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On Diameters of Altered Graphs

Deng Zhiguo Xu Junming
{Department of Mathematics, University of Science and Technology of China Hefei, Anhui 230026)

Abstract For given positive integers ¢ and d (=>2), let F(¢,d) and P (¢,d) denote the minimum
diameter of a graph obtained by adding ¢ extra edges to a graph and a path with diameter d , respective-
ly, and f(¢, 4) denote the maximum diameter of a graph obtained after deleting ¢ edges from a graph

with diameter 4. It is known that P{l, d )= [’L;——l‘] for d>2, P(2, d)= I:d_;l] for 423, P(3,

)= [‘%.‘Z:I it d2>5, and, in general, tII—ISP(t,d)<t+1 +3 for ¢, d =>4. In the present pa-

per, we establish ¥ (4, £, K2 f s F (U, 4)) and prove [H_I] <FU, =P I

B—HZ] -+3. Moteover, F (4, d) |: ] +1if d is large enough. In particular, we derive the exact

values P (¢, (Zk—1)(¢+1)+1)=2k for any positive integer &, and |;+1] <P, )< [H-l] +1
for ¢=4 or 5 and 4 224.
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1 Introduction

In this note, a graph G=1(V, B) always means a simple undirected graph (with-out loops
and multiple edges) with vertex-set V. We follow [[1] for graph-theoretical terminclogy and no-
tation not defined here.

It is well-known that when the underlying topology of an interconnection network of a sys-
tem is modelled by & graph &, the diameter of ¢ is an important measure for communication effi-
ciency and message delay of the system [5]. In a real-time system, the message delay must be
limited within a given period since any message obtained beyond the bound may be worthless. If
the message delay exceeds a given time-bound in a network , one often adds some links to the net-
work to ensure that the reach of a message can be within a required time. This situation moti-
vateés Chung and Garey [2] to propose the following well-known “edge-addition problem” in

graph theory: given positive integers ¢ and d , what is the minimum diameter of the graph ob-
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tained by adding ¢ edges to a graph with diameter 4 ?

Let F (i, d) denote the minimum diameter of an altered graph obtained by adding ¢ extra
edges to a graph with diameter 4. Determining the exact value of F (¢, d) is fairly difficult in
general since it has been proved by Schoone, Bodiaender and van Leeuwen [4] that the problem .
for given integers ¢, d and a connected graph &, constructing an altered graph G/ of G by adding
¢ extra edges to G such that ¢’ has diameter of at most 4 is NP-complete. Thus, the problem of
determining sharp upper bounds of F (¢, d) is of interesting.

Let P (¢, d) denote the minimum diameter of an altered graph & obtained from a single path
of diameter d plus ¢ extra edges. Clearly, # (¢, d)<XP (¢, d) for any integers £ and 4. It is easy

to verify that P(l, d)= [‘%:I tor 4 2>2. The results of Schoone et al in [4] showed P (2, d)
d
= [‘%l] for 423, and P(3, d)= [%Z] for d 2>5. In general, Chung and Garey [2] ob-
_ a1 d+1
tained that 1 <P, al)<—-H_l +3for ¢, d>4.

That is converse to “edge-addition problem” is the so-called “edge-deletion problem”. Let f
(¢, 4) denote the maximum diameter of a connected graph obtained after deleting ¢ edges from a
connected graph with diameter d. The exact values of f (¢, d ) have been obtained for some smatl
t or d. For example, Plesnik [3] decided f (1, ¢ )=24 , Schoone et al [4] obtained f(2, 4 )=
3¢ —1and f(3,d)=4d —2 for d >>2, and proved that f (¢, 2) is equal to {3 for t=1,2,3,4,
6 and to ¢+ 3 otherwise. In the same paper, Schoone et al have ever pointed out that in order to
prove an upper bound for f (¢, d ), it is sufficient to consider graphs with diameter d (=2) that
form a single path plus ¢ extra edges. However, they have not explained any reason why it is so.

