第34卷第3期 中国科学技术大学学报 Vol.34, No.3 2004年6月 JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA Jun. 2004

Article ID:0253-2778(2004)03-0266-07

On Restricted Edge-Connectivity of Vertex-Transitive Graphs

LI Lei, XU Jun-ming

(Department of Mathematics, USTC, Hefei 230026, China)

Abstract: It is known that for connected vertex-transitive graphs of degree $k (\ge 2)$, the restricted edge-connectivity $k \le \lambda' \le 2k - 2$ and the bounds can be attained. Two necessary and sufficient conditions for a vertex-transitive graph G of degree k to admit $\lambda'(G) = k$ are presented. Afterwards, for any connected graph G_0 , $\lambda'(K_2 \times G_0)$ is determined to be $\lambda'(K_2 \times G_0) = \min \{2\delta(G_0), 2\lambda'(G_0), v(G_0)\}$, and then for any given integer s with $0 \le s \le k - 3$, there is a connected vertex-transitive graph G of degree k and $\lambda'(G) = k + s$ if and only if either k is odd or s is even.

Key words: connectivity; restricted edge-connectivity; transitive graphs; circulant graphs CLC number: 0157.5 Document code: A AMS Subject Classifications (2000):05C40

0 Introduction

We follow [1] for graph-theoretical terminology and notation not defined here. A graph G = (V, E) always means a simple graph (without loops and multiple edges), with vertex-set V = V(G) and edge-set E = E(G). In this paper, we consider the restricted edge-connectivity, which is a new graph-theoretical parameter introduced by Esfahanian and Hakimi [3]. For the sake of convenience, the graph considered in this note is a connected graph, not a triangle or a star.

Let $S \subseteq E(G)$. If G - S is disconnected and contains no isolated vertices, then S is called a restricted edge-cut of G. The restricted edge-connectivity of G, denoted by $\lambda'(G)$, is defined as the minimum cardinality over all restricted edge-cuts of G. The restricted edge-connectivity provides a more accurate measure of fault-tolerance of networks than the classical edge-connectivity (see [2]). Thus, it has received much attention recently (see, for example, [2-13]).

Foundation item: The project supported by NNSF of China (No. 10271114) Biography: LI Lei, male, born in 1982, master candidate. Research field: algebraic coding theory. E-mail: harrylee@ mail.ustc.edu.cn.

Received date: 2003-03-25

For $e = xy \in E(G)$, let $\xi_G(e) = d_G(x) + d_G(y) - 2$. The minimum edge-degree of G is defined to be $\xi(G) = \min\{\xi_G(e) | e \in E(G)\}$. It was shown in [3] that

$$\lambda(G) \leq \lambda'(G) \leq \xi(G), \tag{1}$$

where $\lambda(G)$ is the edge-connectivity of G. A graph G is said to be optimal if $\lambda'(G) = \xi(G)$, and non-optimal otherwise.

From inequality (1), it is clear that $k \leq \lambda'(G) \leq 2k - 2 = \xi(G)$ for a connected vertextransitive graph *G* of degree $k \geq 2$ since $\lambda(G) = k$. There are optimal and vertex-transitive graphs, such as the complete graph K_{k+1} and the hypercube Q_k . Recently, it has been shown in [10,12] that for any non-optimal and vertex-transitive graph *G* of degree *k* there is an integer $m \geq 2$ such that $\lambda'(G) = \frac{n}{m}$. In this note, it is pointed out that for any given integers $k \geq 3$ and *s* with $0 \leq s < k - 2$, there is a connected vertex-transitive graph *G* with degree *k* and $\lambda'(G) = k + s$ if and only if either *k* is odd or *s* is even.

The rest of the note is organized as follows. Section 1 contains necessary definitions and known results. Section 2 gives two necessary and sufficient conditions for a vertex-transitive graph G of degree k to admit $\lambda'(G) = k$. Section 3 proves $\lambda'(K_2 \times G_0) = \min\{2\delta(G_0), 2\lambda'(G_0), v(G_0)\}$ for any connected graph G_0 , and constructs a class of non-optimal and vertex-transitive graphs with degree k and $\lambda' = k + s$ for any odd k or even s with $k \ge 3$ and $0 \le s < k - 2$.

