On Restricted Edge－Connectivity of Vertex－Transitive Graphs

LI Lei，XU Jun－ming
（Department of Mathematics，USTC，Hefei 230026，China）

Abstract

It is known that for connected vertex－transitive graphs of degree $k(\geqslant 2)$ ，the re－ stricted edge－connectivity $k \leqslant \lambda^{\prime} \leqslant 2 k-2$ and the bounds can be attained．Two necessary and sufficient conditions for a vertex－transitive graph G of degree k to admit $\lambda^{\prime}(G)=k$ are presented．Afterwards，for any connected graph $G_{0}, \lambda^{\prime}\left(K_{2} \times G_{0}\right)$ is determined to be $\left.\lambda^{\prime}\left(K_{2} \times G_{0}\right)=\min \mid 2 \delta\left(G_{0}\right), 2 \lambda^{\prime}\left(G_{0}\right), v\left(G_{0}\right)\right\}$ ，and then for any given integer s with 0 $\leqslant s \leqslant k-3$ ，there is a connected vertex－transitive graph G of degree k and $\lambda^{\prime}(G)=k+$ s if and only if either k is odd or s is even．

Key words：connectivity；restricted edge－connectivity；transitive graphs；circulant graphs
CLC number：O157．5 Document code：A
AMS Subject Classifications（2000）：05C40

0 Introduction

We follow［1］for graph－theoretical terminology and notation not defined here．A graph $G=$ （ V, E ）always means a simple graph（without loops and multiple edges），with vertex－set $V=$ $V(G)$ and edge－set $E=E(G)$ ．In this paper，we consider the restricted edge－connectivity，which is a new graph－theoretical parameter introduced by Esfahanian and Hakimi［3］．For the sake of convenience，the graph considered in this note is a connected graph，not a triangle or a star．

Let $S \subseteq E(G)$ ．If $G-S$ is disconnected and contains no isolated vertices，then S is called a restricted edge－cut of G ．The restricted edge－connectivity of G ，denoted by $\lambda^{\prime}(G)$ ，is defined as the minimum cardinality over all restricted edge－cuts of G ．The restricted edge－connectivity pro－ vides a more accurate measure of fault－tolerance of networks than the classical edge－connectivity （ see［2］）．Thus，it has received much attention recently（see，for example，［2－13］）．

Received date：2003－03－25
Foundation item：The project supported by NNSF of China（No．10271114）
Biography ：LI Lei，male，born in 1982，master candidate．Research field：algebraic coding theory－ E－mail ：harrylee＠mail．ustc．edu．cn．

For $e=x y \in E(G)$ ，let $\xi_{G}(e)=d_{G}(x)+d_{G}(y)-2$ ．The minimum edge－degree of G is de－ fined to be $\xi(G)=\min \left\{\xi_{G}(e) \mid e \in E(G)\right\}$ ．It was shown in［3］that

$$
\begin{equation*}
\lambda(G) \leqslant \lambda^{\prime}(G) \leqslant \xi(G), \tag{1}
\end{equation*}
$$

where $\lambda(G)$ is the edge－connectivity of G ．A graph G is said to be optimal if $\lambda^{\prime}(G)=\xi(G)$ ，and non－optimal otherwise．

From inequality（1），it is clear that $k \leqslant \lambda^{\prime}(G) \leqslant 2 k-2=\xi(G)$ for a connected vertex－ transitive graph G of degree $k(\geqslant 2)$ since $\lambda(G)=k$ ．There are optimal and vertex－transitive graphs，such as the complete graph K_{k+1} and the hypercube Q_{k} ．Recently，it has been shown in ［ 10,12$]$ that for any non－optimal and vertex－transitive graph G of degree k there is an integer $m(\geqslant 2)$ such that $\lambda^{\prime}(G)=\frac{n}{m}$ ．In this note，it is pointed out that for any given integers $k(\geqslant 3)$ and s with $0 \leqslant s<k-2$ ，there is a connected vertex－transitive graph G with degree k and $\lambda^{\prime}(G)$ $=k+s$ if and only if either k is odd or s is even．

