Vol． 37 No． 1

On Diameters of Altered Graphs

Deng Zhiguo Xu Junmiug

（Department of Mathematics，University of Science and Technology of China Hefei，Anhui 230026）

Abstract

For given positive integers t and $d(\geq 2)$ ，let $F(t, d)$ and $P(t, d)$ denote the minimum diameter of a graph obtained by adding t extra edges to a graph and a path with diameter d ，respective－ ly，and $f(t, d)$ denote the maximum diameter of a graph obtained after deleting t edges from a graph with diameter d ．It is known that $P(1, d)=\left[\frac{d+1}{2}\right]$ for $d \geq 2, P(2, d)=\left[\frac{d+1}{3}\right]$ for $d \geq 3, P(3$ ， ()$=\left[\frac{d+2}{4}\right]$ if $d \geq 5$ ，and，in general，$\frac{d+1}{t+1}-1 \leq P(t, d)<\frac{d+1}{t+1}+3$ for $t, d \geq 4$ ．In the present pa－ per，we establish $F(t, f(t, d)) \leq d \leq f(t, F(t, d))$ and prove $\left[\frac{d}{l+1}\right] \leq F(t, d)=P(t, d) \leq$ $\left[\frac{d-2}{t+1}\right]+3$ ．Moreover， $\boldsymbol{f}(\boldsymbol{t}, d) \leq\left[\frac{d}{t}\right]+1$ if d is large enough．In particular，we derive the exact values $P(t,(2 k-1)(l+1)+1)=2 k$ for any positive integer k ，and $\left[\frac{d}{d+1}\right] \leq P(b, d) \leq\left[\frac{d}{l+1}\right]+1$ for $t=4$ or 5 and $d \geq 4$ ．

Keywords Diameter；Altered graph；Edge addition；Edge deletion CLC number 0 157．9 Document code A

1 Introduction

In this note，a graph $G=(V, E)$ always means a simple undirected graph（with－our loops and multiple edges）with vertex－set V ．We follow［1］for graph－theoretical tetminology and no－ tation not defined here．

It is well－known that when the underlying topology of an interconnection network of a sys－ tem is modelled by a graph G ，the diameter of G is an important measure for communication effi－ ciency and message delay of the system［5］．In a real－time system，the message delay must be limited within a given period since any message obtained beyond the bound may be worthless．If the message delay exceeds a given time－bound in a network，one often adds some links to the net－ work to ensure that the reach of a message can be within a required time．This situation moti－ vates Chung and Garey［2］to propose the following well－known＂edge－addition problem＂in graph theory：given positive integers t and d ，what is the minimum diameter of the graph ob－

[^0]tained by adding t edges to a graph with diameter d ？
Let $F(t, d)$ denote the minimum diameter of an altered graph obtained by adding t extra edges to a graph with diameter d ．Determining the exact value of $F(t, d)$ is fairly difficult in general since it has been proved by Schoone，Bodtaender and van Leeuwen［4］that the problem， for given integers t, d and a connected graph G ，constructing an altered graph G^{\prime} of G by adding t extra edges to G such that G＇has diameter of at most d is NP－complete．Thus，the problem of determining sharp upper bounds of $F(t, d)$ is of interesting．

Let $P(t, d)$ denote the minimum diameter of an altered $g r a p h ~ G$ obtained from a single path of diameter d plus t extra edges．Clearly，$F(t, d) \leq P(t, d)$ for any integers t and d ．It is easy to verify that $P(1, d)=\left[\frac{d+1}{2}\right]$ for $d \geq 2$ ．The results of Schoone et al in $[4]$ showed $P(2, d)$ $=\left[\frac{d+1}{3}\right]$ for $d \geq 3$ ，and $P(3, d)=\left[\frac{d+2}{4}\right]$ for $d \geq 5$ ．In general，Chung and Garey［2］ob－ tained that $\frac{d+1}{d+1}-1 \leq P(t, d)<\frac{d+1}{d+1}+3$ for $t, d \geq 4$ ．

