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Let G be a connected graph of order n. A routing in G is
a set of n(n � 1) fixed paths for all ordered pairs of
vertices of G. The edge-forwarding index of G, �(G), is
the minimum of the maximum number of paths specified
by a routing passing through any edge of G taken over all
routings in G, and ��,n is the minimum of �(G) taken over
all graphs of order n with maximum degree at most �. To
determine �n�2p�1,n for 4p � 2p/3 � 1 ≤ n ≤ 6p, A.
Bouabdallah and D. Sotteau proposed the following con-
jecture in [On the edge forwarding index problem for
small graphs, Networks 23 (1993), 249–255]. The set 3
� {1, 2, . . . , (4p)/3} can be partitioned into 2p pairs plus
singletons such that the set of differences of the pairs is
the set 2 � {1, 2, . . . , p}. This article gives a proof of this
conjecture and determines that �n�2p�1,n is equal to 5 if
4p � 2p/3 � 1 ≤ n ≤ 6p and to 8 if 3p � p/3 � 1 ≤ n
≤ 3p � (3p)/5 for any p ≥ 2. © 2004 Wiley Periodicals, Inc.
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1. INTRODUCTION

Let G � (V, E) be a connected graph of order n. A
routing R in G is a set of n(n � 1) fixed paths for all
ordered pairs ( x, y) of vertices of G. The path R( x, y)
specified by R carries the data transmitted from the source
x to the destination y. It is possible that the fixed paths
specified by a given routing R pass too frequently through
certain vertices or edges, which means that the routing R
overloads the vertex or the edge. The load of any vertex or
edge is limited by the capacity of the vertex or the edge;
otherwise, it would affect the efficiency of transmission,
even resulting in malfunction of the network. To measure
the load of a vertex or an edge, Chung, Coffman, Reiman,
and Simon [2] proposed the notion of the forwarding index.

Let G be a graph with a given routing R, x a vertex of G
and e an edge of G. The load of x with respect to R, denoted
by �(G, R, x) [resp. the load of e with respect to R, denoted
by �(G, R, e)], is defined as the number of paths specified
by R passing through x [resp. e].

The vertex-forwarding index and the edge-forwarding
index of G with respect to R are, respectively, defined as

��G, R� � max���G, R, x� : x � V�G��

and

��G, R� � max���G, R, e� : e � E�G��.

The vertex-forwarding index and the edge-forwarding
index of G are, respectively, defined as

��G� � min���G, R� : R is a routing of G�

and

��G� � min���G, R� : R is a routing of G�.

The original study of forwarding indices is motivated by
the problem of maximizing network capacity (see [2]).
Minimizing the forwarding indices of a routing will result in
maximizing the network capacity. Thus, it becomes very
significant to determine the vertex and edge-forwarding
indices of a given graph.

Many researchers have been interested in the forwarding
indices of a graph (see, e.g., [1–5]). However, Saad [5]
found that for an arbitrary graph determining its vertex-
forwarding index is NP-complete even if the diameter of the
graph is 2. It is still of interest to determine the forwarding
indices subject to some graph-theoretical variables. For
example, Chung et al. [2] proposed the following problem:
Given � and n, determine ��,n, the minimum of �(G) taken
over all graphs of order n with maximum degree at most �.
This problem was solved asymptotically in [2], and ��,n has
been determined for n � 15 and (n � 4)/3 � � � n � 1
by Heydemann et al. [3].

Heydemann et al. [4] considered the same problem for
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the edge-forwarding index: given � and n, determine ��,n,
the minimum of �(G) taken over all graphs of order n with
maximum degree at most �. Bouabdallah and Sotteau [1]
determined ��,n for some special values of n and �. For
example, �2,n � n2/4 for any n � 3, �n�1,n � 2 for any
n � 2, �n�2,n � 3 for any n � 6, n 	 7 and �n�2,n � 4
for any n � 4, 5, 7. In particular, they obtained that for any
p � 1,

�n�2p�1,n � �3, if n � 10p � 1;
4, if 6p � 1 � n � 10p � 1;
6, if 4p � 1 � n � 4p � �2p�/3.

