Restricted Fault Diameter of Hypercube Networks

Jun-ming Xu, Yu-ping Yao, Ke-li Xu
Department of Mathematics, University of Science and Technology of China, Hefei, 230026, China
(E-mail: xujm@ustc.edu.cn)

Abstract

This paper studies restricted fault diameter of the n-dimensional hypercube networks $Q_{n}(n \geq 2)$. It is shown that for arbitrary two vertices x and y with the distance d in Q_{n} and any set F with at most $2 n-3$ vertices in $Q_{n}-\{x, y\}$, if F contains neither of neighbor-sets of x and y in Q_{n}, then the distance between x and y in $Q_{n}-F$ is given by $$
D\left(Q_{n}-F ; x, y\right) \begin{cases}=1, & \text { for } d=1 ; \\ \leq d+4, & \text { for } 2 \leq d \leq n-2, n \geq 4 \\ \leq n+1, & \text { for } d=n-1, n \geq 3 \\ =n, & \text { for } d=n\end{cases}
$$

Furthermore, the upper bounds are tight. As an immediately consequence, Q_{n} can tolerate up to $2 n-3$ vertices failures and remain diameter 4 if $n=3$ and $n+2$ if $n \geq 4$ provided that for each vertex x in Q_{n}, all the neighbors of x do not fail at the same time. This improves Esfahanian's result.

Keywords Restricted connectivity, restricted fault diameter, hypercubes
2000 MR Subject Classification 05C12, 05C40

1 Introduction

In this paper, a graph $G=(V, E)$ always means a simple connected graph (undirected graph without loops and multiple edges) with the vertex-set V and the edge-set E. We follow [2] for graph-theoretical terminologies and notations not defined here.

When the underlying topology of an interconnection network is modelled by a graph $G=$ (V, E) in which V represents the set of the processors and E represents the bidirectional communication links connecting pairs of processors, some graph parameters such as connectivity, fault diameter ${ }^{[8]}$ and wide-diameter ${ }^{[7]}$ can be used to analyze the fault tolerance and efficiency of the network with faults (see [1], [7-11]). The study of these parameters is based on the concept of connectivity.

The concept of connectivity, however, has an obvious deficiency. That is that in investigating this concept it has tacitly been assumed that some subsets such as all neighbors of (or all incident edges with) any vertex in the graph can be removed at the same time. In fact, in many practical applications it can be safely assumed that any set of faults in some networks cannot contain all processors which are directly connected to some processor. Consequently, these parameters are inaccurate to measure the reliability and efficiency for such networks (see [3]).

To compensate for this shortcoming, Esfahanian and Hakimi ${ }^{[4]}$ generalized the concept of connectivity by introducing the restricted connectivity based on the assumption that a forbidden faulty set such as all the neighbors of (or all incident edges with) any given vertex cannot be

[^0]removed at the same time. A set F of vertices in G is said to be restricted if F does not contain the neighbor-set of any vertex in G. The restricted connectivity $\kappa^{\prime}(G)$ of G is the minimum cardinality $|F|$ of a restricted set F such that $G-F$ is disconnected. It is not difficult to find some connected graphs that have no restricted connectivity. However, in any graph G with at least three vertices, there exists a restricted set. Thus we can define the diameter $D(G-F)$ for any restricted set F of G. As the restricted set F is not known in advance, an interesting parameter is
$$
D_{f}(G)=\max \{D(G-F): F \text { is a restricted set of } G \text { and }|F| \leq f\},
$$
which is called the restricted fault diameter of G. It is clear that $D_{f}(G)$ is the fault diameter of G if $f=\kappa(G)-1$, where $\kappa(G)$ is the connectivity of G. Thus the restricted fault diameter is a generalization of the fault diameter.

The restricted connectivity and the restricted fault diameter in conjunction with the abovementioned parameters and other well-known parameters can provide a more accurate fault tolerance analysis for reliability and efficiency of networks and received much attention (see, for example, $[1,3,4,8,10,11,13]$).

In particular, for the $n(\geq 3)$-dimensional hypercube network Q_{n}, Esfahanian ${ }^{[3]}$ obtained that $\kappa^{\prime}\left(Q_{n}\right)=2 n-2$ by proving $D_{2 n-3}\left(Q_{n}\right) \leq n+6$. In this paper, we will show that $D_{3}\left(Q_{3}\right)=4$ and $D_{2 n-3}\left(Q_{n}\right)=n+2$ for $n \geq 4$. Latifi ${ }^{[9]}$ also observed this result. His proof, however, is somewhat cumbersome. Using a method completely different than that used of Latifi, we will first prove the following theorem, from which Latif's result follows as a straightforward corollary.