That is converse to＂edge－addition problem＂is the so－called＂edge－deletion problem＂．Let f （ t, d ）denote the maximum diameter of a connected graph obtained after deleting t edges from a connected graph with diameter d ．The exact values of $f(t, d)$ have been obtained for some small t or \boldsymbol{d} ．For example，Plesnik［3］decided $f(1, d)=2 d$ ，Schoone et al［4］obtained $f(2, d)=$ $3 d-1$ and $f(3, d)=4 d-2$ for $d>2$ ，and proved that $f(t, 2)$ is equal to $t+3$ for $t=1,2,3,1$ ， 6 and to $t+3$ otherwise．In the same paper，Schoone et al have ever pointed out that in order to prove an upper bound for $f(t, d)$ ，it is sufficient to consider graphs with diameter $d(\geq 2)$ that form a single path plus $/$ extra edges．However，they have not explained any reason why it is so．

In this note，we will answer this question by establishing a relationship between $P(b, d)$ and $P(t, d)$ ．For given positive integers t and $d(\geq 2)$ ，we prove that

$$
\left[\frac{d}{t+1}\right] \leq F(t, d)=P(t, d) \leq\left[\frac{d-2}{t+1}\right]+3 .
$$

Moreover，$F(t, d) \leq\left[\frac{d}{t}\right]+1$ if d is large enough．In particular，$P(t,(2 k-1)(t-1)+1)=2 k$ for any positive integer k ．Furthermore，

$$
\left[\frac{d}{5}\right] \leq P(4, d) \leq\left[\frac{d}{5}\right]+1, \quad \text { and } \quad\left[\frac{d}{6}\right] \leq P(5, d) \leq\left[\frac{d}{6}\right]+1
$$

2 Several Lemmas

Lemma $1^{[4]} \quad f(t, d) \leq(t+1) d$ for any positive integers t and d ．
The following lemma is simple，but useful，obtained by a direct observation from the defini－ tions．

Lemma $2 F(t, d) \leq F\left(t, d^{\prime}\right)$ and $f(t, d) \leq f\left(t, d^{\prime}\right)$ for $d \leq d^{\prime}$.
The following lemma explores a relationship between parameters $F(l, d)$ and $f(t, d)$ for given t and d ．

Lemma $3 \quad F(t, f(t, d)) \leq d \leq f(t, F(t, d))$ ．
Proof Suppose that G^{\prime} is a connected graph with diameter $f(t, d)$ obtained by deleting t edges from a graph G with diameter d ，and let B be the set of the deleted edges of G ．Converse－ ly，the graph G can be thought of as a graph obtained by adding t edges in B to G^{\prime} with diameter $f(t, d)$ ．It follows that the diameter d of G gives an upper bound on $F(t, f(t, d))$ ，that is，F $(l, f(l, d)) \leq d$ ．Similarly，we can prove another inequality．

Lemma $4 \quad P(t,(2 k-1) t+h+1) \leq 2 k$ for any integers t, k and h with $0 \leq h \leq 2 k-1$ ，
Proof To prove the lemma，we construct an altered graph G from a single path of diameter d plus t extra edges．Let $d=(2 k-1) t+h+1$ and $P=x_{0} x_{1} x_{2} \cdots x_{i}$ be a single path，and add t ex－ tra edges $x_{m} x_{m+1+i(2 k-1)}$ for $i=1,2, \cdots, t$ to P ，where $0 \leq m \leq k$ and $0 \leq h-m \leq k-1$ ．Now the end－vertices of these edges divide P into $\ell+2$ segments $L_{6}, L_{1}, \cdots, L_{t}, L_{1+1}$ ，where

$$
\begin{aligned}
L_{0}= & P\left(x_{0}, x_{m}\right), L_{1}=P\left(x_{m}, x_{m+2 k}\right), L_{i+1}=P\left(x_{m+1+t(t k-1)}, x_{i}\right), \\
& L_{i}=P\left(x_{m+1+(i-1)(2 k-1)}, x_{m+1+i(2 k-1)}\right) \text { for } i=2,3, \cdots, t
\end{aligned}
$$

Figure 1 Construction of Lemma 4 for $k=2, t=4, m=2$ and $b=3$

We now prove that the diameter of G is at most $2 k$ ．Note that the length of L_{i+1} is $d-(m+$ $1+i(2 k-1))=h \rightarrow m \leq h-m \leq \mathbf{k}-1$ ，and that the distance of two vertices in the same segment is at most $2 k$ ．Thus，we need only to consider the distance between two vertices in different seg－ ments．Suppose that x is a vertex in the segment L_{i} and y is a vertex in the segment L ，with $0 \leq$ $i<\jmath \leq l+1$ ．Since x and y can reach the vertex x_{m} within k steps，the distance between x and y is at most $2 k$ ．Thus，the diameter of G is at most $2 k$ ，that is，$P(t,(2 k-1) t+h+1) \leq 2 k$ ，and so the lemma follows．

