应用数学 MATHEMATICA APPLICATA 2004,17(supplement):56~60

On Connectivity of Möbius Cubes

ZHANG Xiu-mei (张修梅)¹, XU Jun-ming (徐俊明)²

(1. Department of Mathematics, Anhui University, Hefei 230039, China; 2. Department of Mathematics, University of Science and Technology of China, Hefei, 230026, China)

Abstract : The connectivity super connectedness and restricted edge connectivity of a graph are important parameters to measure fault-tolerance of an interconnection network. This paper considers the n^{-} dimensional Möbius cube MQ_n , shows that its connectivity and edge connectivity both are equal to n, that is, it is super vertex-connected for any n = 1 and super edge connected if n = 2, and that its restricted connectivity and restricted edge-connectivity both are equal to 2n - 2, where n is subject to n = 3 for the former and n = 2 for the latter.

Key words :Connectivity ; Restricted connectivity ; Super connectivity ; Möbius cubes

 CLC Number :0157.5
 AMS(2000) Subject Classification :05C40 ;90B10

 Document code :A
 Article ID :1001-9847 (2004) Supplement-0056-05

Throughout this paper ,a graph G = (V, E) always means a simple connected graph with vertex set V and edge-set E. We follow [1] for graph-theoretical terminology and notation not defined here. A set of vertices (resp., edges) S of G is called a vertex-cut (resp., an edge-cut) if G - S disconnected. The connectivity (G) (resp., the edge-connectivity (G)) of G is defined as the minimum cardinality of a vertex-cut (resp., an edge-cut) S. It is customary to define $(K_n) = n - 1$, where K_n is a complete graph of order n.

It is well known that when the underlying topology of an interconnection network is modelled by a connected graph G = (V, E), where V is the set of processors and E is the set of communication links in the network, the connectivity (G) and the edge-connectivity (G) are two important parameters to measure the fault-tolerance of the network. The parameters, however, have an obvious deficiency, that it to tacitly assume that all elements in any subset of G can potentially fail at the same time. In other words, in the definition of (G) or (G), absolutely no conditions or restrictions are imposed either on the set S or on the components of G - S.

Received date J an 21 ,2004
 Foundation item :Supported by ANSF(01046102) ,NNSF of China(10271114)
 Biography :ZHANG Xiur mei, female ,Hefei ,postgraduate student.

Bauer et al [2] suggested the concept of the super connectedness. A connected graph G is said to be super vertex-connected (resp., edge-connected), if every minimum vertex-cut (resp., edge-cut) isolates a vertex of G. Esfahanian and Hakimi [3,4] introduced the concepts of the restricted cut and the restricted connectivity of a graph. A set $S \subset V(G)$ (resp., $S \subset E(G)$) is called a restricted vertex-set (resp., edge-set) if it does not contain the neighbor-set of any vertex in G as its subset. A restricted vertex-set (resp., edge-set) S is called a restricted vertex-cut (resp., edge-cut) if G - S is disconnected. The restricted vertex-connectivity (resp., edge-connectivity) of a graph G, denoted by (G) (resp.,

(G)), is the minimum cardinality of a restricted vertex-cut (resp., edge-cut) in G. From definitions, the following proposition holds, clearly.

Proposition Let G be a k- regular graph.

- (1) If (G) exists and (G) > (G) = k, then G must be super vertex-connected.
- (2) If (G) exists and (G) > (G) = k, then G must be super edge-connected.

Thus, the restricted connectivity is a measure for fault tolerance of a network more accurately than the classical connectivity. Since then the researchers have payed much attention to the concept and determined the restricted connectivity for many well-known graphs (see ,for example ,[3] ~ [14]).

In the present paper, we consider the n^- dimensional Möbius cube MQ_n , as an attractive alternative to the n^- cube Q_n . We show that both the connectivity and edge-connectivity of MQ_n are equal to n, and that MQ_n is super vertex-connected for any n-1 and super edge-connected if n-2, and both the restricted connectivity and restricted edge-connectivity of MQ_n are equal to 2n - 2, where n is subject to n

3 for the former and n = 2 for the latter.

