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Let G be a connected graph of order n. A routing in G is
a set of n(n — 1) fixed paths for all ordered pairs of
vertices of G. The edge-forwarding index of G, =(G), is
the minimum of the maximum number of paths specified
by a routing passing through any edge of G taken over all
routings in G, and m, , is the minimum of 7(G) taken over
all graphs of order n with maximum degree at most A. To
determine m,_,,_,, for 4p + 2p/3] + 1 < n < 6p, A.
Bouabdallah and D. Sotteau proposed the following con-
jecture in [On the edge forwarding index problem for
small graphs, Networks 23 (1993), 249-255]. The set 3
x {1,2, . ..,[(4p)/31} can be partitioned into 2p pairs plus
singletons such that the set of differences of the pairs is
theset2 x {1, 2, ..., p}. This article gives a proof of this
conjecture and determines that =,,_,,_, , is equal to 5 if
4p + 2Ap/3l+1<n<6pandto8if3p +[p/3l+1<n
< 3p + [ (3p)/51for any p > 2. © 2004 Wiley Periodicals, Inc.
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1. INTRODUCTION

Let G = (V, E) be a connected graph of order n. A
routing R in G is a set of n(n — 1) fixed paths for all
ordered pairs (x, y) of vertices of G. The path R(x, y)
specified by R carries the data transmitted from the source
x to the destination y. It is possible that the fixed paths
specified by a given routing R pass too frequently through
certain vertices or edges, which means that the routing R
overloads the vertex or the edge. The load of any vertex or
edge is limited by the capacity of the vertex or the edge;
otherwise, it would affect the efficiency of transmission,
even resulting in malfunction of the network. To measure
the load of a vertex or an edge, Chung, Coffman, Reiman,
and Simon [2] proposed the notion of the forwarding index.
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Let G be a graph with a given routing R, x a vertex of G
and e an edge of G. The load of x with respect to R, denoted
by &(G, R, x) [resp. the load of e with respect to R, denoted
by m(G, R, e)], is defined as the number of paths specified
by R passing through x [resp. e].

The vertex-forwarding index and the edge-forwarding
index of G with respect to R are, respectively, defined as

&G, R) = max{&G, R, x) : x € V(G)}
and
(G, R) = max{m(G, R, e) : e € E(G)}.

The vertex-forwarding index and the edge-forwarding
index of G are, respectively, defined as

&(G) = min{&(G, R) : R is a routing of G}
and
7(G) = min{m(G, R) : R is a routing of G}.

The original study of forwarding indices is motivated by
the problem of maximizing network capacity (see [2]).
Minimizing the forwarding indices of a routing will result in
maximizing the network capacity. Thus, it becomes very
significant to determine the vertex and edge-forwarding
indices of a given graph.

Many researchers have been interested in the forwarding
indices of a graph (see, e.g., [1-5]). However, Saad [5]
found that for an arbitrary graph determining its vertex-
forwarding index is NP-complete even if the diameter of the
graph is 2. It is still of interest to determine the forwarding
indices subject to some graph-theoretical variables. For
example, Chung et al. [2] proposed the following problem:
Given A and n, determine &, ,, the minimum of £(G) taken
over all graphs of order n with maximum degree at most A.
This problem was solved asymptotically in [2], and &, ,, has
been determined forn = 15and (n + 4)/ 3 =A=n—1
by Heydemann et al. [3].

Heydemann et al. [4] considered the same problem for



the edge-forwarding index: given A and n, determine 7, ,,
the minimum of 7(G) taken over all graphs of order n with
maximum degree at most A. Bouabdallah and Sotteau [1]
determined 7, , for some special values of n and A. For
example, m, , = | n%/4] for anyn =3, m,_, , = 2 for any
n=2m, ,,=3foranyn=6,n#7andmw,_,, =4
forany n = 4, 5, 7. In particular, they obtained that for any
p=1

3, ifn=10p + 1;
Tn—2p—1n = 4, ifep+1=n<l10p+1;
6, ifdp+1=n=dp+[(2p)3]

The value of m,_,, ;, has not been determined for 4p
+[@2p)/31+ 1 =n = 6p. To determine this value, they
remarked that 7, _,,_, , = 5 for 4p + Apr3l+1=n
= 6p if the following conjecture is true (see Remark 3.14
in [1]).

To state the conjecture, we illustrate the strange notation
and terminology that will be used in the conjecture. Let A
= {ay, ay, ..., a,} and B = {b,, b,, ..., b,} be two
sets. We use A W B to denote the multi-set {a,, a,, ...,
ag, by, by, ..., b,}. Then2 X A is defined as A W A and
3 X AasA WA WA, In general, for a positive integer n,
n X A is defined as the multi-set

n n n

{al"--3a19a2’---’a29-~~9av,

Conjecture. The set 3 X {1, 2,..., [4p)31} can be
partitioned into 2p pairs plus singletons such that the set of
differences of the pairs is the set 2 X {1,2,..., p}.

