Feb. 2002

Article ID:0253-2778 (2002) 01-0019-03

Note on Bounded Length Paths of De Bruijn Digraphs

XU Jun-ming, TAO Ying-feng, XU Ke-li

(Department of Mathematics, USTC, Hefei, Anhui, 230026, China)

Abstract: Imase *et al* showed that for any two distinct vertices x and y of the de Bruijn digraph B(d, k), there are d-1 internally disjoint (x, y)-paths of length at most k+1. A very short proof is given in this note.

Key words: bounded length paths; Menger's theorem; de Bruijn digraphs

CLC number :O157.5 Document code :A

AMS Subject Classifications (1991): Primary 05C12; 05C40

Following Fiol *et al* $[,]^1$ the de Bruijn digraph, denoted by B(d,k), can be defined as the (k-1) th iterated line digraph of K_d^+ , where K_d^+ denotes a digraph obtained from the complete symmetric digraph with $d(\ge 2)$ vertices by attaching a loop at each vertex. In other words, B(d,k) is recursively defined as follows.

$$B(d,1) = K_d^+; B(d,k) = L^{k-1}(K_d^+), k \ge 2.$$

The de Bruijn digraph has many desirable structural properties, the most of which are contained in an excellent survey by Bermond and Peyrat^[2]. The de Bruijn digraph is a suitable model for interconnection networks in parallel and distributed processing systems, and is regarded to be a good competitor for the hypercube and might constitute the next generation of parallel architectures.

Let the vertex set of K_d^+ be $\{0,1,\ldots,d-1\}$. By the definition, any vertex x of B(d,k) is a directed walk (x_1,x_2,\ldots,x_k) of length k-1 in K_d^+ , where $x_i=\{0,1,\ldots,d-1\}$, $1 \le i \le k$. We may write $x=x_1x_2\ldots x_k$. The vertex x is adjacent to vertices of the form $y=x_2x_3\ldots x_kx_{k+1}$ with (x_k,x_{k+1}) being an edge of K_d^+ . It follows that a directed walk of length n with the origin x in B(d,k) can be expressed as a sequence $(x_1,x_2,\ldots,x_k,x_{k+1},\ldots,x_{k+n})$ of the vertices in K_d^+ , where (x_i,x_{i+1}) is an edge of K_d^+ for each $i=1,2,\ldots,k+n-1$.

Foundation item: The Project Supported by NNSF of China (No. 19971086) and NSF of Anhui (No. 01046102) **Biography:** Xu Jumming, male, born in 1949, Professor.

^{*} Received date :2000-12-05

Imase $et\ al^{(3)}$ showed the following theorem, which is a classic and basic result and frequently occurs in applications and literature. But the original proof is very long. We give a very short proof here.

Theorem 1 For any two distinct vertices x and y of B(d, k), there are d-1 internally disjoint (x, y) -paths of length at most k+1.

Proof We proceed by induction on $k \ge 1$. Since $B(d, k) = K_d^+$, the theorem is true for k = 1 clearly. Suppose $k \ge 2$ and the theorem holds for any two vertices of B(d, k - 1). Assume that x and y are two distinct vertices of B(d, k). Then x and y correspond to two edges of B(d, k - 1) since B(d, k) = L(B(d, k - 1)). Let such two edges be x = (w, w) and y = (v, v).

If w = v, then by the induction hypothesis, there are d - 1 internally disjoint (w, v) -paths of length at most k in B(d, k - 1), from which we can easily induce d - 1 internally disjoint (x, y) -paths of length at most k + 1 in B(d, k).

If w = v, then (x, y) is an edge of B(d, k), and x and y can be written as

$$x = x_1 x_2 \dots x_{k-1} x_k, \quad y = x_2 x_3 \dots x_k x_{k+1},$$

where $x_1, x_2, ..., x_k, x_{k+1} = \{0, 1, ..., d-1\}$, and, hence $(x_1, x_2, ..., x_k, x_{k+1})$ is a walk of length k in K_d^+ . We construct d-1 internally disjoint (x, y) -walks $W_1, W_2, ..., W_{d-1}$ of length at most k+1 in B(d, k) as follows.

$$W_1 = (x_1, x_2, ..., x_{k-1}, x_k, x_{k+1}),$$

 $W_i = (x_1, x_2, ..., x_k, u_i, x_2, x_3, ..., x_k, x_{k+1}), j = 2,3, ..., d - 1,$

where u_2 , ..., u_{d-1} are d-2 distinct elements in $\{0,1,...,d-1\}\setminus\{x_1,x_{k+1}\}$. It is clear that W_1 is of length one and W_j is of length k+1 for each j=2,3,...,d-1. In order to prove these (x,y)-walks are internally disjoint in B(d,k), it is sufficient to prove W_2 , ..., W_{d-1} are internally disjoint in B(d,k).

Suppose to the contrary that there are some i and j ($2 \le i$ $j \le d-1$) such that W_i and W_j have common vertices rather than x and y. Let u be the first internally common vertex of W_i and W_j from x to y. Assume the section $W_i(x, u)$ is of length a and the section $W_j(x, u)$ is of length b. Then $0 \le a$, $0 \le k-1$. Let $0 \le a$ and $0 \le a$ be inneighbors of $0 \le a$ and $0 \le a$ in $0 \le a$. Since $0 \le a$ can be reached in $0 \le a$ steps from $0 \le a$ along $0 \le a$ along 0

$$u = x_{a+1} x_{a+2} \dots x_k u_i x_2 \dots x_a x_{a+1}$$
$$= x_{b+1} x_{b+2} \dots x_k u_i x_2 \dots x_b x_{b+1}.$$

From this expression, we have $x_a = x_b$ since $2 \le a$, $b \le k - 1$, namely

$$u = x_a x_{a+1} \dots x_k u_i x_2 \dots x_a = x_b x_{b+1} \dots x_k u_i x_2 \dots x_b = u$$
,

a contradiction. Note W_2 , ..., W_{d-1} may be not paths, but each of them must contain a path as its subgraph, and, thus, the theorem follows.

References

- [1] Fiol MA, Yebra JL, Alegre I. Line digraphs it erations and the (d, k) digraph problem [J]. IEEE Trans. Comput. ,1984 ,33(5):400 ~ 403.
- [2] Bermond J C, Peyrat C. De Bruijn and Kautz networks: a competitor for the hypercube ? in Hypercube and Distributed Computers[M](ed. F. Arr-
- dre and J. P. Verjus). Horth Holland: Elsevier Science Publishers, 1989, 278 ~ 293.
- [3] Imase M, Soneoka T, Okada K. Fault-tolerant processor interconnection networks [J]. Systems and Computers in Japan, 1986, 17(8):21 ~ 30.

关于 de Bruijn 图中限长路的注记

徐俊明,陶颖峰,徐克力

(中国科学技术大学数学系,合肥 230026)

摘要: Imase 等人证明了:对于 de Bruijn 有向图 B(d,k) 中任何两个不同的顶点 x 和 y,存在 d-1 条内点不交且长度都不超过 k+1 的(x, y) 路. 但证明很长而且包含许多令人厌烦的验证. 本文给出它的简单证明.

关键词: 限长路; Menger 定理; de Bruijn 有向图