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Abstract. In graph theory and study of fault tolerance and transmission delay of networks, connectivity and
diameter of a graph are two very important parameters and have been deeply studied by many authors. Wide
diameter combining connectivity with diameter is a more important parameter to measure fault tolerance and
efficiency of parallel processing computer networks and has received much attention in the recent years. Diameter
with width k of a graph G is defined as the minimum integer d for which between any two distinct vertices in
G there exist at least k internally disjoint paths of length at most d. In the present paper, the tight upper bounds
of wide diameter of the Cartesian product graphs are obtained. Some known results can be deduced or improved
from ours.
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1. Introduction

In this paper, the letter G always stands for a finite, simple and connected graph or digraph
from the context with the vertex-set V = V (G) and the edge (or arc)-set E = E(G). The
term graph means a undirected graph, digraph means a directed graph, and connected for
digraphs means strongly connected. We follow Bondy and Murty (1976) for terminology
and notation not defined and explained here.

Consider G as a model of a computer interconnection network with each vertex represent-
ing a processor and each edge or arc representing a two- or one-way communication link.
Fault tolerance and efficiency are important criteria in design of interconnection networks.
Fault tolerance and transmission delay of the networks are often measured by, respectively,
connectivity and diameter of the corresponding graph or digraph, which have been deeply
studied by many authors. The advent of VLSI technology and fiber optics material science
has enabled us to make very large scale parallel processing computer systems, and fast and
complicated communication networks. To consider fault tolerance and efficiency, all these
systems demand the existence of a large number of internally disjoint paths connecting any
two vertices, each of which is of short length. In the circumstances, any exclusive consider-
ation of connectivity or diameter is not comprehensive. This issue motivates us to consider
the following concepts by combining connectivity with diameter rather naturally.
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Let G be a connected graph or digraph, and x, y be two distinct vertices of G. The
distance with width k from x to y, k-distance for short and denoted by dk(G; x, y), is the
minimum integer d for which there are at least k internally disjoint (x, y)-paths of length at
most d in G. The diameter with width k of G, k-diameter for short and denoted by dk(G),
is defined as the maximum k-distance dk(G; x, y) over all ordered pairs (x, y) of vertices
of G.

The concept of wide diameter is first proposed by Hsu (1994), Hsu and Lyuu (1991),
Hsu and Luczak (1994), Flandrin and Li (1994), independently. From the definition of wide
diameter, it is clear that d1(G) is the diameter d(G) and

dk(G) ≥ dk−1(G) ≥ · · · ≥ d2(G) ≥ d1(G) = d(G).

This implies that wide diameter is a generalization of diameter. If G is k-connected, i.e., the
connectivity κ(G) ≥ k, then dk(G) certainly exists by the well-known Menger’s theorem
(see Bondy and Murty, 1976, Theorem 11.6 and Corollary 11.7). The maximum value of
k that dk(G) is well defined is the connectivity κ(G). Thus the concept of wide diameter
is a combination of connectivity and diameter. It follows that wide diameter is not only
an important parameter to measure fault tolerance and efficiency of parallel processing
computer networks, but also an attractive research topic in graph theory. It has received
much attention in recent years (Cao et al., 1999; Du et al., 1993; Duh et al., 1996; Flandrin
and Li, 1994; Hayes and Mudge, 1989; Hsu, 1994; Hsu and Lyuu, 1991; Hsu and Luczak,
1994; Ishigami, 1996; Jwo and Tuan, 1999; Kirshnamoorthy and Krinamurthy, 1987; Li
et al., 1996; Liaw and Chang, 1999a, 1999b; Saad and Schultz, 1988).

As an operation of graphs, the Cartesian product is an important method in designing very
large scale networks from small ones. Hsu (1994) considered wide diameter of the Cartesian
product G1 × G2 and proved that dk1+k2 (G1 × G2) ≤ dk1 (G1) + dk2 (G2) if Gi is a ki (≥ 1)-
connected graph with order at least three for each i = 1, 2. In this paper, we will improve
this result by considering wide diameter of the Cartesian product G1 × G2 × · · · × Gn of
n graphs (resp. digraphs) G1, G2, . . . , Gn .