Lemma $5 P(4,5(2 k-1)+h) \leq 2 k+1$ for any integers k and h with $2 \leq h \leq 5$ ．
Proof Let $P=x_{0} x_{1} \cdots x_{i}$ be a single path，where $d=5(2 k-1)+h$ ．The four vertices $x_{2 k-1}, x_{4 k-1}, x_{5 k}, x_{8 k}$ partition P into segments $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ ，where

$$
\begin{gathered}
P_{1}=P\left(x_{0}, x_{2 k-1}\right), \quad P_{2}=P\left(x_{2 k-1}, x_{k-1}\right) \\
P_{9}=P\left(x_{k-1}, x_{6 k}\right), \quad P_{4}=P\left(x_{6 k}, x_{0_{k}}\right), \quad P_{5}=P\left(x_{k k}, x_{i}\right)
\end{gathered}
$$

Figure 2 Construction of Lemma 5 for $k=1$ and $h=5$

We construct a graph G from P plus four edges $e_{1}=x_{0} x_{4 k-1}, e_{2}=x_{4 k-1} x_{\mathrm{k} k}, e_{3}=x_{6 k} x_{2 k-1}, e_{4}=$ $x_{i z} x_{\alpha}$ ，and define 10 cycles as follows．

$$
\begin{array}{ll}
C^{1}=P_{1} U+P_{2}+e_{1}, & C^{2}=P_{1} U+P_{3}+e_{1}+e_{3} \\
C^{3}=P_{1} U+P_{4}+e_{1}+e_{2}+e_{3}, & C^{4}=P_{1} U+P_{5}+e_{1}+e_{2}+e_{3}+e_{6}, \\
C^{5}=P_{2} U+P_{3}+e_{3}, & C^{6}=P_{2} U+P_{4}+e_{2}+e_{3}, \\
C^{3}=P_{2} U+P_{5}+e_{2}+e_{3}+e_{4}, & C^{t}=P_{3} U+P_{4}+e_{2} \\
C^{9}=P_{3} U+P_{5}+e_{2}+e_{4}, & C^{10}=P_{4} U+P_{5}+e_{4},
\end{array}
$$

Their lengths are，respectively，

$$
\begin{array}{lr}
\varepsilon\left(C^{1}\right)=4 k ; & \varepsilon\left(C^{i}\right)=4 k+2, \text { for } i=2,3,5,6,8 \\
\varepsilon\left(C^{10}\right) \leq 4 k+1 ; & 2\left(C^{i}\right) \leq 4 k+3, \text { for } i=4,7,9
\end{array}
$$

It is easy to see that any two vertices x and y of G are contained some cycle C^{i} defined above．The fact

$$
\max \left\{d\left(c^{i}\right): 1 \leq i \leq 10\right\} \leq\left[\frac{4 k+3}{2}\right]=2 k+1
$$

means $P(4,5(2 k-1+h) \leq d(G) \leq 2 k+1$ ，and so the lemma follows．
Lemma $6 P(5,6(2 k-1)+h) \leq 2 k+1$ for any integers k and h with $2 \leq h \leq 6$ ．
Proof Let $P=x_{0} x_{1} \cdots x_{4}$ be a single path，where $d=6(2 k-1)+h$ ．The five vertices $x_{2 k-1}$ ， $x_{4 k-1}, x_{6 k}, x_{z_{k}}, x_{10 k}$ partition P into six segments $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}$ ，where

$$
\begin{gathered}
P_{1}=P\left(x_{0}, x_{2 k-1}\right), P_{2}=P\left(x_{z_{k-1}}, x_{4-1}\right), P_{3}=P\left(x_{4 k-1}, x_{6 k}\right), \\
P_{4}=P\left(x_{\text {kk }}, x_{8 k}\right), P_{5}=P\left(x_{\text {ak }}, x_{10 k}\right), P_{6}=P\left(x_{10 k}, x_{k}\right) .
\end{gathered}
$$

