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Abstract. It is known that for connected vertex-transitive graphs of degree k( = 2) , the re-
stricted edge-connectivity k < A" << 2% - 2 and the bounds can be attained. Two necessary
and sufficient conditions for a vertex-transitive graph G of degree k to admit A'(G) = k are
presented. Afterwards, for any connected graph G,, A’(K, x &;) is determined to be
A(K, x G,) = min{28(G,),2A"(G,) ,»(G,)}, and then for any given integer s with O
= § < k - 3, there is a connected vertex-transitive graph G of degree kand A'(G) = &k +
s if and only if either k is odd or s is even.
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0 Introduction

We follow [ 1] for graph-theoretical terminology and notation not defined here. A graph G =
(V,E) always means a simple graph ( without loops and multiple edges), with vertex-set V =
V(G) and edge-set E = E(G). In this paper, we consider the restricted edge-connectivity, which
is a new graph-theoretical parameter introduced by Esfahanian and Hakimi [31}. For the sake of
convenience, the graph considered in this note is a connected graph, not a triangle or a star.

Let S C E(G). f G - Sis disconnected and contains no isolated vertices, then S is called a
restricted edge-cut of G. The restricted edge-connectivity of G, denoted by A’ () , is defined as
the minimum cardinality over all restricted edge-cuts of G. The restricted edge-connectivity pro-
vides a more accurate measure of fault-tolerance of networks than the classical edge-connectivity

(see [2]). Thus, it has received much attention recently (see, for example, [2-13]).
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Fore = xy ¢ E(G),leté . (e) =d.(x) +d.(y) —2. The minimum edge-degree of G 1s de-

fined to be £(G) = min{¢ (e) le € E(G) |. It was shown in [3] that

A(G) s A(6G) s £(6), (1)
where A ( G) is the edge-connectivity of G. A graph G is said to be optimal if A'(G) = £(G), and
non-optirnal otherwise.

From inequality (1), it is clear thatk < A'(G) < 2k -2 = £( () for a connected vertex-
transitive graph G of degree k( = 2) since A(G) = k. There are optimal and vertex-transitive
graphs, such as the complete graph K;,, and the hypercube @,. Recently, it has been shown in
[10,12] that for any non-optimal and vertex-transitive graph G of degree k there is an integer

m( = 2) suchthat A'(G) = % In this note, it is pointed out that for any given integers k( = 3)

and s withQ < s < k — 2, there is a connected vertex-transitive graph G with degree k and A'( G)
= k + s if and only if either & is odd or s is even.

The rest of the note is organized as follows. Section 1 contains necessary definitions and
known results. Section 2 gives two necessary and sufficient conditions for a vertex-transitive graph
G of degree k to admit A'(G)} = k. Section 3 proves A'(K, x G,) = min{28 (G,),2A'(G,),
v(G,) | for any connected graph G,, and constructs a class of non-optimal and vertex-transitive
graphs with degree kand A’ = & + sfor any odd korevenswithk 23 and0 <5 < k - 2.

1 Notation and Lemmas

Let G = (V,E) be a graph. For two disjoint non-empty subsets X and Yof V(G) , let (X,¥)
=le=2xye E(G): 2 e Xandy e Y}. Y = X = V(G)\X, then we write 9,(X) for (X,
X)cand d (X) for | 5.(X) |-

A restricted edge-cut Sof G is called a A’-cut if | S| = A'(G). It is easy to see that G — S has
just two connected components for any A'-cut S. A non-empty and proper subset X of V( () is
called a A'-fragment of Gif 3.(X) is a A'-cut of ( &). The minimum A ’-fragment over all A’ -frag-
ments of G is called a A -atom of G. The cardinality of a A’-atom of G is denoted by a( G).

Lemma 1! Let G be a non-optimal graph. Then any two distinct A '-atoms of G are dis-
joint, and a{G) = k = 3 f G is k-regular,

Lemma 2''"%!  Let G be a non-optimal and vertex-transitive graph of degree k ( =3) , and
X a A’-atom of G. Then, |

(i) G[X] is a vertex-transitive subgraph of degree & - 1 ;

(11) There is a partition { X, ,X,, -+, X, | of V(G) such that G[ X, ] = G[ X ] for eachi = 1,
2,em, m= 2.