The value of �n�2p�1,n has not been determined for 4p
� (2p)/3 � 1 � n � 6p. To determine this value, they
remarked that �n�2p�1,n � 5 for 4p � 2p/3 � 1 � n
� 6p if the following conjecture is true (see Remark 3.14
in [1]).

To state the conjecture, we illustrate the strange notation
and terminology that will be used in the conjecture. Let A
� {a1, a2, . . . , as} and B � {b1, b2, . . . , bt} be two
sets. We use A �� B to denote the multi-set {a1, a2, . . . ,
as, b1, b2, . . . , bt}. Then 2 
 A is defined as A �� A and
3 
 A as A �� A �� A. In general, for a positive integer n,
n 
 A is defined as the multi-set

�a1, . . . , a1

n

, a2, . . . , a2

n

, . . . , as, . . . , as

n

�.

Conjecture. The set 3 
 {1, 2, . . . , (4p)/3} can be
partitioned into 2p pairs plus singletons such that the set of
differences of the pairs is the set 2 
 {1, 2, . . . , p}.

For example, when p � 4 in the conjecture, the set is

3 � �1, 2, . . . , �4p�/3�

� �1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6�.

We partition this set into 8 pairs {2, 3}, {4, 5}, {1, 3}, {2,
4}, {1, 4}, {3, 6}, {1, 5}, {2, 6} plus two singletons {5} and
{6}. Then the set of differences of the pairs is {3 � 2, 5 � 4,
3 � 1, 4 � 2, 4 � 1, 6 � 3, 5 � 1, 6 � 2} � {1, 1, 2, 2,
3, 3, 4, 4} � 2 
 {1, 2, 3, 4}.

In this article we will prove this conjecture and obtain the
following result.

Theorem 2. For any p � 2, we have

�n�2p�1,n � �5, if 4p � 2p/3 � 1 � n � 6p;
8, if 3p � p/3 � 1 � n � 3p � �3p�/5.

The proofs of the conjecture and Theorem 2 are given in
Section 2 and Section 3, respectively. In Section 4, we give
some remarks.

2. PROOF OF THE CONJECTURE

We now state the conjecture as the following theorem.

Theorem 1. The multi-set 3 
 {1, 2, . . . , (4p)/3} can
be partitioned into 2p pairs plus singletons such that the set
of differences of the pairs is equal to 2 
 {1, 2, . . . , p} for
any positive integer p.

Proof. We prove this theorem by constructing the re-
quired partition according to the following three possible
cases (six subcases), respectively. We detail only the first
subcase here. The interested reader is referred to [6] for
detailed proofs of the remaining subcases.

CASE 1. p � 3k. In this case, {1, 2, . . . , (4p)/3} � {1,
2, . . . , 4k}.

SUBCASE 1.1. k is odd. We construct 3k � 1 pairs of
integers with the set of odd differences {1, 3, . . . , 3k} as
follows

�i, 3k � 2 	 i�, �i � k 	 1, 4k � 1 	 i�,

1 � i � �3k � 1�/ 2,

and 3k � 1 pairs of integers with the set of even differences
{2, 4, . . . , 3k � 1} as follows

�i, 3k 	 1 	 i�, �i � k, 4k � 1 	 i�, 1 � i � k 	 1;

�i, k � 1 	 i�, �i � 3k 	 2, 4k � 1 	 i�,

1 � i � �k 	 1�/ 2;

��7k 	 3�/ 2, �7k � 1�/ 2�, ��k � 1�/ 2, �7k 	 1�/ 2�.

These pairs of integers are shown in Tables 1 and 2, respec-
tively, for more details.

It is easy to see that all integers used in the pairs of the
left column in Table 1 form the set {1, 2, . . . , 3k � 1} and
all integers used in the pairs of the right column in Table 1
form the set {k, k � 1, . . . , 4k}, from which it is clear that

TABLE 1. 3k � 1 pairs of integers with odd differences.