The rest of the note is organized as follows．Section 1 contains necessary definitions and known results．Section 2 gives two necessary and sufficient conditions for a vertex－transitive graph G of degree k to admit $\lambda^{\prime}(G)=k$ ．Section 3 proves $\lambda^{\prime}\left(K_{2} \times G_{0}\right)=\min \left\{2 \delta\left(G_{0}\right), 2 \lambda^{\prime}\left(G_{0}\right)\right.$ ， $\left.v\left(G_{0}\right)\right\}$ for any connected graph G_{0} ，and constructs a class of non－optimal and vertex－transitive graphs with degree k and $\lambda^{\prime}=k+s$ for any odd k or even s with $k \geqslant 3$ and $0 \leqslant s<k-2$ ．

1 Notation and Lemmas

Let $G=(V, E)$ be a graph．For two disjoint non－empty subsets X and Y of $V(G)$ ，let $(X, Y)_{G}$ $=\{e=x y \in E(G): x \in X$ and $y \in Y\}$ ．If $Y=\bar{X}=V(G) \backslash X$ ，then we write $\partial_{G}(X)$ for $(X$ ， $\bar{X})_{G}$ and $d_{G}(X)$ for $\left|\partial_{G}(X)\right|$ ．

A restricted edge－cut S of G is called a λ^{\prime}－cut if $|S|=\lambda^{\prime}(G)$ ．It is easy to see that $G-S$ has just two connected components for any λ^{\prime}－cut S ．A non－empty and proper subset X of $V(G)$ is called a λ^{\prime}－fragment of G if $\partial_{G}(X)$ is a λ^{\prime}－cut of (G) ．The minimum λ^{\prime}－fragment over all λ^{\prime}－frag－ ments of G is called a λ^{\prime}－atom of G ．The cardinality of a λ^{\prime}－atom of G is denoted by $a(G)$ ．

Lemma $1^{[13]}$ Let G be a non－optimal graph．Then any two distinct λ^{\prime}－atoms of G are dis－ joint，and $a(G) \geqslant k \geqslant 3$ if G is k－regular．

Lemma $2^{[10,12]}$ Let G be a non－optimal and vertex－transitive graph of degree $k(\geqslant 3)$ ，and X a λ^{\prime}－atom of G ．Then，
（i）$G[X]$ is a vertex－transitive subgraph of degree $k-1$ ；
（ii）There is a partition $\left\{X_{1}, X_{2}, \cdots, X_{m}\right\}$ of $V(G)$ such that $G\left[X_{i}\right] \cong G[X]$ for each $i=1$ ， $2, \cdots, m, m \geqslant 2$ ．

Lemma 3（Theorem 2．3．5 in［12］）The Cartesian product of vertex－transitive graphs is a vertex－transitive graph．

2 Two necessary and sufficient conditions

In this section，we will give two necessary and sufficient conditions for a non－optimal vertex－ transitive graph G of degree k to admit $\lambda^{\prime}(G)=k$ ．

Theorem 1 Let G be a non－optimal and vertex－transitive graph of degree k ．Then $\lambda^{\prime}(G)=$ k if and only if the induced subgraph $G[X]$ is a complete graph of order k for any λ^{\prime}－atom X of G ．

Proof Let X be a λ^{\prime}－atom of G ，and $s=|X|$ ．Then $G[X]$ is a vertex－transitive subgraph of G of degree $k-1$ by Lemma 2．It follows that

$$
\begin{equation*}
s k=\sum_{x \in X} d_{G}(x)=\sum_{x \in X} d_{G[x]}(x)+\lambda^{\prime}(G)=s(k-1)+\lambda^{\prime}(G) \tag{2}
\end{equation*}
$$

Suppose that $\lambda^{\prime}(G)=k$ ．From（2），we have $s k=s(k-1)+k$ ，which implies that $s=k$ ， and $G[X]$ is a complete graph of order k ．

Conversely，suppose that $G[X]$ is a complete graph of order k ．Then from（2），we have k^{2} $=k(k-1)+\lambda^{\prime}(G)$ ，which means that $\lambda^{\prime}(G)=k$ ．

Lemma 4 Let G be a non－optimal，k－regular and connected graph．If G contains a complete graph K_{k} ，then $X=V\left(K_{k}\right)$ is a λ^{\prime}－atom of G ，and hence $\lambda^{\prime}(G)=k$ ．