In this note, we will answer this question by establishing a relationship between # (¢, d ) and

P(i, ). For given positive integers ¢ and d (Z=>2), we prove that
d d —
s re o =—re, o= (s

Moreover, ¥ (¢, d)< [-‘—Z—] +1if d is large enough. In particular, P(¢, (2k—DD¢—1)+1)=2k

for any positive integer k. Furthermore,
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2 Several Lemmas

Lemma 1041 (¢, ¢ )<< (¢+1)d for any positive integers ¢ and d .

The following lemma is simple, but useful, obtained by a direct observation from the defini-
tions.

Lemma 2 F (¢, d)<F(t, d’) and f(¢, dIF (¢, d') for d<d'.

The following lemma explores a relationship between parameters F (¢, d) and f (¢, d) for

given ¢ and d.
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Lemma 3 F(, f, dNN<df{, F(, d)).

Proof Suppose that G' is a connected graph with diameter f (¢, 4 ) obtained by deleting ¢
edges from a graph G with diameter 4, and let B be the set of the deleted edges of G. Converse-
lys the graph O can be thought of as a graph obtained by adding ¢ edges in B to ¢/ with diameter
F{t, d). 1t follows that the diameter & of G gives an upper bound on F (¢, f({, d)), that is, ¥
(¢, fCt, 42)<d. Similarly, we can prove another inequality.

Lemma 4 P {t, (2k— 1)¢t-+h-+1)2k for any integers £, k and & with 0<A<2k—1I.

Proof To prove the lemma, we construct an altered graph G from a single path of diameter
d plus ¢ extra edges. Let d ={(2k—1)¢+h+1 and P =z gz ,z,°'°2, be a single path, and add ¢ ex-
tra edges T T m+1ticzm—yy for 1=1,2,+,f to P, where 0<<m <k and 0<{h—m<k— 1. Now the
end-vertices of these edges divide P into ¢+ 2 segments Lys Lys=** 5L, Lyyys Where

Ly="P(z¢, 20)s Ly = P20 Tuinds Ly = P @ ppiqem—nr Te)s

Ly = P (@ at1t-niaa—1 1 Tatitim-p) for ¢ == 2,3, L

e

T ] e Ty T2 Zys Z1g

Figure | Construction of Lemma 4 for k=2, (=4, ;=2 and 1 =3

We now prove that the diameter of @ is at most 2k. Note that the length of L,y is d — Gn+
1-+e(2k— 1)) =h—m<h—m<k—1, and that the distance of two vertices in the same segment
is at most 2k. Thus, we need only to consider the distance between two vertices in different seg-
ments. Suppose that x is a vertex in the segment L;and y is a vertex in the segment L, with 0<
1<(;=<{¢+1. Since z and y can reach the vertex z, within & steps, the distance between » and y
is at most 2k. Thus, the diameter of G is at most 2k, that is, P (¢, (2k—1)¢t+4+ 1)<2k, and
so the lemma follows.

Lemma 5 P {4, 5(2x—1)+4)<<2k+1 for any integers k and % with 2<p<5.

Proof Let P =zy2 "z, be a single path, where & =5(2k— 1)+ %. The four vertices
Tp_ys Tyu_y» Zgr T partition P into segments Py, Py, Py, Pyy Py, where

Py=P(zy, 35,), Py=P(Ly_ys 2y_)s
Py =P(z4_1) 2g)> P,=P(zg, zg), Py="Pags £,).

Ty I I3 T Ty T10

Figure 2 Construction of Lemma 5 for k=1! and A=5
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We construct a graph G from P plus four edges &, =z¢Z 411 €= 1T+ €3 =Tl &=

Tz, and define 10 cycles as follows.