Theorem. Let x and y be arbitrary two vertices with distance d in $Q_{n}(n \geq 2), F$ any set with at most $2 n-3$ vertices in $Q_{n}-\{x, y\}$. If F contains neither of neighbor-sets of x and y in Q_{n}, then the distance between x and y in $Q_{n}-F$ is given by

$$
D\left(Q_{n}-F ; x, y\right) \begin{cases}=1, & \text { for } d=1 ; \\ \leq d+4, & \text { for } 2 \leq d \leq n-2, n \geq 4 \\ \leq n+1, & \text { for } d=n-1, n \geq 3 \\ =n, & \text { for } d=n\end{cases}
$$

Furthermore, the upper bounds are tight in the sense that there is a restricted set F with $2 n-3$ vertices in $Q_{n}-\{x, y\}$ such that $D\left(Q_{n}-F ; x, y\right)$ can reach the upper bounds.

2 Some Properties of the n-dimensional Hypercube

For a given graph G and two vertices x and y in G, the length of an (x, y)-path $P=\left(x_{0}(=\right.$ $x), x_{1}, \cdots, x_{p-1}, x_{p}(=y)$) is the number p of edges in P and will be denoted by $\varepsilon(P)$, where $x_{1}, x_{2}, \cdots, x_{p-1}$ are called internal vertices. For any $0 \leq i<j \leq p$, denote by $P\left(x_{i}, x_{j}\right)$ the subpath $\left(x_{i}, x_{i+1}, \cdots, x_{j-1}, x_{j}\right)$ of P. The distance between x and y in G, denoted by $D(G ; x, y)$, is the length of a shortest (x, y)-path in G. The diameter of G, denoted by $D(G)$, is the maximum distance between any pair of vertices of G. Let F be a proper subset of $V(G)$. A subgraph H of G avoids F if H does not contain any vertex in F. For a given vertex x in G, we use $N(G ; x)$ to denote the neighbor-set of x.

The n-dimensional hypercube, termed n-cube for short and denoted by Q_{n}, can be defined and characterized in a number of ways (cf. [5]). A convenient definition for our purpose is to
express Q_{n} as the cartesian products of n identical K_{2}, that is

$$
Q_{1}=K_{2}, \quad Q_{n}=\underbrace{K_{2} \times K_{2} \times \cdots \times K_{2}}_{n(\geq 2)} .
$$

Using this definition, we can express Q_{n} as $K_{2} \times Q_{n-1}$ for $n \geq 2$. This implies that Q_{n} can be obtained from two identical Q_{n-1} by adding edges joining two vertices with the same label. It is often convenient to write $Q_{n}=Q_{n-1} \odot Q_{n-1}$ for $n \geq 2$. The edges between two Q_{n-1} are called cross edges. Note that as an operation on graphs, the Cartesian products satisfy associative and communicative laws. This implies that for any an edge e of Q_{n} there exist two disjoint subgraph L and R of Q_{n} that are isomorphic to Q_{n-1} such that $Q_{n}=L \odot R$ and e is a cross edge in $L \odot R$.

The n-cube Q_{n} is widely used in network theory. Thus, it is investigated in depth from many different perspectives (see, for example, $[3,5,6,8,12-14]$). These studies have led to the discovery of many properties of Q_{n}, some of them will be mentioned below.

Property 1. $\quad Q_{n}$ is a vertex-transitive bipartite graph, and has diameter and connectivity n. Furthermore, for any vertex x in Q_{n}, there is a unique vertex y in Q_{n} such that distance $D\left(Q_{n} ; x, y\right)=n$.

Property 2. For any pair of vertices x and y with $D\left(Q_{n} ; x, y\right)=d$, there are n internally vertex-disjoint (x, y)-paths $P_{1}, P_{2}, \cdots, P_{n}$ such that d of them have length d and the rest have length $d+2$ if $d \leq n-1$; and all have length n if $d=n$.

We will call a set of n internally vertex-disjoint (x, y)-paths $P_{1}, P_{2}, \cdots, P_{n}$ in Q_{n} determined by Property 2 to be an (x, y)-container with width n, denoted by $C_{n}\left(Q_{n} ; x, y\right)=$ $\left\{P_{1}, P_{2}, \cdots, P_{n}\right\}$. We call a d-cube $Q_{d}(1 \leq d \leq n)$ to be determined by x and y if it is a subgraph of Q_{n} and $D\left(Q_{n} ; x, y\right)=d$. It is clear from Property 2 that if $D\left(Q_{n} ; x, y\right)=d$, then d paths of length d in $C_{n}\left(Q_{n} ; x, y\right)=\left\{P_{1}, P_{2}, \cdots, P_{n}\right\}$ all are located in the Q_{d} determined by x and y.