1 Notation and Lemmas

Let G = (V, E) be a graph. For two disjoint non-empty subsets X and Y of V(G), let $(X, Y)_G$ = $\{e = xy \in E(G) : x \in X \text{ and } y \in Y\}$. If $Y = \overline{X} = V(G) \setminus X$, then we write $\partial_G(X)$ for (X, \overline{Y}) and $d_G(Y)$ for $|x \in Y|$.

 $(\bar{X})_{G}$ and $d_{G}(X)$ for $|\partial_{G}(X)|$.

A restricted edge-cut S of G is called a λ' -cut if $|S| = \lambda'(G)$. It is easy to see that G - S has just two connected components for any λ' -cut S. A non-empty and proper subset X of V(G) is called a λ' -fragment of G if $\partial_G(X)$ is a λ' -cut of (G). The minimum λ' -fragment over all λ' -fragments of G is called a λ' -atom of G. The cardinality of a λ' -atom of G is denoted by a(G).

Lemma 1^[13] Let G be a non-optimal graph. Then any two distinct λ' -atoms of G are disjoint, and $a(G) \ge k \ge 3$ if G is k-regular.

Lemma 2^[10,12] Let G be a non-optimal and vertex-transitive graph of degree $k \ (\geq 3)$, and X a λ' -atom of G. Then,

(i) G[X] is a vertex-transitive subgraph of degree k - 1;

(ii) There is a partition $\{X_1, X_2, \dots, X_m\}$ of V(G) such that $G[X_i] \cong G[X]$ for each i = 1, $2, \dots, m, m \ge 2$.

Lemma 3 (Theorem 2.3.5 in [12]) The Cartesian product of vertex-transitive graphs is a vertex-transitive graph.

2 Two necessary and sufficient conditions

In this section, we will give two necessary and sufficient conditions for a non-optimal vertextransitive graph G of degree k to admit $\lambda'(G) = k$.

Theorem 1 Let G be a non-optimal and vertex-transitive graph of degree k. Then $\lambda'(G) = k$ if and only if the induced subgraph G[X] is a complete graph of order k for any λ' -atom X of G.

Proof Let X be a λ' -atom of G, and s = |X|. Then G[X] is a vertex-transitive subgraph of G of degree k - 1 by Lemma 2. It follows that

$$sk = \sum_{x \in X} d_G(x) = \sum_{x \in X} d_{G[X]}(x) + \lambda'(G) = s(k-1) + \lambda'(G).$$
(2)

Suppose that $\lambda'(G) = k$. From (2), we have sk = s(k-1) + k, which implies that s = k, and G[X] is a complete graph of order k.

Conversely, suppose that G[X] is a complete graph of order k. Then from (2), we have $k^2 = k(k-1) + \lambda'(G)$, which means that $\lambda'(G) = k$.

Lemma 4 Let G be a non-optimal, k-regular and connected graph. If G contains a complete graph K_k , then $X = V(K_k)$ is a λ' -atom of G, and hence $\lambda'(G) = k$.

Proof Since G is a non-optimal k-regular graph, by Lemma 1, $k \ge 3$. Let X be the vertexset of a complete subgraph K_k of G. Then $|X| = k \ge 3$. We will first prove that $G - \partial_G(X)$ contains no isolated vertices. Suppose to the contrary that $G - \partial_G(X)$ contains an isolated vertex x. Then $x \in V(G) \setminus X$ and $N_G(x) \subseteq X$. Noting that $d_G(x) = k = |X|$, we have $N_G(x) = X$. Since G is k-regular and connected, G is a complete graph of order k + 1, which is optimal. This contradicts the assumption that G is non-optimal. Therefore, $G - \partial_G(X)$ contains no isolated vertices. Thus, $\partial_G(X)$ is a restricted edge-cut of G. It follows from (1) that

 $k = \lambda(G) \leq \lambda'(G) \leq |\partial_G(X)| = d_G(X) = k,$

which means $\lambda'(G) = k$, namely, $\partial_G(X)$ is a λ' -cut of G. By Lemma 1, $k \leq |X| = k$, which means X is a λ' -atom of G.

By Theorem 1 and Lemma 4, we have the following result immediately.

Theorem 2 Let G be a non-optimal and connected vertex-transitive graph of degree $k \ge 3$. 3). Then $\lambda'(G) = k$ if and only if G contains a complete graph of order k.

Theorem 3 Let G be a non-optimal and connected vertex-transitive graph. Then G has a prefect matching, and hence G has even order.