Difference Pairs of integers

3k {1, 3k � 1} {k, 4k}

3k � 2 {2, 3k} {k � 1, 4k � 1}

···
···

···

3 �3k�1

2
,

3k�5

2 � �5k�3

2
,

5k�3

2 �
1 �3k�1

2
,

3k�3

2 � �5k�1

2
,

5k�1

2 �
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the intersection of the two sets is the set {k, k � 1, . . . , 3k
� 1} and, thus, all integers of pairs in Table 1 form the
multi-set

�1, 2, . . . , k 	 1� �� 2 � �k, k � 1, . . . , 3k � 1� ��

�3k � 2, 3k � 3, . . . , 4k�. (1)

It is also easy to see that all integers used in the pairs of
the left column in Table 2 form the multi-set {1, 2, . . . , k
� 1} �� {1, 2, . . . , k � 1, k} �� {2k, 2k � 1, . . . , 3k
� 2} �� {(7k � 1)/ 2} and all integers used in the pairs of
the right column in Table 2 form the multi-set {k � 1, . . . ,
2k � 1} �� {3k � 1, . . . , (7k � 3)/ 2} �� {(7k
� 1)/ 2, . . . , 4k} �� {3k � 2, . . . , 4k}. Thus, all integers
in pairs in Table 2 form the multi-set

2 � �1, 2, . . . , k 	 1� �� �k, k � 1, . . . , 3k � 1� �� 2

� �3k � 2, 3k � 3, . . . , 4k�. (2)

By (1) and (2), all integers in Tables 1 and 2 form the
multi-set 3 
 {1, 2, . . . , 4k}. Thus, the 6k pairs in Tables
1 and 2 form a required partition of the set 3 
 {1, 2, . . . ,
4k} when k is odd.

SUBCASE 1.2. k is even. The required partition of the set 3

 {1, 2, . . . , 4k} consists of the following 6k pairs of
integers, where the 3k pairs with the set of odd differences
{1, 3, . . . , 3k � 1} are

�i, 3k � 1 	 i�, �i � k, 4k � 1 	 i�, 1 � i � �3k�/ 2,

and the 3k pairs with the set of even differences {2, 4, . . . ,
3k} are

�i, 3k � 2 	 i�, �i � k � 1, 4k � 1 	 i�, 1 � i � k;

�i, k � 2 	 i�, �i � 3k � 1, 4k � 1 	 i�,

1 � i � �k 	 2�/ 2;

�k/ 2, �k � 4�/ 2�, ��k � 2�/ 2, �7k � 2�/ 2�.

CASE 2. p � 3k � 1. In this case, {1, 2, . . . , (4p)/3}
� {1, 2, . . . , 4k � 2}.

SUBCASE 2.1. k is odd. The required partition of the set 3

 {1, 2, . . . , 4k � 2} consists of the following 6k � 2
pairs of integers plus two singletons 4k � 1 and 4k � 2,
where the 3k � 1 pairs with the set of odd differences {1,
3, . . . , 3k} are

�i, 3k � 2 	 i�, �i � k � 1, 4k � 3 	 i�,

1 � i � �3k � 1�/ 2,

and the 3k � 1 pairs with the set of even differences {2,
4, . . . , 3k � 1} are

�i, 3k � 1 	 i�, �i � k, 4k � 1 	 i�, 1 � i � k;

�i � 1, k � 2 	 i�, �i � 3k � 2, 4k � 3 	 i�,

1 � i � �k 	 1�/ 2;

��k � 3�/ 2, �7k � 5�/ 2�, �1, 3k � 2�.

SUBCASE 2.2. k is even. The required partition of the set 3

 {1, 2, . . . , 4k � 2} consists of the following 6k � 2
pairs of integers plus two singletons (k � 2)/ 2 and (7k
� 4)/ 2, where the 3k � 2 pairs with the set of odd
differences {1, 3, . . . , 3k � 1} are

�i, 3k � 3 	 i�, �i � k, 4k � 3 	 i�,

1 � i � �3k � 2�/ 2,

and the 3k pairs with the set of even differences {2, 4, . . . ,
3k} are

�i, 3k � 2 	 i�, �i � k � 1, 4k � 3 	 i�, 1 � i � k;

�i, k � 2 	 i�, �i � 3k � 1, 4k � 3 	 i�,

1 � i � k/ 2.