To state our results in this paper, we need introduce a concept. A k-connected (di)graph
G is said to be good if for any vertex x in G and any k (out-)neighbors v1, v2, . . . , vk of
x there are at least k internally disjoint (vi , x)-paths of length at most d(G). Clearly, any
k-connected graph is good.

Now, we can state our main results in this paper as follows.

Theorem A. For i = 1, 2, . . . , n, let Gi be a good and ki (≥1) connected digraph. If
G = G1 × G2 × · · · × Gn and k = k1 + k2 + · · · + kn, then

dk(G) ≤ max{d(G1) + · · · + d(Gn) + 1, d(G1) + · · · + d(Gi−1)

+ dki (Gi ) + d(Gi+1) + · · · + d(Gn) : 1 ≤ i ≤ n}.

Theorem B. For wide diameter of the Cartesian products of graphs, we have the following
three conclusions.
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(i) Let Gi be a graph with connectivity ki (≥1) and order at least three for i = 1, 2, . . . , n.
If G = G1 × G2 × · · · × Gn and k = k1 + k2 + · · · + kn, then

dk(G) ≤ max{d(G1) + · · · + d(Gi−1) + dki (Gi )

+ d(Gi+1) + · · · + d(Gn) : 1 ≤ i ≤ n}.

(ii) Let G be a graph with connectivity k (≥2). Then d1+k(K2 × G) ≤ d(G)+2 if dk(G) =
d(G) + 1.

(iii) Let Gi be a graph with connectivity ki (≥1) for i = 1, 2. Then dk1+k2 (G1 × G2) ≥
d(Gi ) + 2 if Gi is ki -regular for i = 1 or 2.

The rest of this paper is organized as follows. In Section 2, the definition and some
fundamental properties of the Cartesian products are given. The proofs of Theorems A and
B are given in Section 3. Other results, corollaries and some remarks are given in Section
4. In Conclusions, we propose a conjecture.

2. Fundamental properties of cartesian products

The Cartesian product of n digraphs G1, G2, . . . , Gn is the digraph G, denoted by G1 ×
G2×· · ·×Gn , with the vertex-set V (G) = V (G1)×V (G2)×· · ·×V (Gn), and an arc from a
vertex x = x1x2 · · · xn to another vertex y = y1 y2 · · · yn (x j , y j ∈ V (G j ), j = 1, 2, . . . , n)
if and only if they differ in exactly one coordinate, and for this coordinate, say j th, there is
an arc from the vertex x j to the vertex y j in G j .

Similarly, we can define the Cartesian product of n graphs.
As an operation of graph theory, the Cartesian product has been widely used in designing

large scale computer systems and interconnection networks (see Bermond et al., 1986).
Thus it has been deeply investigated from many different perspectives. These studies have
led to the discovery of many properties (Xu, 1998).

First, we point out that although graphs and digraphs are essentially different objects, a
graph can in the circumstances be thought of as a digraph in which there are two arcs, one
in each direction, corresponding to each edge. In view of this fact, a graph can be thought of
as a special digraph. As a result, any result for digraphs has an analogy for graphs as well.

Secondly, we observe that if we identify isomorphic (di)graphs, the operations of the
Cartesian products satisfy associative and commutative laws clearly. We have in the literature
seen it is such a simple observation that can make us greatly simplify proofs of some results
concerning the Cartesian products.

Thirdly, we note that if P = (x1, v1, v2, . . . , vm, y1) is an (x1, y1)-path in G1, then for
any b ∈ V (G2), (x1b, v1b, v2b, . . . , vmb, y1b), denoted by Pb, is an (x1b, y1b)-path from
the vertex x1b to the vertex y1b in G1 × G2. Similarly, if W = (x2, u1, u2, . . . , ul , y2) is an
(x2, y2)-path in G2, then for any a ∈ V (G1), (ax2, au1, au2, . . . , aul , ay2), denoted by aW ,
is an (ax2, ay2)-path from the vertex ax2 to the vertex ay2 in G1 × G2. Let x = x1x2 and
y = y1 y2. If x and y are two distinct vertices in G1 × G2, then Px2 ∪ y1W is an (x, y)-path
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from x to y in G1 × G2. Such a path will, in this paper, be expressed as

x = x1x2
Px2−→ y1x2

y1W−→ y1 y2 = y.