Figure 3 Construction of Lemma 6 for $k=1$ and $h=6$

We construct a graph G by adding five extra edges $e_{1}=x_{0} x_{4 k-1}, e_{2}=x_{4 k-1} x_{k}, e_{3}=x_{12-1} x_{k k}$, $e_{4}=x_{6 k} x_{2 k-1}, e_{5}=x_{6 k} x_{10 k}$ to P ，and define 15 cycles as follows．

$$
C^{2}=P_{1} U+P_{3}+e_{1}+e_{4}
$$

$$
\begin{array}{ll}
C^{1}=P_{1} U+P_{2}+e_{1}, & C^{2}=P_{1} U+P_{3}+e_{1}+ \\
C^{3}=P_{1} U+P_{4}+e_{1}+e_{3}+e_{4}, & C^{4}=P_{1} U+P_{5}+e_{1}+ \\
C^{5}=P_{1} U+P_{6}+e_{1}+e_{2}+e_{4}+e_{5}, & C^{6}=P_{2} U+P_{3}+e_{4}, \\
C^{7}=P_{2} U+P_{4}+e_{5}+e_{4}, & C^{8}=P_{2} U+P_{5}+e_{3}+ \\
C^{9}=P_{2} U+P_{6}+e_{2}+e_{4}+e_{5}, & C^{10}=P_{3} \cup+P_{4}+e_{3}, \\
C^{11}=P_{3} U+P_{5}+e_{3}+e_{5}, & C^{12}=P_{3} U+P_{6}+e_{2} \\
C^{13}=P_{4} U+P_{5}+e_{6}, & C^{14}=P_{4} U+P_{6}+e_{2} \\
C^{15}=P_{5} U+P_{6}+e_{2}+e_{3} . &
\end{array}
$$

$$
C^{4}=P_{1} \cup+P_{5}+e_{1}+e_{3}+4_{4}+e_{5}
$$

$$
C^{B}=P_{2} U+P_{5}+e_{3}+e_{4}+e_{5}
$$

$$
C^{10}=P_{3} \cup+P_{4}+e_{3}
$$

$$
C^{12}=P_{3} U+P_{6}+e_{2}+\varepsilon_{5}
$$

$$
C^{14}=P_{1} U+P_{6}+e_{2}+e_{3}+e_{5}
$$

Their lengths are，respectively，

$$
\begin{array}{cl}
v\left(C^{2}\right)=4 k ; & \varepsilon\left(C^{1}\right) \leq 4 k+2, \text { for } t=2,3,6,7,10,15 \\
\varepsilon\left(C^{13}\right)=4 k+1 ; & \varepsilon\left(C^{0}\right) \leq 4 k+3, \text { for } i=4,5,8,9,11,12,14
\end{array}
$$

It is easy to see that any two vertices x and y of G are contained in some cycle C^{i} defined above．The fact

$$
\max \left\{d\left(C^{i}\right): 1 \leq i \leq 15\right\} \leq\left[\frac{4 k+3}{2}\right]=2 k+1
$$

means $P(4,6(2 k-1)+h) \leq d(G) \leq 2 k+1$ for any k and h with $2 \leq h \leq 6$ ．

3 Proofs of Main Results

Theorem $1 \quad F(t, d)=P(t, d)$ for any positive integers t and d ．
Proof Clearly，it is sufficient to prove $F(t, d) \geq P(t, d)$ ．To this end，suppose that G is a graph with diameter d and G^{\prime} is an altered graph with diameter $F(t, d)$ obtained by adding a set B of t extra edges to O ．Let $P=x_{0} x_{1} x_{2} \cdots x_{i}$ be a shortest path of length d in G and let V_{i} be a set of vertices in G whose distances to x_{0} are equal to i ．Then $x_{i} \in V$ ，for each $i=0,1, \cdots, d$ ． Let $I I$ be a subgraph of G^{\prime} induced by P together with the edges in B whose end－vertices are all in P ，and let B_{1} be a set of edges in both of B and $H, B_{2}=B \backslash B_{1}$ ．If $B_{2}=Q$ ，then $H(l, d)=d$ $\left(G^{\prime}\right) \geq d(H) \geq P(b, d)$ ，

Now assume $B_{2} \neq Q$ ．For $e=x y \in B_{2}$ ，without loss of generality，we can assume $x \in V_{i}$ and $y \in V_{j}$ with $i \neq j$ ．Let H^{\prime} be a graph obtained by adding $\left|B_{2}\right|$ edges $x_{i} x_{j}$ to H for each $e=x y \in B_{2}$ with $x \in V_{i}$ and $y \in V$, Then H is a spanning subgraphs of H^{\prime} ，and so $F(l, d)=d\left(G^{\prime}\right) \geq d$ $\left(I^{\prime}\right) \geq P(t, d)$ ．The theorem follows．