CASE 3. p � 3k � 2. In this case, {1, 2, . . . , (4p)/3}
� {1, 2, . . . , 4k � 3}.

SUBCASE 3.1. k is odd. The required partition of the set 3

 {1, 2, . . . , 4k � 3} consists of the following 6k � 4
pairs of integers plus the singleton k � 1, where the 3k � 3

TABLE 2. 3k � 1 pairs of integers with even differences.

Difference Pairs of integers

3k � 1 � k�1

2
,

7k�1

2 � {k � 1, 4k}

3k � 3 {1, 3k � 2} {k � 2, 4k � 1}

3k � 5 {2, 3k � 3} {k � 3, 4k � 2}

···
···

···

k � 3 {k � 2, 2k � 1} {2k � 1, 3k � 2}

k � 1 {k � 1, 2k} {3k � 1, 4k}

k � 1 {1, k} {3k, 4k � 1}

k � 3 {2, k � 1} {3k � 1, 4k � 2}

···
···

···

4 � k�3

2
,

k�5

2 � �7k�5

2
,

7k�3

2 �
2 � k�1

2
,

k�3

2 � �7k�3

2
,

7k�1

2 �
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pairs with the set of odd differences {1, 3, . . . , 3k � 2}
are

�i, 3k � 4 	 i�, �i � k � 2, 4k � 4 	 i�,

1 � i � �3k � 1�/ 2;

��3k � 3�/ 2, �3k � 5�/ 2�, ��k � 3�/ 2, �7k � 7�/ 2�,

and the 3k � 1 pairs with the set of even differences {2,
4, . . . , 3k � 1} are

�i, 3k � 3 	 i�, 1 � i � k;

�i � k � 1, 4k � 4 	 i�1 � i � k � 1;

�i, k � 3 	 i�, 1 � i � �k � 1�/ 2;

�i � 3k � 3, 4k � 4 	 i�, 1 � i � �k 	 1�/ 2.

SUBCASE 3.2. k is even. The required partition of the set 3

 {1, 2, . . . , 4k � 3} consists of the following 6k � 4
pairs of integers plus the singleton k � 2, where the 3k � 2
pairs with the set of odd differences {1, 3, . . . , 3k � 1}
are

�i, 3k � 3 	 i�, �i � k � 1, 4k � 4 	 i�,

1 � i � �3k � 2�/ 2,

and the 3k � 2 pairs with the set of even differences {2,
4, . . . , 3k � 2} are

�i, 3k � 4 	 i�, �i � k � 2, 4k � 4 	 i�, 1 � i � k;

�i, k � 2 	 i�, �i � 3k � 2, 4k � 4 	 i�,

1 � i � k/ 2;

�k � 1, 2k � 3�, ��k � 2�/ 2, �7k � 6�/ 2�.

All possible cases are exhausted and the proof of the
theorem is completed. ■

3. PROOF OF THEOREM 2

The symbol C(n; a1, a2, . . . , ak), 1 � a1 � a2

� . . . � ak � n/ 2, denotes a circulant graph of order n
with the set of vertices {0, 1, 2, . . . , n � 1}, where vertex
i is joined to i � as (mod n) for every s, 1 � s � k. Note
that this graph is (2k � 1)-regular if ak � n/ 2, and
(2k)-regular otherwise.

Given a graph G with the vertices {0, 1, 2, . . . , n
� 1}, the difference of an edge { x, y} is defined as min{�x
� y�, n � �x � y�}. We notice that all the edges {( x
� i)mod n, ( y � i)mod n} have difference d if the edge
{ x, y} has difference d.

The definitions and notation not given here can be found
in [2].

To prove our theorem, we need the following lemma, the
former part of which is due to Bouabdallah and Sotteau [1]
while the latter part is new. For the sake of completeness,
we give its proof in full.

Lemma 1. For any p � 1,

�n�2p�1,n � �5, if n � 4p � 2p/3 � 1;
8, if n � 3p � p/3 � 1.