Lastly, we list two fundamental facts used in this paper about the Cartesian products,
which are well-known and can be found in the literature (see, for example (Xu, 1998)).

Fact 1. G1 × G2 × · · · × Gn is k-regular if Gi is ki -regular, and is k-connected if Gi is
ki (≥1)-connected, where k = k1 + k2 + · · · + kn .

Fact 2. The diameter of G1 × G2 × · · · × Gn is equal to d(G1) + d(G2) + · · · + d(Gn).

3. Proofs of Theorem A and Theorem B

Proof of Theorem A: Since G is k-connected from Fact 1, k-diameter of G dk(G) is
well defined. We will complete the proof by induction on n ≥ 2. For n = 2, we need only
construct k1 + k2 internally disjoint (x, y)-paths in G1 × G2 such that each of them is of
length at most

max{dk1 (G1) + d(G2), d(G1) + dk2 (G2), d(G1) + d(G2) + 1}

for any two distinct vertices x and y in G1 × G2.
Let x = x1x2 and y = y1 y2, where x1, y1 ∈ V (G1) and x2, y2 ∈ V (G2). Let ai = (x1, vi )

be the out-arc from x1 in G1 for each i = 1, 2, . . . , d+
G1

(x1), and b j = (x2, u j ) the out-arc
from x2 in G2 for each j = 1, 2, . . . , d+

G2
(x2).

If x1 �= y1, then there exist a shortest (x1, y1)-path P and k1 internally disjoint (x1, y1)-
paths P1, P2, . . . , Pk1 in G1 such that ε(Pi ) ≤ dk1 (G1) for each i = 1, 2, . . . , k1. We can,
without loss of generality, suppose that Pi has the first arc ai for each i = 1, 2, . . . , k1,
and P contains none of the arcs a2, . . . , ak1 . Thus ε(Pi ) ≥ 2 for i = 2, 3, . . . , k1. Then
vi cuts Pi into two subpaths, ai and P ′

i , where P ′
i is the (vi , y1)-section of Pi . And so the

(x1, y1)-path Pi can be expressed as

Pi = x1
ai−→ vi

P ′
i−→ y1, i = 2, 3, . . . , k1.

Similarly, if x2 �= y2, there are a shortest (x2, y2)-path W and k2 internally disjoint
(x2, y2)-paths W1, W2, . . . , Wk2 in G2 such that each of them is of length ε(W j ) ≤ dk2 (G2).
Let, without loss of generality, b j = (x2, u j ) be the first arc in W j for j = 1, 2, 3, . . . , k2,
and suppose that W contains none of the arcs b2, . . . , bk2 . Then u j is an internal vertex in
W j and

W j = x2
b j−→ u j

W ′
j−→ y2, j = 2, 3, . . . , k2,

where W ′
j is the (u j , y2)-section of W j for each j = 2, 3, . . . , k2.
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Since G1 is a good digraph, for the subset {v1, v2, . . . , vk1} of vertices in G1, there must
exist k1 internally disjoint (vi , x1)-paths T1, T2, . . . , Tk1 in G1 such that each of them is
of length at most d(G1) for i = 1, 2, . . . , k1. Similarly, there are k2 internally disjoint
(u j , x2)-paths U1, U2, . . . , Uk2 in G2 such that each of them is of length at most d(G2) for
j = 1, 2, . . . , k2.

Using the above notation, we construct k1 + k2 internally disjoint (x1x2, y1 y2)-paths
R1, R2, . . . , Rk1+k2 in G1 × G2 as follows.

If y1 �= x1 and y2 �= x2, then let




R1 = x1x2
Px2−→ y1x2

y1W1−→ y1 y2,

Ri = x1x2
ai−→ vi x2

vi W−→ vi y2
P ′

i y2−→ y1 y2, i = 2, . . . , k1,

Rk1+1 = x1x2
x1W−→ x1 y2

P1 y2−→ y1 y2,

Rk1+ j = x1x2
x1b j−→ x1u j

Pu j−→ y1u j

y1W ′
j−→ y1 y2, j = 2, . . . , k2.