Theorem 2 For given positive integers t and d ，

$$
\left[\frac{d}{t+1}\right] \leq P(t, d) \leq\left[\frac{d-2}{t+1}\right]+3
$$

In particular，$P(t,(2 k-1)(i+1)+1)=2 k$ for any positive integer k and $F(t, d) \leq\left[\frac{d}{t}\right]+1$ if k is large enough．

Proof We first show $P(t, d) \geq \frac{d}{t+1}$ ．Note that $d \leq f(t, F(t, d))$ by Lemma 3 and $f(t$ ， $F(t, d)) \leq(t+1) P(t, d)$ by Lemma 1 ．Immediately，we have $d \leq(t+1) F(t, d)$ ，that is，P $(t, d)=F(t, d) \geq \frac{d}{t+1}$ ．

Let $d=(2 k-1)(t+1)+1$ ．In this case，$P(t, d) \geq\left[\frac{d}{d+1}\right]=2 k$ ．On the other hand， choosing $m=k$ and $h=k-1$ in Lemma 4，we have $P(t, d) \leq 2 k$ immediately．Therefore，$P(t$ ， $(2 k-1)(t+1)+1)=2 k$ for any positive integers t and k ．

We now show $f(t, d) \leq \frac{d-2}{t+1}+3$ ．To this end，for a fixed t ，let $d(k)=(2 k-1)(t+1)+$ 1．Since $d(1)=t+2$ and $d(k+1)-d(k)=2 t+2$ ，for a given positive integer d ，there are posi－ tive integers k and r such that $d=(2 k-1)(t+1)+1-r$ with $0 \leq r \leq 2 t+1$ ．Then $d+r=(2 k-$
$1)(t+1)+1$ ．It follows from Lemma 2 and the above result just proved that

$$
P(t, d) \leq F(t, d+r)=2 k=\frac{d+r+t}{t+l} \leq \frac{d-2}{t+1}+3 .
$$

Finally，we prove $F(t, d) \leq\left[\frac{d}{t}\right]+1$ if k is enough large．By Lemma 4，we have $P(t$ ，（ $2 k$ $-1) t+r+1) \leq 2 k$ for $0 \leq r \leq 2 k-1$ ．For the same reason as the above，for a given positive inte－ ger d ，there are positive integers k and r such that $d=(2 k-1) t+1+r$ with $0 \leq r \leq 2 t-1$ ．It fol－ lows that if $t \leq k$ ，then

$$
P(t, d)=P(t,(2 k-1) i+r+1) \leq 2 k=\frac{d-r-1}{t}+1 \leq \frac{d}{t}+1
$$

as desired．
As applications of Theorem 2，we establish tighter upper and lower bounds of $P(4, d)$ and $P(5, d)$ ；whose difference is only one．

Theorem $3 \quad\left[\frac{d}{5}\right] \leq P(4, d) \leq\left[\frac{d}{5}\right]+1$ for any integer $d(\geq 4)$ ．
Proof It is easy to verify that $P(4, d)=2=\left[\frac{d}{5}\right]+1$ if $d=4$ or 5 ．Suppose $d \geq 6$ below． By Theorem 2，we have $P(1, d) \geq\left[\frac{d}{5}\right]$ and $P(4,5(2 k-1)+1)=2 k$ ．One the other hand，by Lemma 5 ，we have $P(4,5(2 k-1)+h) \leq 2 k+1$ for any h and h with $2 \leq h \leq 5$ ．Note that for any positive integer $\boldsymbol{d}(\geq 6)$ there are integers k and h with $k \geq 1$ and $1 \leq h \leq 10$ such that $d=5$ $(2 k-1)+h$ ．Thus，by Theorem 2 and Lemma 5 ，we have

$$
\begin{gathered}
P(4, d)=2 k, \quad \text { if } d=5(2 k-1)+1 ; \\
2 k \leq P(4, d) \leq 2 k+1, \quad \text { if } d=5(2 k-1)+2,3,4 \text { or } 5 \\
2 k+1 \leq P(4, d) \leq 2 k+2, \quad \text { if } d=10 k+1,2,3,1 \text { or } 5
\end{gathered}
$$

