=\bar{X} \backslash D=F \backslash I)$ is a fragment of G that is properly contained in X^{\prime} by Lemma 2 . This contradicts the assumption that X^{\prime} is an atom of G. The proof is complete.

Remark. Any cycle of length greater than three shows that Theorem 3 is not valid if G is optimal.

Theorem 4. Let G be a non-optimal graph. If G is k-regular, then $r(G) \geqslant k \geqslant 3$.
Proof. By Theorem $1, r(G) \geqslant 3$, and obviously $k \geqslant 3$. Let X be an atom of G. Then $r=r(G)=|X|$ and $d(X)=\lambda^{\prime}(G)<\xi(G)=2 k-2$. Considering the sum of degrees of all vertices in X, we have

$$
k r=\sum_{x \in X} d_{G}(x) \leqslant r(r-1)+d(X)<r^{2}-r+2 k-2=k r-(k-r-1)(r-2) .
$$

This implies $r(G) \geqslant k$ since $k \geqslant 3$.
Theorem 5. Let G be a connected vertex-transitive graph with degree $k(\geqslant 3)$, and let X be an atom of G. If G is non-optimal, then,
(i) $G[X]$ is a vertex-transitive subgraph of G with degree of $k-1$ containing a triangle;
(ii) G has even order and there is a partition $\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$ of V such that $G\left[X_{i}\right] \cong$ $G[X]$ for each $i=1,2, \ldots, m, m \geqslant 2$.

Proof. (i) Since a vertex-transitive graph is regular, we have $|X| \geqslant k \geqslant 3$ by Theorem 4. Let x and y be two distinct vertices in X. Then there exists $\pi \in \Gamma(G)$, the automorphism group of G, such that $\pi(x)=y$ because G is vertex-transitive. Hence $\pi(X)$ is also an atom of G. Let $X^{\prime}=\pi(X)$. Then $X \cap X^{\prime} \neq \emptyset$ since $y \in X \cap X^{\prime}$. This implies $X^{\prime}=X$ by Theorem 3. Let

$$
\Pi=\{\pi \in \Gamma(G): \pi(X)=X\}, \quad \Psi=\{\pi \in \Pi: x \in X \Rightarrow \pi(x)=x\} .
$$

Clearly Π is a subgroup of $\Gamma(G)$, and the constituent of Π on X acts transitively and Ψ is a normal subgroup of Π. Thus there is an injective homomorphism from the quotient group Π / Ψ to $\Gamma(G[X])$ whereby each coset of Ψ is associated with the restriction to X of any representative. This shows that $G[X]$ is vertex-transitive.

Let $G[X]$ have degree t. Then $t \leqslant k-1$; from this and Theorem 4 we have

$$
2(k-1) \geqslant d(X)+1=(k-t) r(G)+1 \geqslant(k-t) k+1 .
$$

This implies that

$$
t \geqslant\left\lceil\frac{k^{2}-2 k+3}{k}\right\rceil=k-1 .
$$

Namely $G[X]$ has degree $(k-1)$. Note that $G[X]$ certainly contains cycles since $G[X]$ is $(k-1)$-regular and $k \geqslant 3$, and has at least $2 k-2$ vertices if it contains no triangles (see Exercise 1.7.4(a) in [2]). In this case, however, we see that $2 k-$ $2 \leqslant|X|=\lambda^{\prime}(G) \leqslant 2 k-3$, a contradiction. It follows that $G[X]$ contains a triangle.
(ii) Let y be any element in \bar{X}. Since G is vertex-transitive, there exists $\sigma \in \Gamma(G)$ such that $\sigma(x)=y$ for a fixed x in $X . \sigma(X)$ is an atom of G. Let $X_{y}=\sigma(X)$. Then $X \cap X_{y}=\emptyset$ by Theorem 3 since $y \notin X$, and $G[X] \cong G\left[X_{y}\right]$ since there exists an isomorphism σ between $G[X]$ and $G\left[X_{y}\right]$. Thus there are at least two atoms of G. It follows that for each vertex y in G there is an atom X_{y} that contains y such that $G\left[X_{y}\right] \cong G[X]$, and either $X_{y}=X_{z}$ or $X_{y} \cap X_{z}=\emptyset$ for any two distinct vertices y and z of G. These atoms $X_{1}, X_{2}, \ldots, X_{m}$ of G form a partition of $V(G)$, and $G\left[X_{i}\right] \cong G[X]$ for each $i=1,2, \ldots, m, m \geqslant 2$. So

$$
|V|=m|X|=|V| k-m|X|(k-1)=2|E(G)|-2 m|E(G[X])| .
$$

This implies that G has even order. The proof is complete.

4. Some classes of optimal graphs

Theorem 6 ($\mathrm{Xu},[14])$. Let G be a connected vertex-transitive graph. If it either contains no triangles or has odd order, then G is optimal.

This is a direct consequence of Theorem 5 .
A well-known class of vertex-transitive graphs, very frequently employed in the construction of distributed-memory parallel computing systems, is the k-cube $Q_{k}(k \geqslant 2)$. It is k-regular bipartite, and so contains no triangles. Thus from Theorem 6 we have the following result immediately.

Corollary 7 (Esfahanian, [3]). The k-cube Q_{k} is optimal.
Let C_{d} be a cycle of length d. The k-dimensional toroidal mesh $C\left(d_{1}, d_{2}, \ldots, d_{k}\right)$, studied by Ishigami [5], can be represented as the cartesian product $C_{d_{1}} \times C_{d_{2}} \times \cdots \times C_{d_{k}}$.

It is vertex-transitive, and contains no triangles if $d_{i} \geqslant 4$ (see, for example, [12]). Hence, from Theorem 6 we deduce the following result immediately.