Proof By Lemma 2, there is a λ' -atom partition $\{X_1, X_2, \dots, X_m\}$ of V(G) such that $G[X_i]$ is a vertex-transitive subgraph of G of degree k - 1, where $m \ge 2$. Let

$$M = E(G) \setminus (E(G[X_1]) \cup \cdots \cup E(G[X_m])).$$

It is clear that M is a matching of G since any two distinct edges in M have no end-vertices in common. On the other hand, since $G[X_i]$ is a (k-1)-regular subgraph of G, for any $x \in V(G)$, there must exist one edge $e \in M$ such that x is an end-vertex of e. This means M is a prefect matching of G.

3 Main results

We present our main results in this section. We consider the Cartesian product $K_2 \times G_0$ of K_2 and G_0 , where K_2 is the complete graph of order 2 and G_0 is a connected graph of order $v(G_0) \ge$ 2. Let $V(K_2) = \{0,1\}$ and $V(G_0) = \{x_1, x_2, \dots, x_n\}$. By the definition of the Catesian product, $K_2 \times G_0$ is obtained from two copies of G_0 by connecting (via a new edge) vertex x_i in one copy to the vertex x_i in the other copy for each $i = 1, 2, \dots, n$. Let $G = K_2 \times G_0$, then G can be expressed as the union of two disjoint subgraphs of G that are isomorphic to G_0 . Let G_1 and G_2 be such two subgraphs of G and

 $V_1 = V(G_1) = \{0x_i : 1 \le i \le n\}, \quad V_2 = V(G_2) = \{1x_i : 1 \le i \le n\}.$

It is clear that $\xi(K_2 \times G_0) = 2\delta(G_0)$, and hence $\lambda'(K_2 \times G_0) \leq 2\delta(G_0)$. We denote $\lambda'(G_0) = \infty$ if $\lambda'(G_0)$ does not exist (such graphs are only K_2, K_3 and the star $K_{1,n}$). The following two facts are also clear. If $v(G_0) \geq 2$, then $\partial_G(V_1)$ is a restricted edge-cut of G, thus, $\lambda'(G) \leq |\partial_G(V_1)| = |V_1| = v(G_0)$. If X_0 is a λ' -atom of G_0 , then $\partial_G(0X_0 \cup 1X_0)$ is a restricted edge-cut of G, thus, $\lambda'(G) \leq |\partial_G(0X_0 \cup 1X_0)| = 2|\partial_{G_0}(X_0)| = 2\lambda'(G_0)$. It follows that $\lambda'(K_2 \times G_0) \leq \min\{v(G_0), 2\delta(G_0), 2\lambda'(G_0)\}$. (3)

We will prove below that the equality in (3) holds.

Theorem 4 Let G_0 be a connected graph of order $v(G_0) (\ge 2)$. Then

 $\lambda'(K_2 \times G_0) = \min \{v(G_0), 2\delta(G_0), 2\lambda'(G_0)\}.$

Proof Let $G = K_2 \times G_0$. It is easy to check that the theorem holds if $G_0 = K_2$, K_3 or $K_{1,n}$. Then we may suppose $\lambda'(G_0)$ is well defined. Also, it is clear from the definition of $G = K_2 \times G_0$ that every edge of G is included in a cycle of G, which deduces $\lambda'(G) \ge 2$. Thus, if $\delta(G_0) = 1$, then $\lambda'(G) = 2 = 2\delta(G_0)$, and the theorem is true. Suppose $\delta(G_0) \ge 2$ below.

Let X be a λ' -atom of G. Then $d_G(X) = \lambda'(G)$. We consider three cases according to the behavior of X respectively.

Case 1 If $X = V_1$ (or V_2), then clearly $\lambda'(G) = v(G_0)$.