Lemma 3(Theorem 2.3.5in [12]) The Cartesian product of vertex-transitive graphs is a

vertex-transitive graph.
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2 Two necessary and sufficient conditions |

In this section, we will give two necessary and sufficient conditions for a non-optimal vertex-
transitive graph G of degree & to admit A'(G) = k.

Theorem 1 Let G be a non-optimal and vertex-transitive graph of degree k. Then A’(G) =
k if and only if the induced subgraph G[ X ] is a complete graph of order & for any A '-atom X of G.

Proof LetXbe a A'-atom of G, ands = [ X|. Then G[ X] is a vertex-transitive subgraph of

G of degree £ — 1 by Lemma 2. It follows that
sk = Y do(x) = Y dgn{x) +A°(6) =s(k~1) +A'(6). (2)

sk reX

Suppose that A’(G) = & From (2), we havesk = s{(k - 1) +k, which implies thats = %,
and G[ X1 is a complete graph of order &. |

Conversely, suppose that G[ X ] is a complete graph of order . Then from (2), we have &°
= k(k -1) + A’(G), which means that A’ () = k.

Lemma 4 Let G be a non-optimal, k-regular and connected graph. If G contains a complete
graph K, , then X = V(K,) is a A’-atom of G, and hence A(G) =k

Proof Since G is a non-optimal k-regular graph, by Lemma 1, k = 3. Let X be the vertex-
set of a complete subgraph K, of G. Then |X| = £ = 3. We will first prove that G - 3.(X) con-
tains no isolated vertices. Suppose to the contrary that ¢ ~ 3,(X) contains an isolated vertex x.
Thenx ¢ V(G)\Xand N;(x) C X. Noting thatd (x) =% = | X|, we have N;(z) = X. Since
G is k-regular and connected, G is a complete graph of order & + 1, which is optimal. This contra-
dicts the assumption that & is non-optimal. Therefore, & — 3.(X) contains no isolated vertices.
Thus, a,(X) is a restricted edge-cut of G. It follows from (1) that

k= A(6G) €A(6G) < |5,(X)|=de(X) =k,

which means A'( &) = &, namely, 3,(X) isa A’-cut of . By Lemma 1, k < | X| = k&, which
means X is a A’-atom of G.

By Theorem 1 and Lemma 4, we have the following result immediately.

Theorem 2 Let G be a non-optimal and connected vertex-transitive graph of degree k( =
3). Then A’(G) = kif and only if G contains a complete graph of order .

Theorem 3 Let G be a non-optimal and connected vertex-transitive graph. Then G has a
prefect matching, and hence G has even order.

Proof By Lemma 2, there is a A’-atom partition { X, ,X,,---,X_} of V() such that G[ X, ]
1s 4 vertex-transitive subgraph of G of degree &k ~ 1, where m = 2. Let

M=E(GC)\(E(G[X,]) U-—+ UE(GIX_]).

It is clear that M is a matching of G since any two distinct edges in M have no end-vertices in com-
mon. On the other hand, since G[ X, ] is a (k — 1) -regular subgraph of G, for any x € V(G),

there must exist one edge ¢ € M such that x is an end-vertex of e. This means M is a prefect mate-
hing of G.
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3 Main results

We present our main results in this section. We consider the Cartesian product K, x G, of K,
and G, where K, is the complete graph of order 2 and G, is a connected graph of order#(G,) =
2. LetV(K,) = {0,1} and V(G,) = {%,,x,,":+, x,}. By the definition of the Catesian product,
K; X Gy is obtained from two copies of G, by connecting ( via a new edge) vertex x, in one copy to
the vertex x, in the other copy for eachi = 1,2,-- n. Let G = K, x G,, then G can be expressed
as the union of two disjoint subgraphs of G that are isomorphic to G,. Let G, and G, be such two
subgraphs of & and

Vi =VWV(6G) ={0x;: Il sissnl, V,=V(G) = {lx:1<i<n].