Corollary 8. The k-dimensional toroidal mesh $C\left(d_{1}, d_{2}, \ldots, d_{k}\right)$ is optimal if $d_{i} \geqslant 4$ for each $i=1,2, \ldots, k$.

Another important class of vertex-transitive graphs used in the design of networks are the circulant graphs. A circulant graph, denoted by $G\left(n ; a_{1}, a_{2}, \ldots, a_{k}\right)$, where $0<a_{1}<$ $\cdots<a_{k} \leqslant n / 2$, has vertices $0,1,2, \ldots, n-1$ and edge $i j$ if and only if $|j-i| \equiv a_{t}(\bmod n)$ for some $t, 1 \leqslant t \leqslant k$ (see, for example, [1]). If $a_{k} \neq n / 2$, it is $2 k$-regular. Otherwise, it is $(2 k-1)$-regular.

Corollary 9 (Li and Li, [7]). Any connected circulant graph $G\left(n ; a_{1}, a_{2}, \ldots, a_{k}\right), n \geqslant 4$, is optimal if either it contains no triangles or $a_{k} \neq n / 2$.

Proof. Let $G=G\left(n ; a_{1}, a_{2}, \ldots, a_{k}\right)$. By Theorem 6 , we need to only prove that G is optimal if $a_{k} \neq n / 2$. Suppose on the contrary that G is non-optimal. Then, by Theorem 5, there is an integer $m \geqslant 2$ such that for any atom X of $G, n=m|X|$ and $G[X]$ is $(2 k-1)$-regular. Thus there is a subset $\left\{b_{1}, b_{2}, \ldots, b_{t}\right\}$ of the set $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ such that g.c.d. $\left(n, b_{1}, b_{2}, \ldots, b_{t}\right)=m$ and $G[X] \cong G\left(n / m ; b_{1} / m, b_{2} / m, \ldots, b_{t} / m\right)$, where $b_{1}<b_{2}<\cdots<b_{t}$. Since $a_{k} \neq \frac{n}{2}$ we have $b_{t} / m \neq n / 2 m$. Thus $G[X]$ is even regular, which contradicts the fact that $G[X]$ is $(2 k-1)$-regular.

Theorem 10 (Li and Li, [10]). All non-trivial edge-transitive graphs are optimal.
Proof. Let G be a non-trivial edge-transitive graph. Suppose on the contrary that G is non-optimal. Let X be an atom of G. Then $|X|=r(G) \geqslant 3$ by Theorem 1. Let $e=x y$ be an edge in $G[X]$ and $e^{\prime}=y z$ be an edge in $\partial(X), z \in \bar{X}$. Since G is edge-transitive, there is $\sigma \in \Gamma(G)$ such that $\sigma(\{x, y\})=\{y, z\}$. Hence $\sigma(X)$ is also an atom of G. Let $X^{\prime}=\sigma(X)$. Then $X \neq X^{\prime}$ since $z \in X^{\prime}$ and $z \notin X$. But since $y \in X \cap X^{\prime}$, we have $X=X^{\prime}$ by Theorem 3. This is a contradiction and so G is optimal. This completes the proof.

Acknowledgements

The author would like to thank the three anonymous referees for their kind help and valuable suggestions which led to an improvement in the presentation form.

References

[1] F. Boesch, R. Tindell, Circulants and their connectivities, J. Graph Theory 8 (1984) 487-499.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
[3] A.H. Esfahanian, Generalized measures of fault tolerance with application to n-cube networks, IEEE Trans. Comput. 38 (11) (1989) 1586-1591.
[4] A.H. Esfahanian, S.L. Hakimi, On computing a conditional edge-connectivity of a graph, Inform. Process. Lett. 27 (1988) 195-199.
[5] Y. Ishigami, The wide-diameter of the n-dimensional toroidal mesh, Networks 27 (1996) 257-266.
[6] S. Latifi, M. Hegde, M. Naraghi-Pour, Conditional connectivity measures for large miltiprocessor systems, IEEE Trans. Comput. 43 (2) (1994) 218-221.
[7] Q.L. Li, Q. Li, Reliability analysis of circulants, Networks 31 (1998) 61-65.
[8] Q.L. Li, Q. Li, Refined connectivity properties of abelian Cayley graphs, Chinese Ann. Math. B 19 (4) (1998) 409-414.
[9] Q.L. Li, Q. Li, Super edge connectivity properties of connected edge symmetric graphs, Networks 33 (1999) 147-159.
[10] L. Lovasz, Combinatorial Problems and Exercises, North-Holland, Amsterdam, New York, Oxford, 1979.
[11] J. Wu, G. Guo, Fault tolerance measures for m-ary n-dimensional hypercubes based on forbidden faulty sets, IEEE Trans. Comput. 47 (8) (1998) 888-893.
[12] J.M. Xu, Connectivity of cartesian product digraphs and fault-tolerant routings of generalized hypercubes, Appl. Math.-JCU 13B (2) (1998) 179-187.
[13] J.M. Xu, Some results on R_{2}-edge-connectivity of even regular graphs, Appl. Math. -JCU 14B (3) (1999) 366-370.
[14] J.M. Xu, Restricted edge-connectivity of vertex-transitive graphs, Chinese J. Contemp. Math. 21 (4) (2000) 369-374.
[15] J.M. Xu, On conditional edge-connectivity of graphs, Acta Math. Appl. Sinica 16B (4) (2000) 414-419.

[^0]: ${ }^{2}$ The work was supported partially by NNSF of China (No.19971086).
 E-mail address: xujm@ustc.edu.cn (J.-M. XU).