3 The Proof of Theorem

In this section we will give a proof of the Theorem stated in Introduction. Let x and y be arbitrary two vertices in Q_{n}, F any set with at most $2 n-3$ vertices in $Q_{n}-\{x, y\}$ such that F contains neither $N\left(Q_{n} ; x\right)$ nor $N\left(Q_{n} ; y\right)$. We will complete the proof of the Theorem by proving the following two Lemmas.

Lemma 1. If $D\left(Q_{n} ; x, y\right)=n \geq 2$, then $D\left(Q_{n}-F ; x, y\right)=n$.
Lemma 2. If $D\left(Q_{n} ; x, y\right)=d$, then

$$
D\left(Q_{n}-F ; x, y\right) \begin{cases}=1, & \text { for } d=1 \\ \leq d+4, & \text { for } 2 \leq d \leq n-2, n \geq 4 \\ \leq n+1, & \text { for } d=n-1, n \geq 3\end{cases}
$$

Furthermore, these upper bounds are tight in the sense that there is a restricted set F with $2 n-3$ vertices in $Q_{n}-\{x, y\}$ such that $D\left(Q_{n}-F ; x, y\right)$ is equal to the upper bounds provided $D\left(Q_{n} ; x, y\right) \leq n-1$.

Proof of Lemma 1. It is easy to verify that Lemma 1 holds for $n=2$ and 3. We prove Lemma 1 for $n \geq 4$. Noting that $n=D\left(Q_{n} ; x, y\right) \leq D\left(Q_{n}-F ; x, y\right)$, we need only show that there is an (x, y)-path of length n in $Q_{n}-F$.

Since F does not contain $N\left(Q_{n} ; x\right)$, there is a vertex z in $N\left(Q_{n} ; x\right)$ but not in F. Thus Q_{n} can be represented as $Q_{n}=L \odot R$, each of both L and R is isomorphic to Q_{n-1}, such that the edge $x z$ is a cross edge in $L \odot R$. Without loss of generality, suppose that x is in L and z is in R. Then y must be located in R since $D\left(Q_{n} ; x, y\right)=n$ and $D(L)=n-1$. Let u be a vertex in L such that the edge $u y$ is a cross edge in $L \odot R$. Then $D(L ; x, u)=D(R ; z, y)=D\left(Q_{n-1}\right)=n-1$, and so there are an (x, u)-container $C_{n-1}(L ; x, u)=\left\{L_{1}, L_{2}, \cdots, L_{n-1}\right\}$ and a (z, y)-container $C_{n-1}(R ; z, y)=\left\{R_{1}, R_{2}, \cdots, R_{n-1}\right\}$, in which each path is of length $n-1$.

Let $F_{L}=F \cap L$ and $F_{R}=F \cap R$. Since $|F| \leq 2 n-3$, at least one of $\left|F_{L}\right|$ and $\left|F_{R}\right|$ is at most $n-2$. If $\left|F_{R}\right| \leq n-2$, then there is a path in $C_{n-1}(R ; z, y)$, let us say R_{i}, such that R_{i} avoids F_{R}. So the path $P=x z+R_{i}$ is an (x, y)-path in $Q_{n}-F$ and is of length $\varepsilon(P)=1+\varepsilon\left(R_{i}\right)=1+(n-1)=n$.

Suppose now that $\left|F_{L}\right| \leq n-2$. If u is not in F_{L}, then there is a path in $C_{n-1}(L ; x, u)$, let us say L_{j}, such that L_{j} avoids F_{L} and so the path $P=L_{j}+u y$ is an (x, y)-path in $Q_{n}-F$ and is of length $\varepsilon(P)=\varepsilon\left(L_{j}\right)+1=(n-1)+1=n$.