The *n*-dimensional Möbius cube is such a graph, its vertex set is $V = \{x_1 x_2 \dots x_n \ x_i \ \{0, 1\}, 1 \ i \ n\}$, the vertex $X = x_1 x_2 \dots x_n$ connects to *n* other vertices Y_i , $(1 \ i \ n)$, where each Y_i satisfies one of the following equations:

$$Y_i = x_1 x_2 \dots x_{i-1} \overline{x_i} x_{i+1} \dots x_n \text{ if } x_{i-1} = 0,$$

= $x_1 x_2 \dots x_{i-1} \overline{x_i} \overline{x_{i+1}} \dots \overline{x_n} \text{ if } x_{i-1} = 1,$

where \overline{x}_i is the complement of x_i in $\{0,1\}$, that is, $\overline{x}_i = \{0,1\} \setminus x_i$.

From the above definition, X connects to Y_i by complementing the coordinate x_i if $x_{i-1} = 0$ or by complementing all coordinates of x_i , ..., x_n if $x_{i-1} = 1$. The connection between X and Y_1 is undefined, so we can assume x_0 is either equal to 0 or equal to 1, which gives us slightly different graphs. We call the graph a "0-Möbius cube " if we assume $x_0 = 0$, and call the graph a "1 - Möbius cube " if we assume $x_0 = 1$, denoted by MQ_n^0 and MQ_n^1 , respectively. Generally, we will use MQ_n to denote MQ_n^0 or MQ_n^1 .

The Möbius cubes MQ_n is first proposed by Cull and Larson [15] as an attractive alternative to the n^- cube Q_n . Like Q_n , MQ_n is an n^- regular graph with 2^n vertices and $n2^{n-1}$ edges. The results given in the present paper show that MQ_n and Q_n have the same connectivity, super connectedness and restricted connectivity. Furthermore, MQ_n is superior to Q_n in having a diameter of [n + 2/2] for $MQ_n^0(n - 4)$ and [n + 1/2] for $MQ_n^1(n - 1)$, approximately a half of Q_n 's diameter. However, for n - 4, MQ_n is neither vertex transitive nor edge-transitive. This lack of symmetry removes the Möbius cubes from the class of Cayley graphs.

From the definition of the Möbius cubes, MQ_n has a simple recursive property, that is, MQ_n^0 and

MATHEMATICA APPLICATA

 MQ_n^1 can be constructed from MQ_{n-1}^0 and MQ_{n-1}^1 by adding 2^{n-1} edges ,called cross-edges ,connecting all pairs of vertices that differ only in the first coordinate ,and in the first through the *n*th coordinates ,respectively. For convenience ,we express MQ_n as $MQ_n = L$ R, where $L = MQ_{n-1}^0$ and $R = MQ_{n-1}^1$, and denote by x_lx_r the cross-edge connecting x_l L and x_r R. The recursive structure of MQ_n gives the following simple property.

Lemma 1 Let $MQ_n = L$ R with n 2. Then every vertex x_l L has exactly one neighbor x_r in R connected by the cross-edge $x_l x_r$.

Using this simple observation and the recursive property of MQ_n , we can also obtain the following property easily.

Lemma 2 MQ_n contains no triangle and any two nonadjacent vertices in MQ_n have common neighbors at most two for n = 2.

Now , we investigate the connectivity , the super connectedness and the restricted connectivity of MQ_n . We first consider the connectivity of MQ_n .

Theorem 1 $(MQ_n) = (MQ_n) = n \text{ for } n = 1.$

Proof By Whitney's inequality (see Theorem 3.1 in [1]), we have (MQ_n) (MQ_n)

 $(MQ_n) = n$. Thus, in order to prove the theorem, we only need to prove $(MQ_n) = n$. We proceed by induction on n = 1. The assertion is true if n = 1 since both MQ_1^0 and MQ_1^1 are a complete graph K_2 . Assume the induction hypoghesis for n - 1 when n = 2. To prove $(MQ_n) = n$, we only need to show that for any subset $F \subset V(MQ_n)$, if |F| = n - 1 then $MQ_n - F$ is connected.