For example, when p = 4 in the conjecture, the set is

3x{1,2,....[(4p)3T
={1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6, 6, 6}.

We partition this set into 8 pairs {2, 3}, {4, 5}, {1, 3}, {2,
4}, {1,4}, {3, 6}, {1,5}, {2, 6} plus two singletons {5} and
{6}. Then the set of differences of the pairsis {3 — 2,5 — 4,
3—-1,4-2,4-1,6-3,5—-1,6-2}={1,1,2,2,
3,3,4,4} = 2 X {1, 2,3, 4}.

In this article we will prove this conjecture and obtain the
following result.

Theorem 2. For any p = 2, we have

(5, ifdp+2ApBl+1=n=6p;
Tn-2p-10 = |8, if 3p + |'p/3'| +1=n=3p+ |—(3p)/5-|.

The proofs of the conjecture and Theorem 2 are given in
Section 2 and Section 3, respectively. In Section 4, we give
some remarks.

TABLE 1. 3k + 1 pairs of integers with odd differences.
Difference Pairs of integers
3k {1, 3k + 1} {k, 4k}
3k — 2 {2, 3k} {k + 1,4k — 1}
3 3k—1 3k+5 5k—3 5k+3
2
1 3k+1 3k+3 Sk—1 5k+1
2 72 2 72

2. PROOF OF THE CONJECTURE

We now state the conjecture as the following theorem.

Theorem 1. The multi-set 3 X {1, 2,...,[@p)31} can
be partitioned into 2p pairs plus singletons such that the set
of differences of the pairs is equal to 2 X {1,2, ..., p} for
any positive integer p.

Proof. We prove this theorem by constructing the re-
quired partition according to the following three possible
cases (six subcases), respectively. We detail only the first
subcase here. The interested reader is referred to [6] for
detailed proofs of the remaining subcases.

Cast 1. p = 3k. Inthis case, {1,2, ..., [ (4p)/31]} = {1,
2, ..., 4k}.

SuBcase 1.1. k is odd. We construct 3k + 1 pairs of

integers with the set of odd differences {1, 3, ..., 3k} as
follows
{i,)3k+2—1i}, {i+k—1,4k+1—-1i},

l=i=@Bk+1)/2,

and 3k — 1 pairs of integers with the set of even differences
{2,4,...,3k — 1} as follows
{i,3k—1—14}, {i+k 4k+1—1i},
{i, k+1—1d}, {i+3k—2,4k+1—i},
l=i=(k—1)/2;

l=i=k-—I;

{(Tk —3)/12, (Tk + 1)/2}, {(k+ 1)/2, (Tk — 1)/2}.
These pairs of integers are shown in Tables 1 and 2, respec-
tively, for more details.

It is easy to see that all integers used in the pairs of the
left column in Table 1 form the set {1,2, ...,3k + 1} and
all integers used in the pairs of the right column in Table 1
form the set {k, k + 1, ..., 4k}, from which it is clear that
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TABLE 2. 3k — 1 pairs of integers with even differences.
Difference Pairs of integers
3 — 1 k+1 Tk—1 (k + 1, 4k}
272
3k — 3 {1, 3k — 2} {k + 2,4k — 1}
3k — 5 {2, 3k — 3} {k + 3,4k — 2}
k+3 {k — 2,2k + 1} {2k — 1, 3k + 2}
k+ 1 {k — 1, 2k} {3k — 1, 4k}
k—1 {1, k} {3k, 4k — 1}
k—3 {2,k — 1} {3k + 1, 4k — 2}
4 k=3 k+5 Tk—5 Tk+3
2 002 2 2

the intersection of the two sets is the set {k, k + 1, ..., 3k
+ 1} and, thus, all integers of pairs in Table 1 form the
multi-set

(0,2, k=1 Woax{kk+1,...,3k+1} W
(Bk+2,3k+3,...,4k} (1)

It is also easy to see that all integers used in the pairs of
the left column in Table 2 form the multi-set {1, 2, ..., k
—1yW{1,2,...,k—1,k} Y {2k, 2k + 1, ..., 3k
— 2} W {(7k — 1)/2} and all integers used in the pairs of
the right column in Table 2 form the multi-set {k + 1, ...,
2k — 1} W {3k — 1,..., (Tk — 3)/2} W {(7k
+ 1)/2,...,4k} W {3k + 2, ..., 4k}. Thus, all integers
in pairs in Table 2 form the multi-set

IXAL2, k=1 W k+1,.. ., 3k+ 1} W2
X3k +2,3k+3,..., 4k (2

By (1) and (2), all integers in Tables 1 and 2 form the
multi-set 3 X {1, 2, ..., 4k}. Thus, the 6k pairs in Tables
1 and 2 form a required partition of the set 3 X {1,2, ...,
4k} when k is odd.