Suppose that u is in F_{L} below. Then there is a vertex v in $N(R ; y)$ such that v is not in F since $N\left(Q_{n} ; y\right)$ is not contained in F. Furthermore, v is not in $N(R ; z) \cup\{z\}$ since $D(R ; z, y)=n-1 \geq 3$. Consider the set $N=N\left(Q_{n} ; y\right) \cup N\left(Q_{n} ; v\right),|N|=2 n$ since Q_{n} is a bipartite graph. There must be two adjacent vertices w in N and w_{L} in L such that the edge $w w_{L}$ is a cross edge and avoids F because $|N|=2 n$ and $|F| \leq 2 n-3$. It is clear that $w_{L} \neq u$ since $u \in F_{L}$ and $D\left(L ; x, w_{L}\right) \leq n-2$ since u is the unique vertex whose distance from x is equal to $n-1$ in L by Property 1. On the other hand, $D\left(L ; x, w_{L}\right) \geq n-3 \geq 1$ and $w_{L} \neq x$ since $n-1=D(R ; z, y) \leq D(R ; z, w)+2=D\left(L ; x, w_{L}\right)+2$. Select such a vertex w_{L} in $L \backslash F$ that $D\left(L ; x, w_{L}\right)$ is as large as possible. Let $D\left(L ; x, w_{L}\right)=h$. Then $n-3 \leq h \leq n-2$.

Let B be an h-cube determined by x and w_{L}. Let $C_{h}\left(B ; x, w_{L}\right)=\left\{W_{1}, W_{2}, \cdots, W_{h}\right\}$ be an $\left(x, w_{L}\right)$-container. Then each of paths in $C_{h}\left(B ; x, x_{L}\right)$ is of length h.

We claim that u is not in B. It is because $D(L ; x, u)=n-1$ and $D(L ; x, b) \leq D\left(L ; x, w_{L}\right)=$ $h \leq n-2$ for any vertex b in B. Therefore B contains at most $n-3$ vertices in F_{L} since $\left|F_{L}\right| \leq n-2$.

If $h=n-2$, then $w_{L} \in N(L ; u)$. Otherwise there is another vertex u^{\prime} different from u such that $D\left(L ; x, u^{\prime}\right)=n-1$, which contradicts the uniqueness of such a vertex whose distance from x is $n-1$ by Property 1. This implies that w is in $N(R ; y)$. Since B contains at most $n-3$ vertices in F_{L}, there is an $\left(x, w_{L}\right)$-path of length $n-2$ in $C_{n-2}\left(L ; x, w_{L}\right)$, let us say W_{k}, such that W_{k} avoids F_{L}. Let $P=W_{k}+w_{L} w+w y$. Then P is an (x, y)-path in $Q_{n}-F$ and is of length $\varepsilon(P)=\varepsilon\left(W_{k}\right)+2=(n-2)+2=n$.

If $h=n-3$, then w is in $N(R ; v)-\{y\}$. Note that $\left|F_{L}\right| \leq n-2$ and u is in F_{L} but not in B, therefore, if B contains at least $n-3$ vertices in F_{L}, then u is the only vertex of F_{L} outside B. Let $v_{L} \in N(L ; u)$ such that the $v_{L} v$ is a cross edge in $L \odot R$. Then $v_{L} v$ avoids F, but $D\left(L ; x, v_{L}\right)=n-2$, which contradicts our choice of w_{L}. Therefore, B contains at most $n-4$ vertices in F_{L}. Hence there is an $\left(x, w_{L}\right)$-path of length $n-3$, let us say W_{l}, in $C_{n-3}\left(B ; x, w_{L}\right)$ such that W_{l} avoids F_{L}. Then the path $P=W_{l}+w_{L} w+w v+v y$ is an (x, y)-path in $Q_{n}-F$ of length $\varepsilon(P)=\varepsilon\left(W_{l}\right)+3=(n-3)+3=n$.

The proof of Lemma 1 is completed.
Proof of Lemma 2. Suppose $D\left(Q_{n} ; x, y\right)=d$. If $d=1$, then clearly Lemma 2 holds. We prove Lemma 2 for $d \geq 2$ by using an induction on $n(\geq 3)$.

Clearly, Lemma 2 holds for $n=3$. Assume that Lemma 2 is true for $n-1 \geq 3$, and consider $Q_{n}(n \geq 4)$.