It is clear that £(K, x G;) =28 (G,), and hence A’ (K, x G,) < 25 (G,). We denote
A'(Gy) = o if A'(G,) does not exist {such graphs are only K, ,K; and the star K, ., ). The fol-
lowing two facts are also clear. If v(G,) = 2, then 3.(V,) is a restricted edge-cut of G, thus,
A(G) < |ag (V)| = |V, | =v(G,). X, is a A’-atom of G, , then 3,(0X, U 1X,) is a restrict-
ed edge-cut of &, thus, A'(6G) < |§.(0X, U 1X,)| =2 3¢, (Xp) | = 247(Gy). Tt follows that

A(K; x Gg) < min{u(Gy), 28 (Gy), 2A°(Gy) L. (3)
We will prove below that the equality in (3) holds.
Theorem 4 Let G, be a connected graph of order v(G,) (= 2). Then
A'(K, x Gy) = min{v(G,),28 (Gy),21"(Gy) .

Proof LetG =K, % G,. It is easy to check that the theorem holds if G, = K, , K,orKk, ..
Then we may suppose A’( G,) is well defined. Also, it is clear from the definition of ¢ = K, x G,
that every edge of G is included in a cycle of G, which deduces A’(G) = 2. Thus, if§ ( Gy) =
1, then A'(G) =2 =28 (G,), and the theorem is true. Suppose & (G,) = 2 below.

Let X be a A’-atom of G. Thend (X) = A’(G). We consider three cases according to the
behavior of X respectively.

Casel HX =V (orV, ), then cleartly A'(G) = v(G,).

Case 2 X CV, (orV,). In this case, we assert that 3.(X) is a restricted edge-cut of G,.
Suppose to the contrary that there is an isolated vertex x in G, — 3,(X). Then N (x) © X. Note
that G - 3;(X U {2} ) has no isolated vertices. Therefore, 3.(X U {x} ) is a restricted edge-cut
of G. Sincedg (%) = [N, (x) =8 (6) =2,

A(G) sd (XU {x}) =d(X) - de (%) +1 < do(X) = A'(G).
Its a contradiction. Thus, 3,(X) is a restricted edge-cut of G, , which means de (X) 2 A'(Gy).
It follows that
2A'(6Gy) = A(6G) =do(X) = | x|+ de (X) =2 |X|+ A (Gy),
which means | X|< A'(G,). If there exists some Ox e« X such that N¢ (0x) € X, then
26 (Gy) =2dg (x) <2(|X|-1) < |Xx|+A°(6G) -2 <

d(X) = A'(6) <26 (G,

which is impossible. Thus, we may suppose that for any Ox e X, there is at least one edge in
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d¢,(X) , among the edges incident with x in G,. Thus, for any two adjacent vertices Ox and Oy in
GL X1, the number of edges in 3, (X) incident with the two vertices is at most (do(X) - | X|)
- (|Xx|-2). It follows that
26 (Gy) sdg(x) +dg(y) s2(]|X|-1) + (de(X) - |X]|) -(]|X]|-2) =
do(X) = 1'(C) <25 (6,).
which means that A'(G) = 28 (G,).
Case3 X, =XNV, #0andX, =X NV, #08 Let
X'y = Ne{X;) NV, X'y = N(Xy) NV,
We first show that X', =X, X', =X, (4)
Suppose to the contrary that the equalities in (4 ) both are not true. Then at least one of the
sets X' \X, and X', \X, is non-empty. We can, without loss of generality, suppose that X’ \X, #
0. LetY, = X U (X' \X)),and U, = V,\(X, U X'|). Itis clear that G[ ¥, ] and G[ ¥, ] both
contain no isolated vertices. Therefore, 3.(Y,) is a restricted edge-cut of G, and thus, 4 .{¥,) =
A(G) =d,(X). We have then
de(X) <d (Y)) = de(X U (X'1\X,))} =
de(X) - |X’1\X1|" |(X’1\X1 "‘X])G|+ |(Xr1\X19U1)G|*
which means that |X’l \X, |+ | (X, \X,,X,), |- | (X' \X,,U), | < 0, namely,
|X’1\X1l5‘- |(XF1H'X1:U1)G|" |(X’1\X11X1)c|‘ (5)
We consider the sets ¥, = (X, N X',) U X, and U, = V(G,)\X,. Itis clear that |V, |<
| X |, and the subgraphs G[ Y, ] and G[ Y, ] both contain no isolated vertices. Therefore, 3.(Y,)
is a restricted edge-cut of &, and
A(6) =do(Y;) =de((X, NX)) VX)) =
de{X) - | X,\X", |~ (XX, U ol+ 1 (X\X,, X, n X))
By the construction of G, it is clear that G[ X,\X’,] = G{ X', \X, ], and so
X\, = X0\
(XN, U)elZ [(X\X,, Ul (7)
(X, X N X))ol (XX, X))l
By inequalities (6}, (7) and (5), we have that
A(G) =do(Yy) <dg(X) - X' \X |- (XX, U+ [(X)0\X,,X,) S
de(X) =2|X'\X,| < dc(X) = A'(G).
This contradiction implies that the equalities in (4) hold. Thus, |X,| = | X, | and d;(X) =
2d; (X,). ¥ |X,|=1,sayX = {Ox}, thend; (x) =8 (G,), and thus, 26 (G,) < 2d; (x)
= do(X) <28 (G,), which means that A’(G) = 25 (G,).
Suppose | X, |= 2. It is clear that G{ X, ] is connected as G[ X] is connected. In other