SuBcask 1.2. k is even. The required partition of the set 3
X {1, 2,..., 4k} consists of the following 6k pairs of
integers, where the 3k pairs with the set of odd differences
{1,3,...,3k — 1} are

(,3k+1 =4}, {i+k dk+1—14}, 1=i=(3k)/2,
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and the 3k pairs with the set of even differences {2, 4, ...,
3k} are

{i,3k+2—1i}, {i+k+1,4k+1—1i},
{i,k+2—1i}, {i+3k+1,4k+1—i},
l=i=(k—2)/2;

l=i=k;

k12, (k+ 4)/2}, {(k+2)/2, (Tk + 2)/2}.

Cast 2. p = 3k + 1. In this case, {1, 2, ..., [ (4p)/3 ]}
= {1,2,..., 4k + 2}.

SuBcask 2.1. k is odd. The required partition of the set 3

X {1,2,...,4k + 2} consists of the following 6k + 2

pairs of integers plus two singletons 4k + 1 and 4k + 2,

where the 3k + 1 pairs with the set of odd differences {1,

3,..., 3k} are

{i,3k+2—1i}, {i+k+1,4k+3—1i},
l=i=@@k+1)/2,

and the 3k + 1 pairs with the set of even differences {2,
4,...,3k + 1} are

{i,3k+1—1i}, {i+k d4k+1-—1i},
{i+1,k+2—14}, {i+3k+2 4k+3—1i},
1=i=((k—-1)2;

l=i=k;

{(k + 3)/2, (Tk + 5)/2}, {1, 3k + 2}.

SuBcast 2.2. k is even. The required partition of the set 3
X {l,2,...,4k + 2} consists of the following 6k + 2
pairs of integers plus two singletons (k + 2)/2 and (7k
+ 4)/2, where the 3k + 2 pairs with the set of odd
differences {1, 3, ..., 3k + 1} are

{i,3k+3—14}, {i+k 4k+3—i,
1=i=@Gk+2)2,
and the 3k pairs with the set of even differences {2, 4, ...,
3k} are
{i,3k+2—i}, {i+k+1,4k+3 -1},
{i,) k+2—1i}, {i+3k+1,4k+3—i},
l=i=k/2.

1l=i=k;

>

Case 3. p = 3k + 2. In this case, {1, 2, ..., [(4p)3]}
=(1,2,..., 4k + 3}.

SuBcask 3.1. k is odd. The required partition of the set 3
X {1, 2,...,4k + 3} consists of the following 6k + 4
pairs of integers plus the singleton k + 1, where the 3k + 3



pairs with the set of odd differences {1, 3, ..., 3k + 2}
are

(i,3k+4—iy, {i+tk+2,4k+4—i},

1=i=@Bk+1)/2;

{3k + 3)/2, Bk + 5)/2}, {(k+3)/2, (Tk + T)/2},

and the 3k + 1 pairs with the set of even differences {2,
4,...,3k + 1} are

{i, 3k + 3 — i},
{i+k+1,4k+4 -1 =i=<k+1;
{li,k+3—1i}, 1=i=(k+1)/2;
{i+3k+3,4k+4—-1i}, 1=i=(k—1)/2.

l=i=k

SuBcask 3.2. k is even. The required partition of the set 3
X {1, 2,...,4k + 3} consists of the following 6k + 4
pairs of integers plus the singleton k + 2, where the 3k + 2
pairs with the set of odd differences {1, 3, ..., 3k + 1}
are

{i,3k+3—d}, {i+k+1,4k+4—1i},

1=i=G3k+2)2,

and the 3k + 2 pairs with the set of even differences {2,
4, ..., 3k + 2} are

{i,3k+4—1i}, {i+k+2,4k+4—-1i}, 1=i=k
{i,) k+2—1i}, {i+3k+2 4k+4—i},
1=i=k/2;
{k+1,2k+ 3}, {(k+2)/2,(7Tk + 6)/2}.

All possible cases are exhausted and the proof of the
theorem is completed. "

3. PROOF OF THEOREM 2

The symbol C(n; a,, a,, ..., ap), 1 = a; < a,
< <agp = |n/2], denotes a circulant graph of order n
with the set of vertices {0, 1,2, ..., n — 1}, where vertex
i is joined to i * a, (mod n) for every s, 1| = s = k. Note
that this graph is (2k — 1)-regular if a, = n/2, and
(2k)-regular otherwise.

Given a graph G with the vertices {0, 1, 2,..., n
— 1}, the difference of an edge { x, y} is defined as min{|x
— yl, n — |x — y|}. We notice that all the edges {(x
+ i)mod n, (y + i)mod n} have difference d if the edge
{ x, y} has difference d.