(1)

Each of which is of length


ε(R1) ≤ d(G1) + dk2 (G2),

ε(Ri ) ≤ dk1 (G1) + d(G2), i = 2, 3, . . . , k1,

ε(Rk1+1) ≤ dk1 (G1) + d(G2),

ε(Rk1+ j ) ≤ d(G1) + dk2 (G2), j = 2, 3, . . . , k2.

(2)

If y1 = x1 and y2 �= x2, then let

{
Ri = x1x2

ai x2−→ vi x2
vi W−→ vi y2

Ti y2−→ x1 y2 = y1 y2, i = 1, 2, . . . , k1,

Rk1+ j = x1x2
x1W j−→ x1 y2 = y1 y2, j = 1, 2, . . . , k2.

(3)

Each of which is of length{
ε(Ri ) ≤ 1 + d(G2) + d(G1), i = 1, 2, . . . , k1,

ε(Rk1+ j ) ≤ dk2 (G2), j = 1, 2, . . . , k2.
(4)

If y1 �= x1 and y2 = x2, then let

{
Ri = x1x2

Pi x2−→ y1x2 = y1 y2, i = 1, 2, . . . , k1,

Rk1+ j = x1x2
x1b j−→ x1u j

Pu j−→ y1u j
x1U j−→ y1x2 = y1 y2, j = 1, 2, . . . , k2.

(5)

Each of which is of length{
ε(Ri ) ≤ dk1 (G1), i = 1, 2, . . . , k1,

ε(Rk1+ j ) ≤ 1 + d(G1) + d(G2), j = 1, 2, . . . , k2.
(6)
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It follows that the induction base holds.
Assume Theorem A holds for n − 1 and consider n(≥3). Let H = G2 × G3 × · · · × Gn ,

G = G1 × H and h = k2 + k3 + · · · + kn . By the associativity of Cartesian product,
induction base and induction hypothesis, we have that

dk(G) ≤ max{dk1 (G1) + d(H ), d(G1) + dh(H ), d(G1) + d(H ) + 1}
≤ max{dk1 (G1) + d(G2) + · · · + d(Gn), d(G1) + max{d(G2) + · · · + d(Gn) + 1,

d(G2) + · · · + d(Gi−1) + dki (Gi ) + d(Gi+1) + · · · + d(Gn) : 2 ≤ i ≤ n},
d(G1) + d(G2) + · · · + d(Gi ) + · · · + d(Gn) + 1}

= max{d(G1) + · · · + d(Gi ) + · · · + d(Gn) + 1, d(G1) + · · · + d(Gi−1)

+ dki (Gi ) + d(Gi+1) + · · · + d(Gn) : 1 ≤ i ≤ n}.

The proof of Theorem A is completed.

Proof of Theorem B: First, we prove the first conclusion. Noting that any m-connected
graph is good, we reach this aim by using the same statements as ones in the proof of
Theorem A. We need only prove that

dk1+k2 (G1 × G2; x, y) ≤ max{dk1 (G1) + d(G2), d(G1) + dk2 (G2)}. (7)

To this aim, we choose k1 +k2 internally disjoint (x, y)-paths as the same as ones defined
in (1), or (3), or (5). But in the circumstances, we replace Ti in (3) by an edge a′

i = vi x1 for
each i = 1, 2, . . . , k1, and replace U j in (5) by an edge b′

j = u j x2 for each j = 1, 2, . . . , k2.
Thus, from the inequalities (2), (4) and (6), we need only consider the length of the paths
R1, R2, . . . , Rk1 defined in (3) and Rk1+1, Rk1+2, . . . , Rk1+k2 defined in (5), that is the length
of the following paths


 Ri = x1x2

ai x2−→ vi x2
vi W−→ vi y2

a′
i y2−→ x1 y2 = y1 y2, i = 1, 2, . . . , k1

Rk1+ j = x1x2
x1b j−→ x1u j

Pu j−→ y1u j

x1b′
j−→ y1x2 = y1 y2, j = 1, 2, . . . , k2.

