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An infinite family of 4-tight optimal double loop networks
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Abstract  An infinite family of 4-tight optimal double loop networks is given in this paper.
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Because of their symmetry, simplicity and extensionality, the double loop networks (DLNs)
have been widely used in the topological design of local networks, multi-module memory orga-
nizations, data alignments in parallel memory systems, and supercomputer architecturel!!. The
graphical model of a DLN is a digraph (also called circulant digraph) G(n;s) with the vertex set
{0,1,2,---,n — 1} and the edge set {i i+ 1 (modn),i = i+s (modn): i =0,1,2,--- ,n—1},
where s is a given integer with 1 < s < n. From the definition, it is clear that G(n;s) is strongly
connected and the diameter is only determined by n and s. Denote by d(n;s) the diameter of
G(n,s) and let d(n) = min{d(n;s) : 1 < s < n}. A network G(n;s) is optimal if d(n;s) = d(n).
Wong and Coppersmith!?! have shown that d(n) > Ib(n) = [\/351 — 2, where the symbol [m]
denotes the smallest integer not less than the real number m.

An important problem is to determine the value of d(n) and find s such that G{n; s) is optimal

(2-10] " although it seems

for any given n > 4. The problem has attracted many authors’ interest
impossible to express the function d(n) in a closed form.

Let Z be the infinite set of all nonnegative integers. For k € Z, an optimal G(n;s) is said to
be k-tight if d(n;s) = Ib(n) + k. Generally, 0- or 1-tight optimal DLNs are called tight optimal
and near-tight optimal, respectively!™®l. We say that {G(n(t);s(t)): t € Z,t >t} is an infinite
family of k-tight optimal DLNs if G(n(t); s(t)) is k-tight optimal for any t € Z and t > ty, where
G(n(to); s(tg)) is the initial element. We say that {n(t) : t € Z,t > o} contains no k-tight
optimal DLN if d(n(t); s(t)) > Ib(n(t)) + k for any s(¢) and ¢ > t5. The functions n(t) and s(t)
are polynomials in t € Z with integral coefficients.

Li, Xu et al.l”l have presented a systematic method to construct optimal DNLs and listed
102 infinite families of optimal DLNs, of which 69 are tight and 33 near-tight, to show that
d(n) < Ib(n) + 1 for n < 300. Xul® has found 3 infinite families of 2-tight optimal DLNs. Erdds
and Hsul¥! reported an exhaustive computer search. Chen showed that d(n) < Ib(n) + 4 for
n < 75000, there exist only 3 n’s, 53749, 64729 and 69283, for which the equality holds; the
corresponding 4-tight optimal DLN’s are G(53749; 985), G(64729;394) and G(69283;1764), and
their diameters are 404, 443 and 458, respectively. With computer, we found that the fourth
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4-tight optimal DLN is G/(94921;515), and its diameter is 536. However, as far as we know, no
infinite family of 4-tight optimal DLNs has been found so far. In this paper, combining geometric
method with number theoretic technics, we will construct an infinite family of 4-tight optimal
DLNs with the initial element G(69283;1764).

In the following, we consider n(t) = 3t2+6t—26. ¢ € Z. It is easy to verify lb(n(t)) = 3t+1 for
t > 14. Please refer to ref. [1] or ref. [7] for terminology and notation not defined and explained

in this paper.
1 Some lemmas

Lemma 17,  Let L = L{(n;l, h,x,y) be an L-tile. If |y — 2| > zo > 1, then d(n) >
V3 — 328 + 4z —2.

Lemma 2. Let n(t) = 3t + 3t — 26. Then {n(t) : ¢ € Z,t > 29} contains no tight
optimal DLN. Moreover, if L(n,l, h,z,y) is near-tight optimal, then |z — y| < L.

Lemma 3!"). Let n(t) = 3t + 3t — 26 and L = L(n;l,h,z,y) be an L-tile, where | =
2t+a,h=2t+bx=t+a+b—-j, z=|r~yl,a b = and y are polynomials in ¢t € Z with
integral coefficients. Then L is k-tight if and only if

(a+b—j)a+b—j+z)—ab+ (6+2—-2j)~-26=0 (1)
holds for any j = 3+k (k € Z). Moreover, if there exist integers a and 8 such that ay+8(h—y) = 1,
then there exists only one k-tight optimal G(n(t); s(t), where s = al — B(z — 1) (mod n).

2 Main results

Theorem 1. For n € Z, a necessary condition!) that there exist s,m € Z such that
n = 52 + 3m? is that if n has a prime divisor p with p = 2 or p = 5 (mod 6), then p has an even
power in the prime decomposition of n.