Proof Since G is a non－optimal k－regular graph，by Lemma $1, k \geqslant 3$ ．Let X be the vertex－ set of a complete subgraph K_{k} of G ．Then $|X|=k \geqslant 3$ ．We will first prove that $G-\partial_{G}(X)$ con－ tains no isolated vertices．Suppose to the contrary that $G-\partial_{G}(X)$ contains an isolated vertex x ． Then $x \in V(G) \backslash X$ and $N_{G}(x) \subseteq X$ ．Noting that $d_{G}(x)=k=|X|$ ，we have $N_{G}(x)=X$ ．Since G is k－regular and connected，G is a complete graph of order $k+1$ ，which is optimal．This contra－ dicts the assumption that G is non－optimal．Therefore，$G-\partial_{G}(X)$ contains no isolated vertices． Thus，$\partial_{G}(X)$ is a restricted edge－cut of G ．It follows from（1）that

$$
k=\lambda(G) \leqslant \lambda^{\prime}(G) \leqslant\left|\partial_{G}(X)\right|=d_{G}(X)=k,
$$

which means $\lambda^{\prime}(G)=k$ ，namely，$\partial_{G}(X)$ is a λ^{\prime}－cut of G ．By Lemma $1, k \leqslant|X|=k$ ，which means X is a λ^{\prime}－atom of G ．

By Theorem 1 and Lemma 4，we have the following result immediately．
Theorem 2 Let G be a non－optimal and connected vertex－transitive graph of degree k（ \geqslant 3）．Then $\lambda^{\prime}(G)=k$ if and only if G contains a complete graph of order k ．

Theorem 3 Let G be a non－optimal and connected vertex－transitive graph．Then G has a prefect matching，and hence G has even order．

Proof By Lemma 2，there is a λ^{\prime}－atom partition $\left\{X_{1}, X_{2}, \cdots, X_{m}\right\}$ of $V(G)$ such that $G\left[X_{i}\right]$ is a vertex－transitive subgraph of G of degree $k-1$ ，where $m \geqslant 2$ ．Let

$$
M=E(G) \backslash\left(E\left(G\left[X_{1}\right]\right) \cup \cdots \cup E\left(G\left[X_{m}\right]\right)\right)
$$

It is clear that M is a matching of G since any two distinct edges in M have no end－vertices in com－ mon．On the other hand，since $G\left[X_{i}\right]$ is a $(k-1)$－regular subgraph of G ，for any $x \in V(G)$ ， there must exist one edge $e \in M$ such that x is an end－vertex of e ．This means M is a prefect matc－ hing of G ．

3 Main results

We present our main results in this section．We consider the Cartesian product $K_{2} \times G_{0}$ of K_{2} and G_{0} ，where K_{2} is the complete graph of order 2 and G_{0} is a connected graph of order $v\left(G_{0}\right) \geqslant$ 2．Let $V\left(K_{2}\right)=\{0,1\}$ and $V\left(G_{0}\right)=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ ．By the definition of the Catesian product， $K_{2} \times G_{0}$ is obtained from two copies of G_{0} by connecting（via a new edge）vertex x_{i} in one copy to the vertex x_{i} in the other copy for each $i=1,2, \cdots, n$ ．Let $G=K_{2} \times G_{0}$ ，then G can be expressed as the union of two disjoint subgraphs of G that are isomorphic to G_{0} ．Let G_{1} and G_{2} be such two subgraphs of G and

$$
V_{1}=V\left(G_{1}\right)=\left\{0 x_{i}: 1 \leqslant i \leqslant n\right\}, \quad V_{2}=V\left(G_{2}\right)=\left\{1 x_{i}: 1 \leqslant i \leqslant n\right\} .
$$