Let $MQ_n = L$ R, and let $F_l = F$ L, and $F_r = F$ R. Then at least one of $L - F_l$ and R- F_r is connected by the induction hypothesis. We can without loss of generality ,suppose that $R - F_r$ is connected. We show that any vertex u_l in $L - F_l$ can be connected to $R - F_r$. Let $u_l u_r$ be the cross-edge in $MQ_n = L$ R. If $u_r \notin F_r$, then we are done. So we assume that $u_r - F_r$. Consider $N = N_{MQ_n}(u_l)$, which is the neighbor-set of u_l in MQ_n . Since |N| = n > n - 1 |F|, there is a vertex $x_l - N$ such that both x_l and $x_r - R$ are not in F. This implies that u_l in $L - F_l$ can be connected to $R - F_r$ via the cross-edge $x_l x_r$. Thusm ,we show that |S| - n for any vertex-cut S in MQ_n , that is , $(MQ_n) = |S|$ n. The theorem follows.

We now determine (MQ_n) . Clearly, (MQ_1) and (MQ_2) do not exist. When n = 3, we have the following theorem.

Theorem 2 $(MQ_n) = 2n - 2$ for n = 3.

Proof We first show $(MQ_n) = 2n - 2$ for n = 3. It is easy to be verified that $(MQ_3) = 4$ and $(MQ_4) = 6$. Suppose n = 5 below. Let u and v be two adjacent vertices in MQ_n and $S = N_{MQ_n}(u, v)$. Then |S| = 2n = 2 since MQ_n is n-regular and contains no triangle by Lemma 2, and $MQ_n - S$ is disconnected since $2^n - (2n - 2) - 2 = 2$. Because n = 5 and any two distinct vertices have common neighbors at most two by Lemma 2, the neighbor set $N_{MQ_n}(x)$ is not included in S for any $x = V(MQ_n)$. This fact shows that S is a restricted vertex-cut of MQ_n . Thus $(MQ_n) - |S| = 2n - 2$ for n = 3.

We now prove $(MQ_n) = 2n - 2$. To the end, we only need to show that for any restricted vertexset F in MQ_n , if |F| = 2n - 3 then $MQ_n - F$ is connected. Let $MQ_n = L$ R, and let $F_l = F$ L, and $F_r = F$ R. Obviously, F_l $F_r = \emptyset$ Thus, either $|F_l|$ n - 2 or $|F_r|$ n - 2. We can without loss of generality, suppose that $|F_r|$ n - 2. 2. Then $R - F_r$ is connected since $(R) = (MQ_{n-1}^1) = n - 1$. We show that any vertex u_l in $L - F_l$ can be connected to the connected graph $R - F_r$. Let $u_l u_r$ be the cross-edge in $MQ_n = L$ R. If $u_r \notin F_r$, then we are done. So we assume that $u_r = F_r$. Since F is a restricted vertex-set, there exist a vertex v_l adjacent to u_l in $L - F_l$. Consider $N = N_{MQ_n}(u_l, v_l)$, which is the neighbor set of $\{u_l, v_l\}$ in MQ_n . Since |N| - 2n - 2 > 2n - 3, there is a vertex $x_l = N$ such that both x_l and $x_r = R$ are not in F. This implies that u_l in $L - F_l$ can be connected to $R - F_r$ via the cross-edge $x_l x_r$.

Thus, we show that |S| = 2n - 2 for any restricted vertex-cut S in MQ_n , that is, $(MQ_n) = |S| = 2n - 2$. The theorem follows.

Corollary MQ_n is super vertex-connected for any n = 1.

Theorem 3 $(MQ_n) = 2n - 2$ for n = 2.

Proof Consider an edge xy in MQ_n and the set of its adjacent edges $E(xy) = \{e E(MQ_n) \setminus \{xy\} \ e = xu$ or $e = yu \ E(MQ_n), u \ V(MQ_n)\}$. Clearly, $MQ_n - E(xy)$ is disconnected and E(xy) = 2n - 2 since MQ_n is *n*-regular. Since MQ_n contains no triangle, $MQ_n - E(xy)$ contains no isolated vertex and thus, E(xy) is a restricted edge-cut of MQ_n . This gives $(MQ_n) / E(xy) / = 2n - 2$.

We now show $(MQ_n) 2n - 2$. Clearly, $(MQ_2) 2$. We assume that n - 3 and F is a restricted edge-set of MQ_n . We need to prove that if |F| - 2n - 3 then $MQ_n - F$ is connected. Let $MQ_n = L - R$. Then at least one of two (n - 1) - dimensional Möbius cubes L and R contains elements in F at most $\left[\frac{2n - 3}{2}\right] - n - 2$. Without loss of generality assume that L contains elements in F at most n - 2. Then , by Theorem 1, L - F is a connected spanning subgraph of L. In order to prove that $MQ_n - F$ is connected to show that any vertex x_r in R can be connected to L in $MQ_n - F$.