Case 2 $X \subset V_1$ (or V_2). In this case, we assert that $\partial_G(X)$ is a restricted edge-cut of G_0 . Suppose to the contrary that there is an isolated vertex x in $G_0 - \partial_G(X)$. Then $N_{G_0}(x) \subseteq X$. Note that $G - \partial_G(X \cup \{x\})$ has no isolated vertices. Therefore, $\partial_G(X \cup \{x\})$ is a restricted edge-cut of G. Since $d_{G_0}(x) = |N_{G_0}(x)| \ge \delta(G_0) \ge 2$,

$$\lambda'(G) \leq d_G(X \cup \{x\}) = d_G(X) - d_{C_0}(x) + 1 < d_G(X) = \lambda'(G).$$

It's a contradiction. Thus, $\partial_G(X)$ is a restricted edge-cut of G_0 , which means $d_{G_0}(X) \ge \lambda'(G_0)$. It follows that

$$2\lambda'(G_0) \geq \lambda'(G) = d_G(X) = |X| + d_{C_0}(X) \geq |X| + \lambda'(G_0),$$

which means $|X| \leq \lambda'(G_0)$. If there exists some $0x \in X$ such that $N_{G_1}(0x) \subseteq X$, then

$$2\delta(G_0) \leq 2d_{G_0}(x) \leq 2(|X|-1) \leq |X| + \lambda'(G_0) - 2 <$$
$$d_G(X) = \lambda'(G) \leq 2\delta(G_0),$$

which is impossible. Thus, we may suppose that for any $0x \in X$, there is at least one edge in

 $\partial_{G_0}(X)$, among the edges incident with x in G_0 . Thus, for any two adjacent vertices 0x and 0y in G[X], the number of edges in $\partial_{G_0}(X)$ incident with the two vertices is at most $(d_G(X) - |X|) - (|X| - 2)$. It follows that

$$2\delta(G_0) \leq d_{G_0}(x) + d_{G_0}(y) \leq 2(|X| - 1) + (d_G(X) - |X|) - (|X| - 2) = d_G(X) = \lambda'(G) \leq 2\delta(G_0),$$

which means that $\lambda'(G) = 2\delta(G_0)$.

Case 3
$$X_1 = X \cap V_1 \neq \emptyset$$
 and $X_2 = X \cap V_2 \neq \emptyset$. Let
 $X'_1 = N_G(X_2) \cap V_1$ $X'_2 = N_G(X_1) \cap V_2$.
We first show that $X'_1 = X_1$ $X'_2 = X_2$. (4)

Suppose to the contrary that the equalities in (4) both are not true. Then at least one of the sets $X'_1 \setminus X_1$ and $X'_2 \setminus X_2$ is non-empty. We can, without loss of generality, suppose that $X'_1 \setminus X_1 \neq \emptyset$. Let $Y_1 = X \cup (X'_1 \setminus X_1)$, and $U_1 = V_1 \setminus (X_1 \cup X'_1)$. It is clear that $G[Y_1]$ and $G[\overline{Y}_1]$ both contain no isolated vertices. Therefore, $\partial_G(Y_1)$ is a restricted edge-cut of G, and thus, $d_G(Y_1) \geq \lambda'(G) = d_G(X)$. We have then

$$d_{c}(X) \leq d_{c}(Y_{1}) = d_{c}(X \cup (X'_{1} \setminus X_{1})) = d_{c}(X) - |X'_{1} \setminus X_{1}| - |(X'_{1} \setminus X_{1}, X_{1})_{c}| + |(X'_{1} \setminus X_{1}, U_{1})_{c}|,$$

which means that $|X'_1 \setminus X_1| + |(X'_1 \setminus X_1, X_1)_c| - |(X'_1 \setminus X_1, U_1)_c| \le 0$, namely,

$$|X'_{1} \setminus X_{1}| \leq |(X'_{1} \setminus X_{1}, U_{1})_{c}| - |(X'_{1} \setminus X_{1}, X_{1})_{c}|.$$
(5)

We consider the sets $Y_2 = (X_2 \cap X'_2) \cup X_1$ and $U_2 = V(G_2) \setminus X_2$. It is clear that $|Y_2| \le |X|$, and the subgraphs $G[Y_2]$ and $G[\overline{Y}_2]$ both contain no isolated vertices. Therefore, $\partial_G(Y_2)$ is a restricted edge-cut of G, and

$$\lambda'(G) \leq d_G(Y_2) = d_G((X_2 \cap X'_2) \cup X_1) =$$

$$d_{G}(X) - |X_{2} \setminus X'_{2}| - |(X_{2} \setminus X'_{2}, U_{2})_{G}| + |(X_{2} \setminus X'_{2}, X_{2} \cap X'_{2})_{G}|.$$