Proof. Consider a graph G with the set of vertices {0,
1, . . . , n � 1} isomorphic to the complete graph Kn minus
the circulant graph C(n; 1, 2, . . . , p), that is, G � Kn

� E(C(n; 1, 2, . . . , p)). It is clear that if n 
 2p � 1 then
G is (n � 2p � 1)-regular and �n�2p�1,n � �(G).

Let us define a routing R of G as follows: for any edge
{ x, y} of G,

R� x, y� � R� y, x� � � x, y�; (3)

the path R( x, y) between two nonadjacent vertices x and y
of G with difference d, 1 � d � p, is defined below.

Consider a partition of the multiset 3 
 {1, 2, . . . ,
(4p)/3} into pairs plus singletons, so that the set of
differences between the pairs is 2 
 {1, 2, . . . , p} (such
a partition exists from Theorem 1).

For any d, 1 � d � p, let { xd, yd} and { x�d, y�d} be two
pairs of this partition with difference d, for example, yd

� xd � d � y�d � x�d.
For any i, 0 � i � n � 1, and any d, 1 � d � p, we

define

R�i, i � d� � �i, i � d � p � xd, i � d�

R�i � d, i� � �i � d, i � d � p � x�d, i�, (4)

where values are taken modulo n.
We first consider the case that n � 4p � 2p/3 � 1.

Note that 4p � 2p/3 � 2p � 2(4p)/3. If n � 2p
� 2(4p)/3 � 1, then n � r 
 r for p � 1 � r � p
� (4p)/3. All paths in R defined above between nonad-
jacent vertices use the edges of G with differences p � yd,
p � xd, p � x�d or p � y�d. Because the multiplicity of each
element in { xd, yd, x�d, y�d : 1 � d � p} � 3 
 {1,
2, . . . , (4p)/3} is at most 3, each edge of G with
difference r, p � 1 � r � p � (4p)/3, is used at most
three times by these paths of R in (4). Also, the paths
between the adjacent vertices in (3) use each edge of G
twice, which implies �n�2p�1,n � �(G) � 5.

Similarly, we can consider the case that 3p � p/3 �
1 � n � 4p � 2p/3. Because 3p � p/3 � 2p
� (4p)/3, we have that 2p � (4p)/3 � 1 � n � 2p
� 2(4p)/3. In this case, n � r � p � 1 when r is
between p � 1 and p � (4p)/3, the above routing R is
also well defined. Different from the preceding case, in this
case there exist some edges with difference r such that r and
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n � r are in { p � 1, . . . , p � (4p)/3}. These edges
such as { x, x � p � r} may be used in either the form { x,
x � p � r} or the form { x � p � r, ( x � p � r) � (n
� p � r)} � { x � p � r, ( x � p � r) � p � r�} in
R for n � p � r � p � r�, 1 � r, r� � (4p)/3. So each
edge of G is used at most six times by paths in (4). Also, the
paths between the adjacent vertices in (3) use each edge of
G twice, which implies that �n�2p�1,n � �(G) � 8. ■

Lemma 2 [1]. ���,n � 2��,n � 2(n � 1) for any n and �.

Lemma 3 [3]. For any n and p � 1 such that n � 3p � 2,
�n�2p�1,n � 2p.

Proof of Theorem 2. From Lemma 2 and Lemma 3,
we have that, for n � 3p � 2 and p � 1,

�n�2p�1,n �
4p � 2n 	 2

n 	 2p 	 1
,

which gives

�n�2p�1,n � 2 � � 8p

n 	 2p 	 1� . (5)

It follows from (5) that, for any p � 2,

�n�2p�1,n � �5, if 3p � 2 � n � 6p;
8, if 3p � 2 � n � 3p � �3p�/5.

These inequalities, together with Lemma 1, give the
proof of the theorem. ■

4. REMARKS

The value of �n�2p�1,n has not been determined for 4p
� (2p)/3 � 1 � n � 4p � 2p/3 � 1. Note that
(2p)/3 	 2p/3 only when p � 3k � 1. Thus, if we
could prove that the number 4k � 2 is used only once in a
partition of 3 
 {1, 2, . . . , (4p)/3} when p � 3k � 1
in Theorem 1, we could obtain that �n�2p�1,n � 5 when n
� 4p � (2p)/3 � 1.
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