The definitions and notation not given here can be found
in [2].

To prove our theorem, we need the following lemma, the
former part of which is due to Bouabdallah and Sotteau [1]
while the latter part is new. For the sake of completeness,
we give its proof in full.

Lemma 1. Forany p = 1,
5, ifn=dp+2Apil+1;
Tn-2p-1n =18, ifn=3p+[pr3l+1.

Proof. Consider a graph G with the set of vertices {0,
1, ..., n — 1} isomorphic to the complete graph K, minus
the circulant graph C(n; 1, 2, ..., p), thatis, G = K,
— E(C(n; 1,2, ...,p)). Itisclear thatif n > 2p + 1 then
Gis (n — 2p — 1)-regular and 7, _,, ,, = 7(G).

Let us define a routing R of G as follows: for any edge
{x, y} of G,

R(x,y) = R(y, x) = {x, y}; (©)

the path R(x, y) between two nonadjacent vertices x and y
of G with difference d, 1 = d = p, is defined below.

Consider a partition of the multiset 3 X {1, 2, ...,
[(4p)/31} into pairs plus singletons, so that the set of
differences between the pairs is 2 X {1, 2, ..., p} (such
a partition exists from Theorem 1).

Foranyd, 1 =d = p, let { x,, y,} and { x/;, y);} be two
pairs of this partition with difference d, for example, y,
—x;, =d =y, — xi

Foranyi,0 =i=n— 1l,andanyd, | =d = p, we
define

RG,i+d)=(,i+d+p+x,i+d
Ri+d i)=(G(+d,i+d+p+x)i), )

where values are taken modulo 7.

We first consider the case that n = 4p + 2|_p/3—| + 1.
Note that 4p + 2[p/3] = 2p + 2[4p)/3]. If n = 2p
+ 2|-(4p)/3-| + I,thenn —r>rforp + 1 =r=p
+ |—(4p)/ 31 All paths in R defined above between nonad-
jacent vertices use the edges of G with differences p + y,,
p +x, p+ xjorp + y). Because the multiplicity of each
element in {x,, v, x;, vy : 1 =d = p} C 3 X {1,
2, ..., |-(4p)/3-|} is at most 3, each edge of G with
difference r,p + 1 =r=p + |_(4p)/3-|, is used at most
three times by these paths of R in (4). Also, the paths
between the adjacent vertices in (3) use each edge of G
twice, which implies 7, _,,_, , = m(G) = 5.

Similarly, we can consider the case that 3p + |—p/3-| +
1l =n=4p + 2|-p/3-|. Because 3p + |_p/3-| = 2p
+ [ (4p)/31, we have that 2p + [(4p)/3]1+ 1 =n=2p
+ 2|_(4p)/3-|. In this case, n — r = p + 1 when r is
between p + 1 and p + |_(4p)/3—|, the above routing R is
also well defined. Different from the preceding case, in this
case there exist some edges with difference r such that r and
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n—rarein{p +1,...,p + |_(4p)/3—|}. These edges
such as { x, x + p + r} may be used in either the form { x,
x+p+rjortheform{x+p+r,(x+p+r)+m
-p-—-nN}t={x+p+r,(x+p+r)+p+rtin
Rforn—p—r=p+r,1=rr =[(4p)3]. Soeach
edge of G is used at most six times by paths in (4). Also, the
paths between the adjacent vertices in (3) use each edge of
G twice, which implies that 7, _,, ;, = m(G) = 8. =

Lemma 2 [1]. Am,, =2¢,, + 2(n — 1) for any n and A.

Lemma 3 [3].
gn*Zp*l,n = 2p

Foranynand p = 1 such that n = 3p + 2,

Proof of Theorem 2. From Lemma 2 and Lemma 3,
we have that, forn = 3p + 2 and p = 1,

4p +2n — 2

W n—2p—1"~

n=2p—1n =

which gives

8p
o) ©

7Tn—2p—l,n = 2 + |:
It follows from (5) that, for any p = 2,

_ 5, if3p+2=n=6p;
Tn-2p=10 =\ 8. if 3p+2=n=3p+ |_(3p)/5-|.

These inequalities, together with Lemma 1, give the
proof of the theorem. n
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4. REMARKS

The value of 7, _,,_, , has not been determined for 4p
+ |_(2p)/3-| + 1 =n<4d4p + 2|_p/3-| + 1. Note that
|_(2p)/3-| # 2|_p/3-| only when p = 3k + 1. Thus, if we
could prove that the number 4k + 2 is used only once in a
partition of 3 X {1, 2, ..., [(4p)/3 1} whenp = 3k + 1
in Theorem 1, we could obtain that = 5 whenn
=4dp +[p)3] + 1.

n—2p—1,n
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