By the construction of G, it is clear that $G[X_{2} \setminus X'_{2}] \cong G[X'_{1} \setminus X_{1}]$, and so
$$|X_{2} \setminus X'_{2}| = |X'_{1} \setminus X_{1}|,$$
$$|(X_{2} \setminus X'_{2}, U_{2})_{G}| \ge |(X'_{1} \setminus X_{1}, U_{1})_{G}|,$$
$$|(X_{2} \setminus X'_{2}, X_{2} \cap X'_{2})_{G}| \le |(X'_{1} \setminus X_{1}, X_{1})_{G}|.$$
(7)

By inequalities (6), (7) and (5), we have that

B BBBBB

$$\lambda'(G) \leq d_{G}(Y_{2}) \leq d_{G}(X) - |X'_{1} \setminus X_{1}| - |(X'_{1} \setminus X_{1}, U_{1})_{G}| + |(X'_{1} \setminus X_{1}, X_{1})_{G}| \leq d_{G}(X) - 2|X'_{1} \setminus X_{1}| < d_{G}(X) = \lambda'(G).$$

This contradiction implies that the equalities in (4) hold. Thus, $|X_1| = |X_2|$ and $d_c(X) = 2d_{c_1}(X_1)$. If $|X_1| = 1$, say $X = \{0x\}$, then $d_{c_1}(x) \ge \delta(G_0)$, and thus, $2\delta(G_0) \le 2d_{c_0}(x) = d_c(X) \le 2\delta(G_0)$, which means that $\lambda'(G) = 2\delta(G_0)$.

Suppose $|X_1| \ge 2$. It is clear that $G[X_1]$ is connected as G[X] is connected. In other words, $G_0[X_1]$ contains no isolated vertices. By the same consideration in case 2, it is easy to see $G_0[\bar{X}_1]$ contains no isolated vertices, where $\bar{X}_1 = V(G_0) \setminus X_1$. Therefore, $\partial_{G_0}(X_1)$ is a re-

stricted edge-cut of G_0 , and so $d_{G_0}(X_1) \ge \lambda'(G_0)$. It follows that

$$2\lambda'(G_0) \leq 2d_{G_0}(X_1) = \lambda'(G) \leq 2\lambda'(G_0).$$

This means that $\lambda'(G) = 2\lambda'(G_0)$.

Summing up the three cases, we have that

$$\lambda'(K_2 \times G_0) \ge \min\{v(G_0), 2\delta(G_0), 2\lambda'(G_0)\}.$$
(8)

The theorem follows.

As consequences of Theorem 4, we can obtain the following results.

Corollary 1 Let G_0 be a connected vertex-transitive graph of degree k. Then $\lambda'(K_2 \times G_0)$ = min $\{2k, v(G_0)\}$.

Proof It is known $k = \lambda \leq \lambda'$ for any connected vertex-transitive graph of degree k. It follows that min $\{2\delta(G_0), 2\lambda'(G_0), v(G_0)\} = \min\{2k, v(G_0)\}$.

By Theorem 4, $\lambda'(K_2 \times G_0) = \min\{2k, v(G_0)\}.$

Corollary 2^[2] For hypercube $Q_k(k \ge 2), \lambda'(Q_k) = 2k - 2$.

Proof Since Q_{k-1} is a connected and vertex-transitive graph of degree k - 1 for $k \ge 2$,

$$\min\{2(k-1), v(Q_{k-1})\} = \min\{2k-2, 2^{k-1}\} = 2k-2.$$

By $Q_k = K_2 \times Q_{k-1}$ and Corollary 1, $\lambda'(Q_k) = 2k - 2$.

Theorem 5 For any given integers k and s with $k \ge 3$, $0 \le s \le k-3$, there is a connected vertex-transitive graph G with degree k and $\lambda'(G) = k + s$ if and only if either k is odd or s is even.

Proof Let k be even and s odd. Suppose to the contrary that there is a vertex-transitive graph G of degree k and $\lambda'(G) = k + s \leq 2k - 3$. Then G is non-optimal. Let X be a λ' -atom of G. Consider the subgraph G[X]. By Lemma 2(i), $|X| = \lambda'(G) = k + s$, $k \geq 3$ and G[X] is (k-1)-regular. It follows that

$$2|E(G[X])| = \sum_{x \in X} d_{G[X]}(x) = (k-1)|X| = (k-1)(k+s).$$
(9)

The left-hand side of (9) is even, but the right-hand side is odd, which is a contradiction. The necessity follows.