It is clear that $\xi\left(K_{2} \times G_{0}\right)=2 \delta\left(G_{0}\right)$ ，and hence $\lambda^{\prime}\left(K_{2} \times G_{0}\right) \leqslant 2 \delta\left(G_{0}\right)$ ．We denote $\lambda^{\prime}\left(G_{0}\right)=\infty$ if $\lambda^{\prime}\left(G_{0}\right)$ does not exist（such graphs are only K_{2}, K_{3} and the star $K_{1, n}$ ）．The fol－ lowing two facts are also clear．If $v\left(G_{0}\right) \geqslant 2$ ，then $\partial_{G}\left(V_{1}\right)$ is a restricted edge－cut of G ，thus， $\lambda^{\prime}(G) \leqslant\left|\partial_{G}\left(V_{1}\right)\right|=\left|V_{1}\right|=v\left(G_{0}\right)$ ．If X_{0} is a λ^{\prime}－atom of G_{0} ，then $\partial_{G}\left(0 X_{0} \cup 1 X_{0}\right)$ is a restrict－ ed edge－cut of G ，thus，$\lambda^{\prime}(G) \leqslant\left|\partial_{G}\left(0 X_{0} \cup 1 X_{0}\right)\right|=2\left|\partial_{G_{0}}\left(X_{0}\right)\right|=2 \lambda^{\prime}\left(G_{0}\right)$ ．It follows that

$$
\begin{equation*}
\lambda^{\prime}\left(K_{2} \times G_{0}\right) \leqslant \min \left\{v\left(G_{0}\right), 2 \delta\left(G_{0}\right), 2 \lambda^{\prime}\left(G_{0}\right)\right\} \tag{3}
\end{equation*}
$$

We will prove below that the equality in（3）holds．
Theorem 4 Let G_{0} be a connected graph of order $v\left(G_{0}\right)(\geqslant 2)$ ．Then

$$
\lambda^{\prime}\left(K_{2} \times G_{0}\right)=\min \left\{v\left(G_{0}\right), 2 \delta\left(G_{0}\right), 2 \lambda^{\prime}\left(G_{0}\right)\right\}
$$

Proof Let $G=K_{2} \times G_{0}$ ．It is easy to check that the theorem holds if $G_{0}=K_{2}, K_{3}$ or $K_{1, n}$ ． Then we may suppose $\lambda^{\prime}\left(G_{0}\right)$ is well defined．Also，it is clear from the definition of $G=K_{2} \times G_{0}$ that every edge of G is included in a cycle of G ，which deduces $\lambda^{\prime}(G) \geqslant 2$ ．Thus，if $\delta\left(G_{0}\right)=$ 1 ，then $\lambda^{\prime}(G)=2=2 \delta\left(G_{0}\right)$ ，and the theorem is true．Suppose $\delta\left(G_{0}\right) \geqslant 2$ below．

Let X be a λ^{\prime}－atom of G ．Then $d_{G}(X)=\lambda^{\prime}(G)$ ．We consider three cases according to the behavior of X respectively．

Case 1 If $X=V_{1}$（ or V_{2} ），then clearly $\lambda^{\prime}(G)=v\left(G_{0}\right)$ ．
Case $2 X \subset V_{1}$（or V_{2} ）．In this case，we assert that $\partial_{G}(X)$ is a restricted edge－cut of G_{0} ． Suppose to the contrary that there is an isolated vertex x in $G_{0}-\partial_{G}(X)$ ．Then $N_{G_{0}}(x) \subseteq X$ ．Note that $G-\partial_{G}(X \cup\{x\})$ has no isolated vertices．Therefore，$\partial_{C}(X \cup\{x\})$ is a restricted edge－cut of G ．Since $d_{c_{0}}(x)=\left|N_{G_{0}}(x)\right| \geqslant \delta\left(G_{0}\right) \geqslant 2$ ，

$$
\lambda^{\prime}(G) \leqslant d_{G}(X \cup\{x\})=d_{G}(X)-d_{G_{0}}(x)+1<d_{G}(X)=\lambda^{\prime}(G)
$$