=P, U+ P;+e, C*=P, U+ Ps+e + e
=P, U+P,+e+ete, Ct=P, U+Ps+e+e+ete,
CF =P, U+ Ps+e, C*=P, U+ P+ e+ e,
CT =P, U+ Ps+e,+ e+ ey, U‘=P3U+Pq+ez,
09=P3U+P5+ez+9u C®=P,U+P;s+e,
Their lengths are, respectively,
e(C') = 4k; e(C) = 4k + 2, for i = 2,3,5,6,8;
(0 < 4k + 1 e(C) <4k ++ 3, fori =4, 7, 9.

It is easy to see that any two vertices z and y of G are contained some cycle ¢* defined
above. The fact

max{d (09):1 <i< 10) < ["i‘;—ﬂ — k41

means P (4, 5(2k—1+4)<d (G)<2k+ 1, and so the lemma follows.
Lemma 6 P (5, 6(2k—1)+h)<<2k-1 for any integers ¥ and k& with 2k <(6.
Proof Let P=zz,***z, be a single path, where d =6(2k— 1) 4%, The five vertices z5_,,
Tu—ys e Tao T partition P into six segments Py, P,, Py, P,, Py, Py, where
Py=P(zgy 2p)s Pa=Pau_s 2p-1)) Py =Py, 200,

P, =P(zgy, z0)s Ps =Py, 2,0), P =Plzyy, o,

€1 N €3 €7
K <
Ty T3 I3 g ) Tio Zy2

Figure 3 Construction of Lemma 8 for k=] and s =6

We construct a graph G by adding five extra edges ¢, =z (T p-15 2T 4—1T¢s 3= u—1Tae>

=z uln_1r & =2u%to P, and define 15 cycles as follows.

C'=P U+ P+ e, =P, U+ Pi+e + e

=P U+Pite+tete, =P, U+ Pste +et 4 +oe,
=P U+Ps+e +e,te+e, CE=P,U+Ps+e,

CT=P, U+ Pt es+toe, CP=P, U+ Pstes+ o, + e,
=P, U+ Po+et+ o+ es, =P, U+ P, +ey,

Y =Py U+ Ps+ e+ e 2 =P U+ Ps+ e+ 65
cP=P, U+ Ps+e, CH =P U+ Po+e+et e

C¥ =P U+ Ps+ e, + ey
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Their lengths are, respectively,
0%y = 4k, (") < 4k + 2, for v = 2,3,6,7,10,15;
e(CP) = fk + I; £(CY < 4k + 3, fori = 4,5,8,9,11,12,14.
It is easy to see that any two vertices z and y of G are contained in some cycle " defined

above. The fact
max{d (€91 < i < 15) < [”L;E] =2+ 1

means P (4, 6(2k—1)+4)<d(¢)<2k+1 for any k and % with 2<{4<C6.

3 Proofs of Main Results

Theorem 1 F (¢, d)=P (¢, d) for any positive integers ¢ and d.

Proof Clearly, it is sufficient to prove F (¢, d Y=P (¢, 4 ). To this end, suppose that @ is
a graph with diameter d and G’ is an altered graph with diameter F (¢, ¢ ) obtained by adding a
set B of { extra edges to G. Let P =z ¢z ,z,°""z, be a shortest path of length d in G and let V; be
a sel of vertlices in G whose distances to z ¢ are equal to i. Then z;EV, for each i=0, 1, = ,d.
Let I be a subgraph of G’ induced by P together with the edges in B whose end-vertices are all
in P, and let B, be a set of edges in both of B and H , B,=B\B,. If B;=NW, then ¥ {i, d)=d
(GIZd (HI=P G, d).

Now assume B,7#8. For e=zy € B,, without loss of generality, we can assume z € I, and
y €V with 17 j. Let /I be a graph obtained by adding |B,| edges z,z ;to H for each e=zy € B,
with z €V ;and y € V. Then H is a spanning subgraphs of H', and so F (i, d)=d (¢')=>d
(H")Z=P(t, d). The theotem follows.

Theorem 2 For given positive integers ¢ and 4 ,

]<re o< ] +s

In particular, P (¢, (2k—1)(¢~1)4-1)=2F for any positive integer k and F (¢, d )<< [dT] +1if
k is large enough.