(8)

Clearly, these paths are of the lengths

{
ε(Ri ) ≤ 2 + d(G2), i = 1, 2, . . . , k1,

ε(Rk1+ j ) ≤ 2 + d(G1), j = 1, 2, . . . k2.

It follows that, in order to prove (7), we need only show that

max{d(G1), d(G2)} + 2 ≤ max
{
dk1 (G1) + d(G2), d(G1) + dk2 (G2)

}
. (9)
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In fact, note that either d(G) ≥ 2 if k = 1 or dk(G) ≥ 2 if k ≥ 2 for any graph G
with connectivity k(≥1) and order at least three, which implies that the inequality (9) holds
clearly. Thus the first conclusion in Theorem B follows.

We now prove the second conclusion. Note that under our assumption, d(K2) + dk(G) =
d(G) + 2. Also note that, in the above discussion, the assumption of order at least three is
used in the proof of the inequality (9). But this is clear for G1 = K2 and G2 = G since
max{d(K2), d(G)} + 2 = d(G) + 2 = 1 + dk(G) = max{d(K2) + d(G), d(K2) + dk(G)}.

Next, we show the third conclusion. In fact, if G1 is k1-regular, then let x1, y1 ∈ V (G1)
such that distance between x1 and y1 in G1 is equal to d(G1). For any x2 ∈ V (G2),
let x = x1x2 and y = y1x2, then x and y are two distinct vertices in G1 × G2 since
x1 �= x2. Since G1 is k1-regular, of any k1 + k2 paths between x and y in G1 × G2, at
least one is constructed in the same way as (8), its length is d(G1) + 2. It follows that
dk1+k2 (G1 × G2) ≥ d(G1) + 2.

If G2 is k2-regular, then let x2, y2 ∈ V (G2) such that distance between x2 and y2 in G2 is
equal to d(G2). Let x = x1x2 and y = x1 y2. Then, similarly, we have dk1+k2 (G1 × G2) ≥
d(G2) + 2.

The proof of Theorem B is completed.

4. Other results, corollaries and remarks

It is possible for some graphs G that wide diameter dk(G) is equal to its diameter d(G),
where k(≥2) is connectivity of G. For instance, the n(≥2)-dimensional binary undirected
de Bruijn graph B(2, n) has connectivity 2 and diameter n. Li et al. (1996) showed that
wide diameter d2(B(2, n)) = n = d(B(2, n)). However, Hsu and Luczak (1994) proved
that dk(G) ≥ d(G) + 1 for any k-regular k-connected graph G if k ≥ 2. We generalize this
result to digraphs.

Theorem C. Let G be a k-regular k-connected digraph. Then dk(G) ≥ d(G)+1 if k ≥ 2.

Proof: Let x and y be two vertices of the digraph G such that distance from x to y is
equal to d(G), and let z be an out-neighbor of y. Consider any k(≥2) internally disjoint
(x, z) paths in G. Of which at least one must contain y and is of length at least d(G) + 1.
So dk(G) ≥ dk(G; x, y) ≥ d(G) + 1.

A k-regular k-connected graph or digraph G satisfying dk(G) = d(G) + 1 is said to be
k-optimal, where k (≥2) is connectivity of G.

Corollary 1. K2 × G is (k + 1)-optimal if the graph G is k-optimal.

Proof: Note that dk(G) = d(G)+1, G is k-regular since G is k-optimal, and d(K2×G) =
1 + d(G) by Fact 2. By the second conclusion of Theorem B, we have that dk+1(K2 × G) ≤
d(G) + 2 = 1 + d(K2 × G).

On the other hand, since G is k-regular k-connected, K2 × G is (k + 1)-regular and
(k + 1)-connected by Fact 1. It follows from Theorem C that dk+1(K2×G) ≥ 1+d(K2×G).
Hence K2 × G is (k + 1)-optimal.
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Note: The inequality dk1+k2 (K2 × G) ≥ d(G) + 2 is straightforward from the third
conclusion of Theorem B.