It＇s a contradiction．Thus，$\partial_{G}(X)$ is a restricted edge－cut of G_{0} ，which means $d_{G_{0}}(X) \geqslant \lambda^{\prime}\left(G_{0}\right)$ ． It follows that

$$
2 \lambda^{\prime}\left(G_{0}\right) \geqslant \lambda^{\prime}(G)=d_{G}(X)=|X|+d_{c_{0}}(X) \geqslant|X|+\lambda^{\prime}\left(G_{0}\right)
$$

which means $|X| \leqslant \lambda^{\prime}\left(G_{0}\right)$ ．If there exists some $0 x \in X$ such that $N_{G_{1}}(0 x) \subseteq X$ ，then

$$
\begin{gathered}
2 \delta\left(G_{0}\right) \leqslant 2 d_{G_{0}}(x) \leqslant 2(|X|-1) \leqslant|X|+\lambda^{\prime}\left(G_{0}\right)-2< \\
d_{G}(X)=\lambda^{\prime}(G) \leqslant 2 \delta\left(G_{0}\right)
\end{gathered}
$$

which is impossible．Thus，we may suppose that for any $0 x \in X$ ，there is at least one edge in
$\partial_{G_{0}}(X)$ ，among the edges incident with x in G_{0} ．Thus，for any two adjacent vertices $0 x$ and $0 y$ in $G[X]$ ，the number of edges in $\partial_{G_{0}}(X)$ incident with the two vertices is at most $\left(d_{G}(X)-|X|\right)$ $-(|X|-2)$ ．It follows that

$$
\begin{aligned}
& 2 \delta\left(G_{0}\right) \leqslant d_{G_{0}}(x)+d_{G_{0}}(y) \leqslant 2(|X|-1)+\left(d_{G}(X)-|X|\right)-(|X|-2)= \\
& d_{G}(X)=\lambda^{\prime}(G) \leqslant 2 \delta\left(G_{0}\right),
\end{aligned}
$$

which means that $\lambda^{\prime}(G)=2 \delta\left(G_{0}\right)$ ．
Case $3 \quad X_{1}=X \cap V_{1} \neq \theta$ and $X_{2}=X \cap V_{2} \neq \theta$ ．Let

$$
\begin{align*}
X_{1}^{\prime}=N_{G}\left(X_{2}\right) \cap V_{1} & X_{2}^{\prime} & =N_{G}\left(X_{1}\right) \cap V_{2} . \\
X_{1}^{\prime}=X_{1} & X_{2}^{\prime} & =X_{2} . \tag{4}
\end{align*}
$$

We first show that
Suppose to the contrary that the equalities in（4）both are not true．Then at least one of the sets $X^{\prime}{ }_{1} \backslash X_{1}$ and $X^{\prime}{ }_{2} \backslash X_{2}$ is non－empty．We can，without loss of generality，suppose that $X^{\prime}{ }_{1} \backslash X_{1} \neq$ 0．Let $Y_{1}=X \cup\left(X_{1}^{\prime} \backslash X_{1}\right)$ ，and $U_{1}=V_{1} \backslash\left(X_{1} \cup X_{1}^{\prime}\right)$ ．It is clear that $G\left[Y_{1}\right]$ and $G\left[\bar{Y}_{1}\right]$ both contain no isolated vertices．Therefore，$\partial_{G}\left(Y_{1}\right)$ is a restricted edge－cut of G ，and thus，$d_{G}\left(Y_{1}\right) \geqslant$ $\lambda^{\prime}(G)=d_{G}(X)$ ．We have then

$$
\begin{aligned}
d_{G}(X) \leqslant & d_{G}\left(Y_{1}\right)=d_{G}\left(X \cup\left(X_{1}^{\prime} \backslash X_{1}\right)\right)= \\
& d_{G}(X)-\left|X_{1}^{\prime}, \backslash X_{1}\right|-\left|\left(X_{1}^{\prime} \backslash X_{1}, X_{1}\right)_{G}\right|+\left|\left(X_{1}^{\prime} \backslash X_{1}, U_{1}\right)_{G}\right|
\end{aligned}
$$

which means that $\left|X^{\prime}{ }_{1} \backslash X_{1}\right|+\left|\left(X^{\prime}, \backslash X_{1}, X_{1}\right)_{G}\right|-\left|\left(X_{1}^{\prime} \backslash X_{1}, U_{1}\right)_{G}\right| \leqslant 0$ ，namely，

$$
\begin{equation*}
\left|X_{1}^{\prime} \backslash X_{1}\right| \leqslant\left|\left(X_{1}^{\prime} \backslash X_{1}, U_{1}\right)_{G}\right|-\left|\left(X_{1}^{\prime} \backslash X_{1}, X_{1}\right)_{G}\right| . \tag{5}
\end{equation*}
$$