Proot We first show P (¢, d)Zt_-‘ii:—f' Note that d <f (¢, F(¢, d)) by Lemma 3 and 5 (¢,
F(t, d)<(@+1F(t, d) by Lemma 1. Immediately, we have d<<(¢t+1)F (¢, d), that is, P

d
(¢, d)=F (¢, d)ZH_—l-

Let ¢ = (2k— 1) G+ 1D+ 1 In this easer 2 (4 )2 [5] =25 0n the other hand,
choosing m=% and A=k~ 1 in Lemma 4, we have P({, d )< 2% immediately. Therefore, P (¢,
(2k— 1)+ 1D+ 1)=2k for any positive integers ¢ and k.

We now show F{¢, rl)Sd?i—Tz—Hi. To this end, for a fixed ¢, let d (R)={(2k— 1) ¢+ 1)+
i. Since ¢ (1D=t+2and ¢ (k+1)—d (k)=2t+2, for a given positive integer ¢ , there are posi-
tive integers k and r such that d = (2k— 1) ¢+ 1) 4 1—r with 0<r<2¢4 1. Then d +r=(2k—
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)¢+ 1)+ 1. 1t follows from Lemma 2 and the above result just proved that

dbrdt _d—2

F(,d)<F(,d + 1) =2k = Tl P—

+ 3

Finally, we prove F (¢, d )< [dT} + 1 if k is enough large. By Lemma 4, we have P (¢, (2k
— Dit+r+1)<2k for 0<r<_2k—1. For the same reason as the above, for a given positive inte-
ger d , there are positive integers k and r such that d = (2k— 1)¢+ 147 with 0<r<<2¢— 1. It fol-
lows that if ¢<{k, then

PU, ) =P, i~ Ditrt D=1 <8 4,

as desired.

As applications of Theorem 2, we establish tighter upper and lower bounds of P (4, d) and
P(5, d), whose difference is only one.

Theorem 3 [15—] <P, )< [%} +1 for any integer d (=4).
Proot It is easy to verify that P (4, d)=2= [%-] +1 if d =4 or 5. Suppose 4 =26 below.

By Theorem 2, we have P (4, d)> l:%} and P (4, 5(2k—1)+1)=2k. One the other hand, by
Lemma 5, we have P(4, 5(2k— 1) +4)<2k+1 for any & and & with 2<h<5. Note that for
any positive integer 4 (Z>6) there are integers k and % with k=>1 and 1<{A <010 such that & =5
(2k—1)+4. Thus, by Theorem 2 and Lemma 5, we have
P(4,d) = 2k, ifd =502k — 1) 4 1;
2% <P(4,d)<2+1, ifd =5(2 — 1) + 2,3,4 or 5;
G+ 1<PU,d) <2+ 2, ifd = 108+ 1,2,3,4 0r 5.

These imply that I:%:I <P, H)L [%:I +1 for d >6, and so the theorem follows.
Theorem 4 [%] <P (5, ) [%'] +1 for any integer d (=>4).
Proof It is easy to verify that P(5, d)=2= [%—} +1if d =4,5 or 6. Suppose d =27 be-

low. By Theorem 2, we have P (5, d)> [%] and P (5, 6(2k— 1)+ 1)=2k. One the other

hand, by Lemma 6, we have P(5, 6(2k—1)+4)<2k-1 for any k andn k with 2<{A<6. Note
that for any positive integer d (Z=>7) there are integers & and 4 with k2> and 1<{A<{12 such that
d=6(2t—1)+h. Thus, by Theorem 2 and Lemma 6, we have
P(5,d)=2k, ifd=26(2k— 1)+ 1;
2P, d)S U+ 1, ifd = 6(2k— 1)+ 2,3,4,5 0or 6;
2k + 1<<P(,d)K 2+ 2, ifd = 10k + 1,2,3,4,5 or 6.

d
These imply that [F] <P (5, )< l:%] +1 for 4227, and so the theorem follows.
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