If the cross-edge $x_l x_r$ is not in *F*, then there is nothing to do. Suppose that $x_l x_r$ *F*. Since *F* is a restricted edge-set, there exists an edge $x_r y_r$ in *R* such that $x_r y_r \notin F$. Since MQ_n contains no triangle by Lemma 2, $|N_{MQ_n}(x_r, y_r)| = 2n - 2 > 2n - 3$, and so there exists at least one $u_r - N_{MQ_n}(x_r, y_r)$ such that the cross-edge $u_l u_r$ is not *F*. Thus, x_r can be connected to *L* via the vertex the cross-edge $u_l u_r$. Thus, we show that |S| - 2n - 2 for any restricted edge-cut *S* in MQ_n , that is, $(MQ_n) = |S| - 2n - 2$. The theorem follows.

Corollary MQ_n is super edge-connected if n = 2.

Reference :

- [1] Bondy J A, Murty U S R. Graph Theory with Applications[M]. London : Macmillan Press, 1976.
- [2] Bauer D, Boesch F, Suffel C, Tindell R. Connectivity extremal problems and the design of reliable probabilistic net works. The Theory and Application of Graphs[M]. New York: Wiley, 1981, 89~98.
- [3] Esfahanian A H. Generalized measures of fault tolerance with application to *n*² cube networks[J]. IEEE Trans. Conput, 1989, 38(11):1586 ~ 1591.
- [4] Esfahanian A H, Hakimi S L. On computing a conditional edge connectivity of a graph[J]. Information Processing Letters, 1988, 27:195 ~ 199.

- [5] Latifi S, Hedge M, Naraghi Pour M. Conditional connectivity measures for large miltiprocessor systems [J]. IEEE Trans. Comput, 1994, 43:218 ~ 221.
- [6] Li Qiaoliang LI Qiao. Reliability analysis of circulant graphs [J]. Networks ,1998 ,31(1) :61 ~ 65.
- [7] Li Qiaoliang Li Qiao. Refined connectivity properties of abelian Cayley graphs[J]. Chin. Ann. Math. ,1998 ,19B(4): 409 ~ 414.
- [8] Lu Changhong, Zhang Kemin. Super connectivity and restricted connectivity of undirected de Bruijn graphs(in Chinese) [J]. Acta Mathematice Applicatae Sinica, 2002, 25(1):29 ~ 35.
- [9] Meng Jixiang. Restricted edge connectivity of minimal Cayleyb graph [J]. OR Transaction, $2001, 5(1): 33 \sim 38$.
- [10] Meng Jixiang. Optimally super edge-connected transitive graphs [J]. Discrete Math ,2003 ,260(1-3) :239 ~ 248.
- [11] Meng Jixiang Ji Youhu. On a kind of restricted edge connectivity of graphs [J]. Discrete Applied Math ,2002 ,117: 183 ~ 193.
- [12] Wang M Li Q. Conditional edge connectivity properties ,reliability comparisons and transitivity of graphs[J]. Discrete Math ,2002 ,258 :205 ~ 214.
- [13] Xu Junning. Toplogical structure and analysis of interconnection netwoks[M]. Boston: Kluwer Academic Publishers, 2001,288 ~ 306.
- [14] Xu Junning ,Xu Keli. On restricted edge connectivity of graphs[J]. Discrete Math ,2002 ,243(1 3) :291 ~ 298.
- [15] Cull P,Larson S M. The Möbius cubes[J]. IEEE Transactions on Computers, 1995, 44(5):647~659.

关于 Möbius 立方体网格的连通度

张修梅¹,徐俊明²,

(1. 安徽大学数学系,安徽 合肥 230039;中国科学技术大学数学系,安徽 合肥 230026)

摘要:图的连通度、超连通性和限制连通度是度量互连网络容错性的重要参数. 该文考虑 n 维 Möbius 立方体网络 MQ_n , 证明了它的点和边连通度都为 n, 当 n 是任何正整数时它是超 连通的 ,当 n 2 时它是超边连通的 ,当 n 3 时它的限制点连通度和当 n 2 时的限制边连 通度都为 2n - 2.

关键词:连通度;限制连通度;超连通性;Möbius立方体网络