We consider the sets $Y_{2}=\left(X_{2} \cap X_{2}^{\prime}\right) \cup X_{1}$ and $U_{2}=V\left(G_{2}\right) \backslash X_{2}$ ．It is clear that $\left|Y_{2}\right| \leqslant$ $|X|$ ，and the subgraphs $G\left[Y_{2}\right]$ and $G\left[\bar{Y}_{2}\right]$ both contain no isolated vertices．Therefore，$\partial_{G}\left(Y_{2}\right)$ is a restricted edge－cut of G ，and

$$
\begin{aligned}
\lambda^{\prime}(G) \leqslant & d_{G}\left(Y_{2}\right)=d_{G}\left(\left(X_{2} \cap X_{2}^{\prime}\right) \cup X_{1}\right)= \\
& d_{G}(X)-\left|X_{2} \backslash X_{2}^{\prime}\right|-\left|\left(X_{2} \backslash X_{2}^{\prime}, U_{2}\right)_{G}\right|+\left|\left(X_{2} \backslash X_{2}^{\prime}, X_{2} \cap X_{2}^{\prime}\right)_{G}\right|
\end{aligned}
$$

By the construction of G ，it is clear that $G\left[X_{2} \backslash X_{2}^{\prime}\right] \cong G\left[X_{1}^{\prime} \backslash X_{1}\right]$ ，and so

$$
\begin{align*}
&\left|X_{2} \backslash X_{2}^{\prime}\right|=\left|X_{1}^{\prime} \backslash X_{1}\right| \\
& \mid\left(X_{2} \backslash X_{2}^{\prime}, \quad\right.\left.U_{2}\right)_{G}\left|\geqslant\left|\left(X_{1}^{\prime} \backslash X_{1}, \quad U_{1}\right)_{G}\right|\right. \tag{7}\\
&\left|\left(X_{2} \backslash X_{2}^{\prime}, \quad X_{2} \cap X_{2}^{\prime}\right)_{G}\right| \leqslant\left|\left(X_{1}^{\prime} \backslash X_{1}, \quad X_{3}\right)_{G}\right| .
\end{align*}
$$

By inequalities（6），（7）and（5），we have that

$$
\begin{gathered}
\lambda^{\prime}(G) \leqslant d_{G}\left(Y_{2}\right) \leqslant d_{G}(X)-\left|X_{1}^{\prime}, \backslash X_{1}\right|-\left|\left(X_{1}^{\prime} \backslash X_{1}, U_{1}\right)_{G}\right|+\left|\left(X_{1}^{\prime} \backslash X_{1}, X_{1}\right)_{G}\right| \leqslant \\
d_{G}(X)-2\left|X_{1}^{\prime} \backslash X_{1}\right|<d_{G}(X)=\lambda^{\prime}(G) .
\end{gathered}
$$

This contradiction implies that the equalities in（4）hold．Thus，$\left|X_{1}\right|=\left|X_{2}\right|$ and $d_{G}(X)=$ $2 d_{G_{1}}\left(X_{1}\right)$ ．If $\left|X_{1}\right|=1$ ，say $X=\{0 x\}$ ，then $d_{G_{1}}(x) \geqslant \delta\left(G_{0}\right)$ ，and thus， $2 \delta\left(G_{0}\right) \leqslant 2 d_{G_{0}}(x)$ $=d_{G}(X) \leqslant 2 \delta\left(G_{0}\right)$ ，which means that $\lambda^{\prime}(G)=2 \delta\left(G_{0}\right)$ ．

Suppose $\left|X_{1}\right| \geqslant 2$ ．It is clear that $G\left[X_{1}\right]$ is connected as $G[X]$ is connected．In other words，$G_{0}\left[X_{1}\right]$ contains no isolated vertices．By the same consideration in case 2 ，it is easy to see $G_{0}\left[\bar{X}_{1}\right]$ contains no isolated vertices，where $\bar{X}_{1}=V\left(G_{0}\right) \backslash X_{1}$ ．Therefore，$\partial_{c_{0}}\left(X_{1}\right)$ is a re－
stricted edge－cut of G_{0} ，and so $d_{G_{0}}\left(X_{1}\right) \geqslant \lambda^{\prime}\left(G_{0}\right)$ ．It follows that

$$
2 \lambda^{\prime}\left(G_{0}\right) \leqslant 2 d_{G_{0}}\left(X_{1}\right)=\lambda^{\prime}(G) \leqslant 2 \lambda^{\prime}\left(G_{0}\right)
$$