Corollary 2. Let Gi be a ki (≥2)-optimal graph for each i = 1, 2, . . . , n(≥2), and let
k = k1 + k2 + · · · + kn. Then G = G1 × G2 × · · · × Gn is k-optimal.

Proof: Since for each i = 1, 2, . . . , n, Gi is ki -optimal, Gi is ki -regular and ki -connected.
Thus G is k-regular k-connected by Fact 1. It follows that dk(G) ≥ d(G)+1 by Theorem C.

On the other hand, dki (Gi ) = d(Gi ) + 1 since Gi is ki -optimal for each i = 1, 2, . . . , n.
By Fact 2 the diameter d(G) = d(G1) + d(G2) + · · · + d(Gn). It follows from Theorem B
that dk(G) ≤ d(G1) + d(G2) + · · · + d(Gn) + 1 = d(G) + 1. Thus G is k-optimal.

Constructing k-optimal graphs or digraphs is one of main aims of network designers. A
large number of such graphs and digraphs have been constructed in the literature. Some of
them can be expressed as the Cartesian products, and some results can be deduced from
ours directly.

The hypercube Qk , a well-known topological structure of network, can be expressed
as the Cartesian product K2 × K2 × · · · × K2 of k complete graphs K2. Qk is k-regular
k-connected, and has diameter k by Fact 1 and Fact 2.

Corollary 3 (Hayes and Mudge, 1989; Kirshnamoorthy and Krinamurthy, 1987; Saad and
Schultz, 1988). Qk is k-optimal if k ≥ 2.

Proof: We proceed by induction on k ≥ 2. Since Q2 = K2 × K2 = C4, it is clear that
the cycle C4 is 2-optimal. Suppose that Qk−1 is (k − 1)-optimal. Consider Qk , k ≥ 3.
Since Qk = K2 × Qk−1 and Qk−1 is (k − 1)-optimal, it is obtained immediately that Qk is
k-optimal by Corollary 1.

The generalized hypercube G(m1, m2, . . . , mn), proposed by Bhuyan and Agrawal (1984),
can be expressed as Km1 × Km2 × · · · × Kmn , where mi ≥ 3 for any i = 1, 2, . . . , n.
G(m1, m2, . . . , mn) is k-regular k-connected, and has diameter n from Fact 1 and Fact 2,
where k = m1 + m2 + · · · mn − n.

Corollary 4 (Duh et al., 1996). G(m1, m2, . . . , mn) is k-optimal, where k = m1 + m2 +
· · · mn − n.

Proof: This is a direct consequence of Corollary 2 since Kmi is (mi − 1)-optimal.

We use 	Cd to denote a directed cycle of length d(≥3), which has diameter d − 1. The
generalization of hypercube for digraphs 	C(d1, d2, . . . , dk), proposed by Hsu and Lyuu
(1991), can be expressed as 	Cd1 × 	Cd2 × · · · × 	Cdk . It is easy to see that 	C(d1, d2, . . . , dk)
is a k-regular k-connected digraph, and has diameter h = d1 + d2 + · · · + dk − k from Fact
1 and Fact 2.

Corollary 5 (Hsu and Lyuu, 1991). 	C(d1, d2, . . . , dk) is k-optimal if k ≥ 2.
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Proof: let G = 	C(d1, d2, . . . , dk). Noting that 	Cdi is good, by Theorem A, we have

dk(G) ≤
k∑

i=1

d
(
Cdi

) + 1 =
k∑

i=1

(di − 1) + 1 = h = d(G) + 1.

On the other hand, from Theorem C we have dk(G) ≥ d(G) + 1. It follows that dk(G) =
d(G) + 1, which implies that G is k-optimal.

Similarly, we use C(d1, d2, . . . , dk) to express the Cartesian product Cd1 ×Cd2 ×· · ·×Cdk ,
which is called the torodal mesh by Ishigami (1996). It is clear that C(d1, d2, . . . , dk) is a
2k-regular 2k-connected graph from Fact 1 and Fact 2.