Proof. We proceed by induction on n > 3. If n = 3 there is nothing to prove, so we suppose
that the theorem holds for any n less than an integer & with & > 4. Let n = k and suppose that
there exist s,m € Z such that k = 5% +3m? and k has a prime divisor p with p =2 or p = 5 (mod
6).

If p = 2, then s and m are of the same parity since 2 is a divisor of k = s% + 3m?. If s = 2
and m = 24, then k = 22(i? + 3;2), so the theorem holds by the induction hypothesis. If s = 2i+ 1
and m = 25 + 1, then

k=g +3m?> =4 + 4+ 1+ 3452+ 45+ 1) = 2%[i(i + 1)+ 35(5 + 1) + 1].
The theorem holds by the induction hypothesis since the number in the square bracket is odd.

We now suppose p = 5(mod 6). If p is not a divisor of sm, since k = 5% + 3m? = O(mod p),
then p = 1(mod 6), a contradiction. Thus, p is a divisor of s or m. Since p is a divisor of
k = s? + 3m?, it follows that p is a common divisor of s and m. Let s = pi and m = pj. Then
k = p*(i® + 3;j2), so the theorem holds by the induction hypothesis.

Corollary. Let n = s? + 3m? (s,m € Z) and suppose that 3 is not a divisor of n. Then
n = 4(mod 6) if 2 is a divisor of n, and n = 1(mod 6) otherwise.

1) It is easy to prove that this condition is also sufficient.
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Theorem 2. A necessary condition® for eq. (1) in a and b to have an integral solution is
that for any z,j,t € Z, if
H. ;= (2] —2)° = 3[j(j — 2) + (6 + 2 — 2j)t — 20] (2)
has a prime divisor p with p = 2 or p = 5(mod 6), then p has an even power in the prime
decomposition of n.
Proof. Suppose that eq. (1) in a and b has an intcgral solution and rewrite it as
a? +[b— (2 —2)]a+b*— (25 —2)b+C =0, (3)
where C = j(j — 2) + (6 + 2 — 2j)t — 26. Then eq. (3) in @ has an integral solution by our
assumption. Thus, there exists an m € Z such that
[b— (25 — 2)]2 —4[b* — (2§ — 2)b+ C] = m?.
Express it as an equation in b:
36 — 2(2j — 2)b+ [4C +m? — (2j — 2)?] = 0. (4)
Then eq. (4) in b has an integral solution. Thus, there exists an n € Z such that
4(2§ = 2)? — 12[4C + m? — (2j — 2)*] = n*.
This implies that n is even. Let n = 2s in the above expression. We have 4(2j — 2)? — 12C =
52+ 3m?, that is, 4H, ; = s + 3m®. The theorem follows by Theorem 1.

Theorem 3. Let n(t) = 3t> + 6t — 26, t(f) = 28f% + 132f + 151, f = 22 - 85%¢. Then
{n(t(f(e))) : e € Z} contains no k-tight optimal DLN for each £ =0,1,2,3.

.Proof. (a) By Lemma 2, {n(t): t € Z,t > 29} contains no tight optimal DLN.

(b) If {n(t) : t € Z, t = 29} contains a near-tight optimal DLN, then there exists a near-tight
tile L = L(n;l,h,z,y). Let z = |z —y|. Then z € 1 by Lemma 2. Counting Hy 4 and H; 4 in
expression (2), we have

Hy 4 =6t +94=6-28-22%.85%% +6-132-22 - 85% + 1000
=23(3.7-22%.85%% +3.33.22-85% + 125);
Hy 4, =3t+91=23-28-227.85%% +3.132.22.85% + 544
=17(3-28-222 -85 . 5¢% +3-132-22-85 - 5e + 32).
Note that the number in the brackets of the expression of Hy 4 is odd, and, that of the expression of
H, 4 is not a multiple of 17. It follows that neither Hy 4 nor H; 4 satisfies the condition in Theorem
2; that is, eq. (1) in a and b has no integral solution. This implies that {n(¢(f(e))) : e € Z}
contains no near-tight optimal DLN.

(c) If {n(t(f(e))) : e € Z} contains a 2-tight optimal DLN, then there exists a 2-tight tile

L= L(n;l,'h,a:,y). Let z = |z — y|. Then for z > 5 and t > 151, we have

3n(t)—§52— 3t+§ 24—3t—97> 3t+§ 2
4° 2 2/
By Lemma, 1, a contradiction can be deduced as follows:

3t+3:d(n(t))>3t+g+g—2:3t+3.

1) It is easy to prove that this condition is also sufficient.