To prove the sufficiency, we consider the circulant graph
$$G(n;a_1,a_2,\dots,a_k)$$
, where $0 < a_1 < \dots < a_k \leq \frac{n}{2}$, having vertices $0, 1, 2, \dots, n-1$ and edge *ij* if and only if $|j - i| \equiv a_i \pmod{n}$

for some t, $1 \le t \le k$. The circulant graph is vertex-transitive, and is 2k-regular if $a_k \ne \frac{n}{2}$, and (2k-1)-regular otherwise.

Let $G = K_2 \times G_0$, where G_0 is a circulant graph. Then G is vertex-transitive by Lemma 3.

We show the sufficiency by selecting a circulant graph G_0 with degree k - 1 and $\lambda'(G) = k + s$ according to the parity of k and s.

For $m \ge 1$, we select

$$G_0 = \begin{cases} G(k+s;1,2,\cdots,m), & \text{if } k = 2m+1, \\ G(k+s;1,2,\cdots,m-1,m+\frac{1}{2}s), & \text{if } k = 2m \text{ and } s \text{ is even} \end{cases}$$

It is easy to check that $\delta(G_0) = k - 1$. Since for any s with $0 \le s < k - 2$, $2\delta(G_0) = 2k - 2 > k + s = v(G_0)$,

by Corollary 1, $\lambda'(G) = v(G_0) = k + s$, as required.

References

- [1] Bondy J A, Murty U S R. Graph Theory with Applications [M]. London: Macmillan Press, 1976.
- [2] Esfahanian A H. Generalized measures of fault tolerance with application to n-cube networks
 [J]. IEEE Trans. Comput. 1989, 38(11): 1586-1591.
- [3] Esfahanian A H, Hakimi S L. On computing a conditional edge-connectivity of a graph [J]. Information Processing Letters, 1988, 27:195-199.
- [4] Latifi S, Hegde M, Naraghi-Pour M. Conditional connectivity measures for large miltiprocessor systems [J]. IEEE Trans. Comput., 1994, 43(2):218-221.
- [5] Li Q L, Li Q. Reliability analysis of circulants
 [J]. Networks, 1998, 31:61-65.
- [6] Li Q L, Li Q. Refined connectivity properties of abelian Cayley graphs [J]. Chin. Ann. of Math., 1998, 19B(4):409-414.

Networks, 1999, 33:147-159.

- [8] Wu J, Cuo G. Fault tolerance measures for mary n-dimensional hypercubes based on forbidden faulty sets [J]. IEEE Trans. Comput., 1998, 47(8):888-893.
- [9] Xu J M. Some results on R₂-edge-connectivity of even regular graphs [J]. Appl. Math. JCU, 1999, 14B(3):366-370.
- [10] Xu J M. Restricted edge-connectivity of vertextransitive graphs [J]. Chinese Journal of Contemporary Math., 2000,21(4):369-374.
- [11] Xu J M. On conditional edge-connectivity of graphs[J]. Acta Math. Appli. Sinica, 2000, 16B(4):414-419.
- [12] Xu J M. Topological Structure and Analysis of Interconnection Networks [M]. Boston/Dordrecht/London, Kluwer Academic Publishers, 2001.
- [13] Xu J M, Xu K L. On restricted edge-connectivity of graphs [J]. Discrete Math. 2002, 243:

[7] Li Q L, Li Q. Super edge connectivity properties of connected edge symmetric graphs [J]. 291-298.

点可迁图的限制边连通度

李 雷,徐俊明

(中国科学技术大学数学系,安徽合肥 230026)

摘要:对于度 $k(\ge 2)$ 的点可迁连通图的限制边连通度 λ' ,已知 $k \le \lambda' \le 2k - 2, 且$ λ' 的界可以达到.在此基础上,对度为k的点可迁图G进一步给出了满足 $\lambda'(G) = k$ 的两个充要条件.接着,对任意的连通图 G_0 证明了 $\lambda'(K_2 \times G_0) = \min | 2\delta(G_0),$ $2\lambda'(G_0), v(G_0) \}$.最后证明了对任意满足 $0 \le s \le k - 3$ 的整数s,存在度为k的点可 迁连通图G满足 $\lambda'(G) = k + s$ 当且仅当k为奇数或者s为偶数.

关键词:连通度;限制边连通度;可迁图;循环图