This means that $\lambda^{\prime}(G)=2 \lambda^{\prime}\left(G_{0}\right)$ ．
Summing up the three cases，we have that

$$
\begin{equation*}
\lambda^{\prime}\left(K_{2} \times G_{0}\right) \geqslant \min \left\{v\left(G_{0}\right), 2 \delta\left(G_{0}\right), 2 \lambda^{\prime}\left(G_{0}\right)\right\} \tag{8}
\end{equation*}
$$

The theorem follows．
As consequences of Theorem 4，we can obtain the following results．
Corollary 1 Let G_{0} be a connected vertex－transitive graph of degree k ．Then $\lambda^{\prime}\left(K_{2} \times G_{0}\right)$ $=\min \left\{2 k, v\left(G_{0}\right)\right\}$ ．

Proof It is known $k=\lambda \leqslant \lambda^{\prime}$ for any connected vertex－transitive graph of degree k ．It fol－ lows that $\min \left\{2 \delta\left(G_{0}\right), 2 \lambda^{\prime}\left(G_{0}\right), v\left(G_{0}\right)\right\}=\min \left\{2 k, v\left(G_{0}\right)\right\}$ ．
By Theorem $4, \lambda^{\prime}\left(K_{2} \times G_{0}\right)=\min \left\{2 k, v\left(G_{0}\right)\right\}$ ．
Corollary $2^{[2]}$ For hypercube $Q_{k}(k \geqslant 2), \lambda^{\prime}\left(Q_{k}\right)=2 k-2$ ．
Proof Since Q_{k-1} is a connected and vertex－transitive graph of degree $k-1$ for $k \geqslant 2$ ，

$$
\min \left\{2(k-1), v\left(Q_{k-1}\right)\right\}=\min \left\{2 k-2,2^{k-1}\right\}=2 k-2
$$

By $Q_{k}=K_{2} \times Q_{k-1}$ and Corollary $1, \lambda^{\prime}\left(Q_{k}\right)=2 k-2$ ．
Theorem 5 For any given integers k and s with $k \geqslant 3,0 \leqslant s \leqslant k-3$ ，there is a connected vertex－transitive graph G with degree k and $\lambda^{\prime}(G)=k+s$ if and only if either k is odd or s is even．

Proof Let k be even and s odd．Suppose to the contrary that there is a vertex－transitive graph G of degree k and $\lambda^{\prime}(G)=k+s \leqslant 2 k-3$ ．Then G is non－optimal．Let X be a λ^{\prime}－atom of G．Consider the subgraph $G[X]$ ．By Lemma 2（i），$|X|=\lambda^{\prime}(G)=k+s, k \geqslant 3$ and $G[X]$ is （ $k-1$ ）－regular．It follows that

$$
\begin{equation*}
2|E(G[X])|=\sum_{x \in X} d_{G[X]}(x)=(k-1)|X|=(k-1)(k+s) \tag{9}
\end{equation*}
$$

The left－hand side of（9）is even，but the right－hand side is odd，which is a contradiction．The necessity follows．

To prove the sufficiency，we consider the circulant graph $G\left(n ; a_{1}, a_{2}, \cdots, a_{k}\right)$ ，where $0<a_{1}$ $<\cdots<a_{k} \leqslant \frac{n}{2}$ ，having vertices $0,1,2, \cdots, n-1$ and edge $i j$ if and only if $|j-i| \equiv a_{i}(\bmod n)$ for some $t, 1 \leqslant t \leqslant k$ ．The circulant graph is vertex－transitive，and is $2 k$－regular if $a_{k} \neq \frac{n}{2}$ ，and （ $2 k-1$ ）－regular otherwise．

Let $G=K_{2} \times G_{0}$ ，where G_{0} is a circulant graph．Then G is vertex－transitive by Lemma 3.
We show the sufficiency by selecting a circulant graph G_{0} with degree $k-1$ and $\lambda^{\prime}(G)=k$ $+s$ according to the parity of k and s ．