Let x and y be two vertices in Q_{n} with $D\left(Q_{n} ; x, y\right)=d \geq 2, F$ be any set of at most $2 n-3$ vertices in $Q_{n}-\{x, y\}$ that contains neither of $N\left(Q_{n} ; x\right)$ and $N\left(Q_{n} ; y\right)$. Then Q_{n} can be represented as $Q_{n}=L \odot R$, where L and R are isomorphic to Q_{n-1}, such that both x and y are located in L or R since $d \leq n-1$. We can, without loss of generality, suppose that both x and y are in L. Let $x x_{R}$ and $y y_{R}$ be two cross edges in $Q_{n}=L \odot R, x_{R}, y_{R} \in R$. Let $C_{n-1}(L ; x, y)=$ $\left\{L_{1}, L_{2}, \cdots, L_{n-1}\right\}$ be an (x, y)-container, and $C_{n-1}\left(R ; x_{R}, y_{R}\right)=\left\{R_{1}, R_{2}, \cdots, R_{n-1}\right\}$ be an (x, y)-container. Let $F_{L}=V(L) \cap F$ and $F_{R}=V(R) \cap F$. We will distinguish two cases.
Case 1. $\quad\left|F_{L}\right| \leq 2 n-5$.
Suppose that F_{L} contains neither of $N(L ; x)$ and $N(L ; y)$. Note that L is isomorphic to Q_{n-1} and $\left|F_{L}\right| \leq 2 n-5=2(n-1)-3$. If $D(L ; x, y)=d=n-1$, then $D\left(Q_{n}-F ; x, y\right)=$ $D(L-F ; x, y)=n-1$ by Lemma 1 . If $D(L ; x, y)=d \leq n-2$, by our induction hypothesis there is an (x, y)-path P in $L-F_{L}$ such that P is of length

$$
\varepsilon(P) \leq \begin{cases}d+4, & \text { for } \quad 2 \leq d \leq n-3, n \geq 5 \\ n, & \text { for } \quad d=n-2, n \geq 4\end{cases}
$$

This implies that $\varepsilon(P) \leq d+4$ for $2 \leq d \leq n-2$, and thus lemma 2 holds.
Now suppose that F_{L} contains either $N(L ; x)$ or $N(L ; y)$. Then $|N(L ; x) \cup N(L ; y)| \geq 2 n-4$ since $|N(L ; x) \cap N(L ; y)| \leq 2$. Thus only one of $N(L ; x) \subset F_{L}$ and $N(L ; y) \subset F_{L}$ is true. We can, without loss of generality by transitivity of Q_{n}, suppose that $N(L ; x) \subset F_{L}$. Then $\left|F_{L}\right| \geq n-1$, and thus $\left|F_{R}\right| \leq n-2$.

Since $N\left(Q_{n} ; x\right)$ is not included in F, x_{R} is not in F. If $d=n-1$, then $D\left(Q_{n} ; x_{R}, y\right)=n$. By Lemma 1 there is an $\left(x_{R}, y\right)$-path P^{\prime} of length n in $Q_{n}-F$. Let $P=x x_{R}+P^{\prime}$, then P is an (x, y)-path of length $n+1$ in $Q_{n}-F$. This proves the case 3 in Lemma 2. So we suppose that $2 \leq d \leq n-2$ below, and need only prove that there is an (x, y)-path P of length at most $d+4$ in $Q_{n}-F$.

If y_{R} is not in F, then since $\left|F_{R}\right| \leq n-2$, there is a path, let us say R_{i}, in $C_{n-1}\left(R ; x_{R}, y_{R}\right)$, such that R_{i} avoids F_{R}. The path $P=x x_{R}+R_{i}+y_{R} y$ is an (x, y)-path in $Q_{n}-F$ of length

$$
\varepsilon(P)=\varepsilon\left(R_{i}\right)+2 \leq D\left(R ; x_{R}, y_{R}\right)+2+2=d+4
$$

Suppose that y_{R} is in F. Let $N\left(R ; y_{R}\right)=\left\{u_{1}, u_{2}, \cdots, u_{n-1}\right\}$ such that $u_{i} \in R_{i}(i=$ $1,2, \cdots, n-1)$ and let $N(L ; y)=\left\{z_{1}, z_{2}, \cdots, z_{n-1}\right\}$ such that the edges $z_{i} u_{i}(i=1,2, \cdots, n-1)$ are cross edges. Let

$$
H_{i}=R_{i}\left(x_{R}, u_{i}\right)+u_{i} z_{i}+z_{i} y, \quad i=1,2, \cdots, n-1
$$

Then

$$
\varepsilon\left(H_{i}\right)=\varepsilon\left(R_{i}\right)+1 \leq D\left(R ; x_{R}, y_{R}\right)+3=d+3,
$$

and $H_{1}, H_{2}, \cdots, H_{n-1}$ are internally vertex-disjoint $\left(x_{R}, y\right)$-paths in Q_{n}. Let $H=\left\{H_{1}, H_{2}, \cdots\right.$, $\left.H_{n-1}\right\}$.

