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Abdgract :Imase et al showed that for any two didinct vertices x and y of the de Bruijn digrgph
B(d, k) ,thereare d - 1linterndly digoint (x,y) -paths of length a nog k + 1. A very
dort prodf is gven in this note.
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Following Fol et al [Mthe de Bruijn digraph, demoted by B(d, k) , can be defined as the
(k - 1) thiterated line digraph of Kg , where Kg denotes a digraph obtained from the conplete synr
metric digrgoh with d( = 2) vertices by attaching a loop at each vertex. In other words, B(d, k) is
recursvely deined asfollows.

B(d,1) = Ki; B(d, k) = LK), k =2.

The de Bruijn digraph has many desrable sructural properties, the nog of which are contained
in an excellent survey by Bernond and Peyrat!®!. The de Brijn digraph is a suitable nodel for inter-
oonnection networks in paralel and digtributed processng sygems, and is regarded to be a good cont
petitor for the hypercube and might conditute the next generation of parald architectures.

Let the vertex sst of Kgbe{0,1, ,d- 1}. By the definition, any vertex xof B(d, k) isa di-
rected walk (x1,x2, ,x) o lengh k- 1in Kg,where x;, {0,1, ,d-1},1 <i <k. We
may write X = x3X2  Xx. The vertex x is adjacent to verticesdf theformy = xaoxs  XiXk+1 With
(X, X+1) being an edge of Kj. It follows that a directed walk of length nwith the origin xin B (d,
k) can be expressed asa sequence (X1, X2, , Xk, Xk+1, » Xk+n) OF the verticesin Kg , where ( x;
xi+1) isanedgeof Kgforeachi = 1,2, , k+ n- 1.
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Imae et al'®! showed the following theorem , which is a classc and basic result and frequently oc-
curs in gpplications and literature. But the original prodf is very long. We dive a very short proof here.

Theorem 1  For any two didinct vertices x andydf B(d, k) , there are d - linternaly digoint
(x,y) -pathsdf length a nog k + 1.

Prodf  We proceed by induction on k = 1. 9nce B(d,k) = Kg, the theorem is true for
k = 1cdearly. Suppose k = 2 and the theorem holds for any two verticesof B(d, k - 1). Assume
tha x and y are two diginct verticesdf B(d, k). Then x and y correspond to two edgesdf B(d, k -
1) dnceB(d,k) = L(B(d,k-1).Letsuchtwoedgesbex = (w,w)andy = (v,V).

f w # v, then by the induction hypothess, there are d - linternaly digoint (w ,v) -pathsdf
length a nmog kin B(d, k - 1) , fromwhich we can eadly induce d - 1internaly digoint (x,y) -
pahsd lengh a& nog k + 1in B(d, k).

fw = v,then (x,y) isanedged B(d,k), and xand y can be written as

X = X1X2 Xk-1Xk, Y = X2X3 XiXk+1

where x1, X2, , Xk, Xk+1 {0,1, , d- 1}, and, hence (x1,X2, , Xk,Xk+1) iSawdk of
length kin K§. We condruct d - 1internaly digoint (x,y) -walks Wy, W>, , Wy 1o length a
nog k + 1in B(d, k) asfollows.

Wi = (X1,X2, , Xk-1, Xk, Xk+1)

W = (Xi,%, , X, U,X2, X3, Xk,Xas1), ] =2,3, ,d-1,
where uz, ,ug.iare d- 2ddinct dementsin{0,1, ,d- 1} \ { x1,Xk+1}. Itisclear that W;is
o length one and W, isaf length k + 1foreachj = 2,3, , d - 1. Inorder to prove these (x,y)
-walks are internadly digoint in B(d, k) , it is sufficient to prove W>, , Wy.; are interndly digoint
inB(d,Kk).

Sppose to the contrary that there are omeiandj (2 <i # j = d - 1) suchtha W, and W,
have comnon vertices rather than x and y. Let u be the fird internally common vertex of W; and W,
from x to y. Assume the section Wi (x, u) isdf length a and the section Wj(x, u) isdf lengh b.
Then2 < a,b < k- 1. Let U and u’ bein-neighborsof uon W; and W, , repectively. Then u" #
u . 9nce ucan be reached in a gepsfrom x dong W; and in b gepsfrom x along W, , then it can be
written as

U= Xa+1Xa+2 XU X2 XaXa+1
= Xp+1 Xp+2 XiUjX2 XpXp+1-
Fom this expresson , we have x, = x,9nce2 < a,b < k - 1, namdy
U = XaXar1  XkUiXz  Xa = XpXps1  XkUXe  Xp = U,
a contradiction. Note W», , Wy.1 may be ot paths, but each of them mug contain a path as its
subgragph, and , thus, the theorem follows.
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