For $m \geqslant 1$ ，we select

$$
G_{0}=\left\{\begin{array}{l}
G(k+s ; 1,2, \cdots, m), \quad \text { if } \quad k=2 m+1 \\
G\left(k+s ; 1,2, \cdots, m-1, m+\frac{1}{2} s\right), \quad \text { if } \quad k=2 m \text { and } s \text { is even. }
\end{array}\right.
$$

It is easy to check that $\delta\left(G_{0}\right)=k-1$ ．Since for any s with $0 \leqslant s<k-2$ ，

$$
2 \delta\left(G_{0}\right)=2 k-2>k+s=v\left(G_{0}\right)
$$

by Corollary $1, \lambda^{\prime}(G)=v\left(G_{0}\right)=k+s$ ，as required．

References

［1］Bondy J A，Murty U S R．Graph Theory with Applications［M］．London：Macmillan Press， 1976.
［2］Esfahanian A H．Generalized measures of fault tolerance with application to n－cube networks ［J］．IEEE Trans．Comput．1989，38（11）： 1586－1591．
［3］Esfahanian A H，Hakimi S L．On computing a conditional edge－connectivity of a graph［J］． Information Processing Letters，1988，27：195－ 199.
［4］Latifi S，Hegde M，Naraghi－Pour M．Condi－ tional connectivity measures for large miltipro－ cessor systems［J］．IEEE Trans．Comput．， 1994，43（2）：218－221．
［5］Li Q L，Li Q．Reliability analysis of circulants ［J］．Networks，1998，31：61－65．
［6］Li Q L，Li Q．Refined connectivity properties of abelian Cayley graphs［J］．Chin．Ann．of Math．，1998，19B（4）：409－414．
［7］ $\mathrm{Li} Q \mathrm{~L}, \mathrm{Li} \mathrm{Q}$ ．Super edge connectivity proper－ ties of connected edge symmetric graphs［J］．

Networks，1999，33：147－159．
［8］Wu J，Guo G．Fault tolerance measures for m－ ary n－dimensional hypercubes based on forbid－ den faulty sets［J］．IEEE Trans．Comput．， 1998，47（8）：888－893．
［9］Xu J M．Some results on R_{2}－edge－connectivity of even regular graphs［J］．Appl．Math．－ JCU，1999，14B（3）：366－370．
［10］Xu J M．Restricted edge－connectivity of vertex－ transitive graphs［J］．Chinese Journal of Con－ temporary Math．，2000，21（4）：369－374．
［11］Xu J M．On conditional edge－connectivity of graphs［J］．Acta Math．Appli．Sinica，2000， 16B（4）：414－419．
［12］Xu J M．Topological Structure and Analysis of Interconnection Networks［M］．Boston／Dor－ drecht／London，Kluwer Academic Publishers， 2001.
［13］Xu J M，Xu K L．On restricted edge－connectiv－ ity of graphs［J］．Discrete Math．2002， 243 ： 291－298．

点可迁图的限制边连通度

李 雷，徐俊明
（中国科学技术大学数学系，安徽合肥 230026）

摘要：对于度 $k(\geqslant 2)$ 的点可迁连通图的限制边连通度 λ^{\prime} ，已知 $k \leqslant \lambda^{\prime} \leqslant 2 k-2$ ，且 λ^{\prime} 的界可以达到。在此基础上，对度为 k 的点可迂图 G 进一步给出了满足 $\lambda^{\prime}(G)=k$的两个充要条件。接着，对任意的连通图 G_{0} 证明了 $\lambda^{\prime}\left(K_{2} \times G_{0}\right)=\min \mid 2 \delta\left(G_{0}\right)$ ， $\left.2 \lambda^{\prime}\left(G_{0}\right), v\left(G_{0}\right)\right\}$ 。最后证明了对任意满足 $0 \leqslant s \leqslant k-3$ 的整数 s ，存在度为 k 的点可迁连通图 G 满足 $\lambda^{\prime}(G)=k+s$ 当且仅当 k 为奇数或者 s 为偶数。
关键词：连通度；限制边连通度；可迁图；循环图