If there is a path in H, let us say H_{i}, such that H_{i} avoids F, then $P=x x_{R}+H_{i}$ is an (x, y)-path in $Q_{n}-F$. Thus we have

$$
\varepsilon(P)=1+\varepsilon\left(H_{i}\right) \leq d+4
$$

We now suppose that for any $i=1,2, \cdots, n-1, H_{i}$ does not avoid F. Note that since $\left|F_{L} \cap N(L ; x)\right|=n-1$ and $|F|-\left|F_{L} \cap N(L ; x)\right|-\left|\left\{y_{R}\right\}\right| \leq n-3$, for each $i=1,2, \cdots, n-1$, H_{i} contains a unique vertex in F under our assumption. Furthermore, at least two paths in H
cannot avoid $F_{L} \cap N(L ; x)$. Thus $d=D\left(Q_{n} ; x, y\right)=D(L ; x, y)=2$. We need only show there is an (x, y)-path P of length 6 in $Q_{n}-F$.

Of all paths in $C_{n-1}(L ; x, y)=\left\{L_{1}, L_{2}, \cdots, L_{n-1}\right\}$, two are of length 2 and the rest are of length 4 by Property 2. We can, without loss of generality, suppose that $z_{1}, z_{2} \in N(L ; x) \cap$ $N(L ; y)$ and $z_{i} \in L_{i}(i=1,2, \cdots, n-1)$. Then both z_{1} and z_{2} are in F_{L} and for each i, $3 \leq i \leq n-1, H_{i}$ contains a unique vertex in $F \backslash(N(L ; x) \cup\{y\})$.

Since $N(L ; y)$ is not included in F_{L}, there is a vertex in $N(L ; y)$, let us say $z_{i}(3 \leq i \leq$ $n-1$), such that z_{i} is not in F_{L}. Let $L_{i}=x a_{i} b_{i} z_{i} y$, then b_{i} and z_{i} are not in F. Let $R_{i} \in C_{n-1}\left(R ; x_{R}, y_{R}\right)$ be a path corresponding to the path $L_{i}, c_{i} \in R_{i}$ and $b_{i} c_{i}$ be the cross edge. Thus at least one of two edges $b_{i} c_{i}$ and $z_{i} u_{i}$ avoids F.

If $z_{i} u_{i}$ does not avoid F, then $u_{i} \in F$ and $b_{i} c_{i}$ avoids F. Since H_{i} contains a unique vertex in F, the subpath $H_{i}\left(x_{R}, c_{i}\right)$ avoids F. The path $P=x x_{R}+H_{i}\left(x_{R}, c_{i}\right)+c_{i} b_{i}+b_{i} z_{i}+z_{i} y$ is an (x, y)-path in $Q_{n}-F$ and is of length 6.

Suppose that $z_{i} u_{i}$ avoids F. Since $D\left(R ; x_{R}, u_{i}\right)=3$, by Property 2 there are an $\left(x_{R}, u_{i}\right)$ container $C_{n-1}\left(R ; x_{R}, u_{i}\right)=\left\{T_{1}, T_{2}, \cdots, T_{n-1}\right\}$, in which three of all paths are of length 3 and the rest of length 5 , and a 3 -cube B^{\prime} determined by x_{R} and u_{i} in R such that all paths of length 3 in $C_{n-1}\left(R ; x_{R}, u_{i}\right)$ are located in B^{\prime}.

We first claim that $\left|F_{R} \cap V\left(B^{\prime}\right)\right| \leq 2$. It holds clearly if $n=4$ since $\left|F_{R}\right| \leq 2$. Suppose $n \geq 5$. Since $D\left(R ; x_{R}, u_{i}\right)=3, B^{\prime}$ is isomorphic to Q_{3} and $y_{R} \in F_{R} \cap V\left(B^{\prime}\right)$. In $C_{n-1}\left(R ; x_{R}, y_{R}\right)$, two paths of length 2 and a path of length 4 must be located in B^{\prime} and the other $n-4$ paths of length 4 must not pass through B^{\prime}. This implies that there are $n-4$ paths in H, each of which contains a unique vertex in F and does not pass through B^{\prime}. In other words, B^{\prime} contains at most two vertices in F. Hence there is a path of length 3 in $C_{n-1}\left(R ; x_{R}, u_{i}\right)$, let us say T_{j}, such that T_{j} avoids F. So $P=x x_{R}+T_{j}+u_{i} z_{i}+z_{i} y$ is an (x, y)-path in $Q_{n}-F$ and is of length 6 .
Case 2. $\quad\left|F_{L}\right| \geq 2 n-4$.
In this case, $\left|F_{R}\right| \leq 1$. Arbitrarily select a shortest $\left(x_{R}, y_{R}\right)$-path S in R if F_{R} is empty, then $P=x x_{R}+S+y_{R} y$ is an (x, y)-path in $Q_{n+1}-F$ and is of length $\varepsilon(P)=\varepsilon(S)+2=$ $D\left(R ; x_{R}, y_{R}\right)+2=d+2$. We suppose that $\left|F_{R}\right|=1$ below.