© 1995-2004 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



142 SCIENCE IN CHINA (Series A) Vol. 46

Therefore z < 4. For 0 € z € 4 and j = 5, the values of H, 5 in expression (2) can be counted as
follows:

Hys =99 =3 11;

Hys =3t+97=2(3-14f2+3-66f + 275);

Hos = 6t+97=17(6-28-222.85%.5¢2 4 6-132-22 -85 5e + 59);

His=9+99=2(9-14f>4+9-66f + 729);

Hos = 12t + 103 = 5(12 - 28 - 222 - 17 - 85%? + 12 - 132- 22 - 17 - 85¢ + 383).

1t is easy to verify that no value of H., 5 satisfies the condition in Theorem 2. Therefore, eq.
(1) in a and b has no integral solution, implying that {n(t(f(e))) : e € Z} contains no 2-tight
optimal DLN.

(d) If {n(t(f(e))) : e € Z} contains a 3-tight optimal DLN, then there exists a 3-tight tile

L =1Ll h,z,y). Let z= | —y|. Then for z > 7 and ¢t > 151,
3n(t)—§7‘2 = <3t+ §>2 +3t — 115 > (3t+ §>2
4 2 2
By Lemma 1, a contradiction can be deduced as follows:
3t + 4 = d(n(t)) >3t+%+ g —2=3t+4.

Therefore z £ 6. For 0 < z < 6 and j = 6, the values of H, g in expression (2) can be counted as
follows:

Hge=114=2-57;

Hsg = 3t+ 109 = 2(3-14f2 + 3 - 66f + 281);

Hye=6t+106 = 11(6-28-22-2-85%? + 6 - 12- 22 - 85%¢ + 92);

H3e=9t+105=3-2%(3-7-11-22-85%? + 3-33-22-85¢ + 61);

Hy e = 12t + 106 = 2(6t + 53);

Hig =15t 4+ 109 = 2(15- 142 + 15 - 66 f + 1187);

Hgg = 18t + 114 = 3(6t + 38).

It is easy to verify that for each 2 = 1,2,---,6, H, ¢ does not satisfy the condition in Theorem
2; that is, eq. (1) has no integral solution. For Hy g, if eq. (1) has an integral solution, then, by
Theorem 2, 6¢+ 38 can be expressed as the form s? + 3m?. Note that 3 is not a divisor of (6¢+ 38),
but 2 is. By Corollary of Theorem 1, we should have 6t 4+ 38 = 4(mod 6). But 6t+ 38 = 2(mod 6),
a contradiction.

To sum up, {n(t(f(e))): e € Z} contains no k-tight optimal DLN for each k = 0,1, 2, 3.

Theorem 4. Let n(t) = 3t*+6t—26, t = t(g) = 14812¢°+30369+151, s(g) = 14308392¢*+
6176604g° + 98463092 4 68625g + 1764. Then {G(n(t(g));s(g)) : g = gle) = 22-85%¢, e € Z} is
an infinite fimily of 4-tight optimal DLNs, diameter 3¢ + 5, and initial element G(69283; 1764).

Proof. Let n(t) = 3t> + 6t — 26, t(f) = 28f% + 132f + 151, f = 23g, g = 22 - 85%¢. Then
t = 14812¢% + 30369 + 151. By Theorem 6, {n(t(g(e))) : e € Z} contains no k-tight optimal DLN
for each £ = 0,1,2,3. To complete the proof, it suffices to show that it contains a 4-tight optimal
DLN. To this end, let z =2 —y =1 and j = 7. By (1) we have

(a+b—6)a+b—T7)—ab—Tt—26=0. (5)
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We find that (a,b) = (1, ~322¢g — 27) is a solution of (5). It follows that

I(g) = 2t + a = 29624g® + 60729 + 303;

h(g) = 2t + b = 29624¢> + 57509 + 275;

z(g) =t+a+b—7 = 14812 + 2714¢g + 119;

ylg) =z — 1 = 14812¢% 4 2714g + 118;

h'(g) = h —y = 14182¢2 + 30369 + 157;

I'(g9) =1 — = = 14182¢> + 3358g + 184.

Choose a(g) = 322¢g% + 739 + 4, B(g) = —322¢% — 66¢g — 3. Then a(g)y(g) + B(g)h'(g) = 1

and g.c.d.(y(g),h'(g)) = 1 for g = 22-85%, ¢ € Z. By Lemma 3, the L-tile L(n;l, h,z,y) is (1, s)-
realizable, where s(g) = a(g)l(g)—8(g)l'(g) = 14308392g* +61766044° +984630¢° + 686259+ 1764.

Corollary. ((69283;1764) is a 4-tight optimal DLN; its diameter is 458.
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