These imply that $\left[\frac{d}{5}\right] \leq P(4, d) \leq\left[\frac{d}{5}\right]+1$ for $d \geq 6$ ，and so the theorem follows．
Theorem $4 \quad\left[\frac{d}{6}\right] \leq P(5, d) \leq\left[\frac{d}{6}\right]+1$ for any integer $d(\geq 4)$ ．
Proof It is easy to verify that $P(5, d)=2=\left[\frac{d}{6}\right]+1$ if $d=4,5$ or 6 ．Suppose $d \geq 7$ be－ low．By Theorem 2，we have $P(5, d) \geq\left[\frac{d}{6}\right]$ and $P(5,6(2 k-1)+1)=2 k$ ．One the other hand，by Lemma 6 ，we have $P(5,6(2 k-1)+h) \leq 2 k+1$ for any k andn h with $2 \leq h \leq 6$ ．Note that for any positive integer $d(\geq 7)$ there are integers k and h with $k \geq 1$ and $1 \leq h \leq 12$ such that $d=6(2 k-1)+h$ ．Thus，by Theorem 2 and Lemma 6 ，we have

$$
\begin{gathered}
P(5, d)=2 k, \quad \text { if } d=\dot{b}(2 k-1)+1 ; \\
2 k \leq P(5, d) \leq 2 k+1, \quad \text { if } d=6(2 k-1)+2,3,4,5 \text { or } 6 ; \\
2 k+1 \leq P(5, d) \leq 2 k+2, \quad \text { if } d=10 k+1,2,3,4,5 \text { or } 6 .
\end{gathered}
$$

These imply that $\left[\frac{d}{6}\right] \leq P(5, d) \leq\left[\frac{d}{6}\right]+1$ for $d \geq 7$ ，and so the theorem follows．

References

［1］Bundy J A，Murty U S R．Graph Theory with Applications．Macmillan Press，London， 1976
［2］Chung FR K，Garey M R．Diameter bounds for altered graphs．J．Graph Theory，1984，8（4）：511－534
［3］Plesnik J．Note on diametrically critical graphs．In Recent Advances in Graph Theory，Proceedings of 2nd Czechoslovak Symposlum（Prague 1971），Academia，Praguc，1975，455－465
［4］Sehome A A，Boclaender H L，van Leeuwen J．Diameter increase caused by edge deletion．J．Graph Theory，1987，11（3）：409－427
［5］Xu junming，Topological Structure and Anaysis of Interconnection Networks．Kluwer Academic Publish－ ers，Dordtecht／Boston／London， 2001

变更图的直径

邓志国 徐俊明
（中国科技大学，安徽 会肥 230026）

摘要 对于给定的正整数 t 和 $d(2)$ ，用 $F(t, d)$ 和 $P(l, d)$ 分别㧼示在所有直往为 d 的图和路中添加 ℓ条边后得到的国的最小直径，用 $f(t, d)$ 表示及所有直径为 d 的图中唃去 t 条边后得到的图的最大直经，已经让明 $P(1, d)=\left[\frac{d}{2}\right], P(2, d)=\left[\frac{d+1}{3}\right]$ 和 $P(3, d)=\left[\frac{d+2}{4}\right]$ ，一般地，当 t 私 $d \geq 4$ 时有 $\frac{d+1}{d+1}-1$ $\leq P(t, d) \leq \frac{d+1}{t+1}+3$ ．在这篇文章中，我们得到 $F(t, f(t, d)) \leq d \leq f(t, F(t, d))$ 和 $\left[\frac{d}{l+1}\right] \leq F(t, d)$ $=P(t, d) \leq\left[\frac{d-2}{t+1}\right]+3$ ，而且当 d 充分大时，$P(t, d) \leq\left[\frac{d}{t}\right]+1$ ．特别地，对任意正整数 k 有 $P(t,(2 k-$ 1）$(t+1)+1)=2 x$ ，当 $t=4$ 或 5 ，且 $d \geq 4$ 时有 $\left[\frac{d}{l+1}\right] \leq P(t, d) \leq\left[\frac{d}{t+1}\right]+1$ ．

关镜词 直径；变更图；边增加；边减少

[^0]: Received date ：2003－05－26
 Foundation item ：The work was supported by NNSF of China（10271114）