Corollary 6 (Ishigami, 1996). d4(C(3, n)) = n if n ≥ 3.

Proof: Note that d(C3) = 1 and d2(Cn) = n − 1. Let x = x1x2 and y = y1 y2 be the
two vertices in C(3, n), where x1 y1 ∈ E(C3) and x2 y2 ∈ E(Cn). The structure of any four
internally disjoint (x, y) paths in C(3, n) must be similar to one in (2). Of these paths, at
least one is of length at least n. This implies d4(C(3, n)) ≥ n.

On the other hand, by Theorem B, we have d4(C(3, n)) ≤ n if n ≥ 3.

Remark 1. Corollary 5 shows that the upper bound in Theorem A can be reached.

Remark 2. Corollary 6 shows that the upper bound in (i) of Theorem B can be reached.
Corollary 1 shows that the upper bound in (ii) of Theorem B and the lower bound in (iii) of
Theorem B can be reached.

Remark 3. The condition “order at least three” is necessary to in the first conclusion
of Theorem B. A simple example is C4 = K2 × K2. A more complicated example is
G = K2 × B(2, n), where B(2, n) is the n(≥2)-dimensional binary undirected de Bruijn
graph mentioned in the beginning of this section. B(2, n) has the connectivity 2 and the
diameter n. From the first conclusion of Theorem B, we have that d3(G) ≤ n + 1. But from
the third conclusion of Theorem B, we have that d3(G) ≥ n + 2. This is a contradiction.

In addition, the condition “G1 is k1-regular or G2 is k2-regular” is indispensable to in the
second conclusion of Theorem B.

Remark 4. Hsu (1994, Theorem 2.8) proved that dk1+k2 (G1 × G2) ≤ dk1 (G1) + dk2 (G2)
if Gi is a ki (≥1)-connected graph with order at least three for each i = 1, 2. Obviously,
this is a direct consequence of the first conclusion in Theorem B for n = 2 since dm(H ) ≥
d(H ) for any m-connected graph H . However, Theorem B is stronger than Hsu’s result if
dk1 (G1) > d(G1) (or dk2 (G2) > d(G2)). This means that Theorem B improves Hsu’s result.

Remark 5. A k-connected graph is called tight if for every pair of vertices x and y there
are at least k internally disjoint paths between x and y such that each of them is of length at
most dk(G) and at least one is of length at most d(G). Hsu (1994, Corollary 2.10) proved that
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dk1+k2 (G1 × G2) ≤ max{dk1 (G1) + d(G2), d(G1) + dk2 (G2)} if Gi is a tightly ki -connected
graph for i = 1, 2. The first conclusion of Theorem B shows that this result is true for any
connected graphs. Thus, Theorem B improves Hsu’s result.

5. Conclusions

In the present paper we have studied wide diameters of the Cartesian product graphs and
digraphs, and obtained their tight upper bounds. In particular, for undirected graphs, these
bounds only depend on diameters and wide diameters of the graphs as the product factors.
We have deduced and improved some known results from ours. At the same time, we note
that the first conclusion of Theorem B holds for any k (≥1)-connected graph with order at
least three, while Theorem A holds under the assumption that as the product factors, all
digraphs must be good. It is clear that every 1-connected digraph is good. We have not
yet known if Theorem A holds for any k (≥2)-connected digraph. However we have the
following conjecture.

Conjecture. dk1+k2 (G1 ×G2) ≤ max{dk1 (G1)+d(G2), d(G1)+dk2 (G2)}+1 for any ki (≥2)-
connected digraph Gi , i = 1, 2.

Note added in the revised version The original manuscript of this paper had been sub-
mitted to the journal for possible publication before the author had an attempt to write a book
on topological structure and analysis of interconnection networks. When the manuscript
is asked to revise the book (Xu, 2001) has been published, which, of course, contains
the original result in the manuscript. One of two anonymous referees has noted this fact,
and another has pointed out a flaw in the proof of Theorem A, that is Theorem 4.4.6 in
(Xu, 2001). The author would like to publish this paper to correct the error, and to thank
the two referees for their kind comments and valuable suggestions, which led to the revised
version of the present paper.
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