words, G,{ X, ] contains no isolated vertices. By the same consideration in case 2, it is easy to

see Gy[ X, | contains no isolated vertices, where X, = V(G,)\X,. Therefore, 9, (X}) is a re-
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stricted edge-cut of G, and sod; (X;) = A'(G,). It follows that
2A(6G) =24, (X)) = A'(G) <2A'(Gy).
This means that A'( &) = 2A'(G,).
Summing up the three cases, we have that
A(K, x G) 2 min{v(Gy), 28 (Gy), 2A'(Gy) 1. (8)
The theorem follows. | |
As consequences of Theorem 4, we can obtain the following results.
Corollary 1  Let G, be a connected vertex-transitive graph of degree k. Then A'(K, x Gy)
= min{2k, v(G,)}.
Proof It is knownk = A < A’ for any connected vertex-transitive graph of degree &. It fol-
lows that min{28(G,) , 24" (G,), v(G, )} = min{2k, v(G,) 1.
By Theorem 4, A'(X, x G;) = min{2k, v(G,)}.
Corollary 2'*'  For hypercube Qu(k=2),A'(Q) =2k -2
Proof Since @, is a connected and vertex-transitive graph of degree k — 1 fork = 2
min{2(k - 1), o(Q, )} = min{2k -2, 2*'} =2k - 2.
By O, = K, x Q,_, and Corollary 1, A'(Q,) = 2k - 2.
Theorem S  For any given integers kand swithk =3, 0 < s < k - 3, there is & connected
vertex-transitive graph & with degree kand A'( &) =k +sif and only if either k is odd ors is even.

Proof Let k be even and s odd. Suppose to the contrary that there is a vertex-transitive
graph G of degree k and A’(G) = k +s5 <2k — 3. Then G is non-optimal. Let X be a A’-atom of
(. Consider the subgraph G{ X]. By Lemma 2(i), |X|=A'(G) =k +s5, k=3 and G[X]is
(k —1)-regular. It follows that

2|E(G[X]) | = X den(x) = (k=1)|X|= (k-1)(k+s). (9)
ze X
The left-hand side of (9) is even, but the right-hand side is odd, which is a contradiction. The

necessity follows.
To prove the sufficiency, we consider the circulant graph G(n;a,,a,,,a,), where 0 < g,

< v K %—, having vertices 0,1,2,- ,n — 1 and edge ij if and only if {j - i|=a,(mod n)

for some £, 1 < ¢ < k. The circulant graph is vertex-transitive, and is 2k-regular if o, 5 -g—, and
(2k - 1) -regular otherwise.
Let G = K, x G,, where G is a circulant graph. Then G is vertex-transitive by Lemma 3.
~ We show the sufficiency by selecting a circulant graph G, with degree k ~ 1 and A'(G) = k
+ s according to the parity of k and s.

Form = 1, we select

G(k +s;1,2,~-,m), if =2m +1,
G, = {

G(k+s;1,2,---,m—1,m+-;l:—s), if %k = 2m and s is even.
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It is easy to check that§ (G,) = k£ — 1. Since for anyswith0 < s < k-2,
26 (Gy) =2k -2 >k +s = v(Gy),
by Corollary 1, A’'(G) = v(Gy) = k + s, as required.
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