Subcase 2.1. \quad Neither x_{R} nor y_{R} are in F_{R}.
Since $D\left(R ; x_{R}, y_{R}\right)=D\left(Q_{n} ; x, y\right)=d \geq 2$, in $C_{n-1}\left(R ; x_{R}, y_{R}\right)$ there are d paths of length d. Also since $\left|F_{R}\right|=1$, one of these paths, let us say R_{k}, avoids F_{R}. Let $P=x x_{R}+R_{k}+y_{R} y$. Then P is an (x, y)-path in $Q_{n}-F$ and is of length $\varepsilon(P)=\varepsilon\left(R_{k}\right)+2=d+2$.

Subcase 2.2. One of x_{R} and y_{R} is in F_{R}.
Without loss of generality, suppose that $x_{R} \in F_{R}$. Then y_{R} is not in F_{R}. Since $N\left(Q_{n} ; x\right)$ is not included in F, there is a vertex $z \in N(L ; x)$ such that z is not in F. It is clear that z is not y since $D(L ; x, y)=d \geq 2$. Let $z z_{R}$ is the cross edge in $Q_{n}=L \odot R, z_{R} \in R$. And let $C_{n-1}\left(R ; z_{R}, y_{R}\right)=\left\{Z_{1}, Z_{2}, \cdots, Z_{n-1}\right\}$ be a $\left(z_{R}, y_{R}\right)$-container. Since $D\left(R ; z_{R}, y_{R}\right)$ paths in $C_{n-1}\left(R ; z_{R}, y_{R}\right)$ are of length $D\left(R ; z_{R}, y_{R}\right)$, at least one of them, let us say Z_{j}, does not contain x_{R}. Let $P=x z+z z_{R}+Z_{j}+y_{R} y$ and

$$
\varepsilon(P)=\varepsilon\left(Z_{j}\right)+3=D\left(R ; z_{R}, y_{R}\right)+3 .
$$

Note that z must be located in some path, let us say L_{i}, in $C_{n-1}(L ; x, y)$ since $z \in N(L ; x)$. Thus, $\varepsilon\left(L_{i}\right)$ is of $D(L ; z, y)$ or $D(L ; z, y)+2$.

If $\varepsilon\left(L_{i}\right)=D(L ; x, y)$, then $d=D\left(Q_{n} ; x, y\right)=D(L ; z, y)+1=D\left(R ; z_{R}, y_{R}\right)+1$. It follows that

$$
\varepsilon(P)=D\left(R ; z_{R}, y_{R}\right)+3=d+2
$$

If $\varepsilon\left(L_{i}\right)=D(L ; x, y)+2$, then $D(L ; x, y)=D\left(Q_{n} ; x, y\right) \leq n-2$ and $D\left(Q_{n} ; x, y\right)=$ $D(L ; z, y)-1=D\left(R ; z_{R}, y_{R}\right)-1$. It follows that

$$
\varepsilon(P)=D\left(R ; z_{R}, y_{R}\right)+3=D\left(Q_{n} ; x, y\right)+4=d+4 .
$$

To sum up, we complete the proof of the upper bounds of $D\left(Q_{n}-F ; x, y\right)$ given in Lemma 2. We now show that these two upper bounds can not be improved in general case by selecting a restricted set F with $(2 n-3)$ vertices in $Q_{n}-\{x, y\}$ such that $D\left(Q_{n}-F ; x, y\right)$ is equal to the upper bounds.

Since $2 \leq D\left(Q_{n} ; x, y\right) \leq n-1, Q_{n}$ can be represented as $Q_{n}=L \odot R$, where each of L and R is isomorphic to Q_{n-1} such that both x and y are located in L or R. Let x and y be in L, and $x x_{R}, y y_{R}$ be the cross edges in $L \odot R, x_{R}, y_{R} \in R$. Let $C_{n-1}\left(R ; x_{R}, y_{R}\right)$ be an $\left(x_{R}, y_{R}\right)$-container, R_{i} be a longest path in $R_{n-1}\left(R ; x_{R}, y_{R}\right)$ and $u_{i} \in N\left(R ; y_{R}\right) \cap V\left(R_{i}\right)$. Define

$$
F=N(L ; y) \cup N\left(R ; y_{R}\right)-\left\{y, y_{R}, u_{i}\right\} .
$$

Then $|F|=2 n-3$. Since F does not contain all neighbors of any vertex in Q_{n}, F is a restricted set of Q_{n}. Also $P=x x_{R}+R_{i}+y_{R} y$ is an (x, y)-path in $Q_{n}-F$. Therefore $D\left(Q_{n}-F ; x, y\right)=$ $\varepsilon(P)=\varepsilon\left(R_{i}\right)+2$. Note that $\varepsilon\left(R_{i}\right)=D\left(R ; x_{R}, y_{R}\right)+2$ if $2 \leq D\left(R ; x_{R}, y_{R}\right) \leq n-2$, and that $\varepsilon\left(R_{i}\right)=n-1$ if $D\left(R, x_{R}, y_{R}\right)=n-1$ and also $D\left(R ; x_{R}, y_{R}\right)=D\left(Q_{n} ; x, y\right)=d$. It follows that

$$
D\left(Q_{n}-F ; x, y\right)=\varepsilon\left(R_{i}\right)+2= \begin{cases}d+4, & \text { for } \quad 2 \leq d \leq n-2 \\ n+1, & \text { for } \quad d=n-1\end{cases}
$$

The proof of Lemma 2 is completed.
Corollary $1^{[9]} . \quad D_{3}\left(Q_{3}\right)=4$ and $D_{2 n-3}\left(Q_{n}\right)=n+2$ for $n \geq 4$.
Proof. It is easy to verify $D_{3}\left(Q_{3}\right)=4$ by enumeration. We need only prove that $D_{2 n-3}\left(Q_{n}\right)=$ $n+2$ for $n \geq 4$. But it is a direct consequence of the Theorem. By the theorem $D_{2 n-3}\left(Q_{n}\right) \leq$ $n+2$. On the other hand, $D_{2 n-3}\left(Q_{n}\right) \geq n+2$ since there are two vertices x and y, and a restricted set F with $2 n-3$ vertices in Q_{n} such that $D\left(Q_{n}-F ; x, y\right)=n+2$ provided $D\left(Q_{n} ; x, y\right)=n-2$ and $n \geq 4$ by the Theorem.

Corollary $2^{[3]} . \quad \kappa^{\prime}\left(Q_{n}\right)=2 n-2$ for $n \geq 2$.

References

[1] Bond, J.B., Peyrat, C. Diameter vulnerability of some large interconnection networks. Congr. Numer., 66, 267-282 (1988)
[2] Bondy, J.A., Murty, U.S.R. Graph theory with applications. MacMillan Press, London, 1976
[3] Esfahanian, A.H. Generalized measures of fault tolerance with application to N-cube networks. IEEE Trans. Comput., 38(11): 1586-1591 (1989)
[4] Esfahanian, A.H., Hakimi, S.L. On computer a conditional edge-connectivity of a graph. Information Processing Letters, 27: 195-199 (1988)
[5] Harary, F. Recent results and unsolved problems on hypercube theory. Graph Theory, Combinatorics and Applications (edited by Alavi, Y., Chartrand, G., Oellermann, O.R. and Schwenk, A.J.), II, John Wiley \& Sons, Inc., 621-632, 1991
[6] Hayes, J.P., Mudge, T.N. Hypercube supercomputers. Proc. IEEE, 77(12): 1829-1841 (1989)
[7] Hsu, D.F., Lyuu, Y.D. A graph-theoretical study of transmission delay and fault tolerance. International J. Mini and Microcomputers, 16(1): 35-42 (1994)
[8] Krishnamoorthy, M.S., Krishnamurthy, B. Fault diameter of interconnection networks. Comput. Math. Applic., 13: 557-582 (1987)
[9] Latifi, S. Combinatorial analysis of the fault-diameter of the n-cube. IEEE Trans. Comput., 42(1): 27-33 (1993)
[10] Li, Q., Sotteau, D., Xu, J.M. 2-diameter of de Bruijn graphs. Networks, 28(1): 7-14 (1996)
[11] Li, Q., Zhang, Y. Restricted connectivity and restricted fault diameter of some interconnection networks. DIMACS, 21: 267-273 (1995)
[12] Mulder, M. n-cubes and median graphs. J. Graph Theory, 4: 107-110 (1980)
[13] Pradhan, D.K., Meyer, F.J. Communication structures in fault-tolerant distributed systems. Networks, 23: 379-389 (1993)
[14] Saad, Y., Schultz, M.H. Topological properties of hypercubes. IEEE Trans. Comput., 37(7): 867-872 (1988)

[^0]: Manuscript received October 15, 2001. Revised July 1, 2002.
 Supported by ANSF (No. 01046102) and NNSF of China (No. 10271114).

