# Forwarding indices of folded $n$-cubes ${ }^{2}$ 

Xinmin Hou, Min Xu, Jun-Ming Xu<br>Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China

Received 25 April 2003; received in revised form 10 May 2004; accepted 12 August 2004


#### Abstract

For a given connected graph $G$ of order $n$, a routing $R$ is a set of $n(n-1)$ elementary paths specified for every ordered pair of vertices in $G$. The vertex (resp. edge) forwarding index of a graph is the maximum number of paths of $R$ passing through any vertex (resp. edge) in the graph. In this paper, the authors determine the vertex and the edge forwarding indices of a folded $n$-cube as $(n-1) 2^{n-1}+1-((n+1) / 2)\binom{n}{\left\lfloor\frac{n+1}{2}\right\rfloor}$ and $2^{n}-\left(\left\lfloor\frac{n}{2}\right\rfloor 1\right)$, respectively. © 2004 Elsevier B.V. All rights reserved. Keywords: Vertex forwarding index; Edge forwarding index; Folded $n$-cubes


## 1. Introduction

To measure the efficiency of a routing deterministically, Chung et al. [2] introduced the concept of forwarding index of a routing. A routing $R$ of a simple connected graph $G$ of order $n$ is a set of $n(n-1)$ elementary paths $R(u, v)$ specified for all (ordered) pairs $u, v$ of vertices of $G$. The vertex forwarding index $\xi(G, R)$ (resp. edge forwarding index $\pi(G, R)$ ) is the maximum number of paths of $R$ going through a vertex (resp. an edge) of $G$. The minimum of $\xi(G, R)$ (resp. $\pi(G, R)$ ) over all possible routings $R$ of $G$, denoted by $\xi(G)$ (resp. $\pi(G)$ ), is called the vertex forwarding (resp. edge forwarding) index of $G$.

Saad [11] proved that the problem determining the vertex forwarding index is NP-hard. However, Heydemann et al. [7] proved that for a Cayley graph $G=(V, E)$

$$
\begin{equation*}
\xi(G)=\sum_{v \in V} d(u, v)-(n-1), \quad \forall u \in V(G) \tag{1}
\end{equation*}
$$

and for any connected graph $G=(V, E)$

$$
\begin{equation*}
\pi(G) \geqslant \frac{1}{|E(G)|} \sum_{(u, v) \in V \times V} d(u, v) \tag{2}
\end{equation*}
$$

where equality (2) holds if and only if there exists a routing of shortest paths in $G$ for which the number of paths going through every edge is the same. As applications of the two formulae, the forwarding indices of many well-known graphs have been determined by different authors (see, for example, [1,2,4-12]).

[^0]In this note, we determine the forwarding indices of the folded $n$-cube. The folded $n$-cube $F H(n)$, proposed by El-Amawy and Latifi [3], is the graph of order $2^{n}$ whose vertices can be labelled as the $n$-length sequences of 0 's and 1 's, two vertices being adjacent whenever their labels differ in just one digit or all digits. We call the former a complementary edge and the latter a normal edge.

It has been known that $F H(n)$ is a Cayley graph with degree $(n+1)$ and diameter $\lfloor(n+1) / 2\rfloor$. Our main results are stated in the following theorem.

Theorem. $\xi(F H(n))=(n-1) 2^{n-1}-((n+1) / 2)\binom{n}{\left\lfloor\frac{n+1}{2}\right\rfloor}+1$ and $\pi(F H(n))=2^{n}-\binom{n}{\left\lfloor\frac{n+1}{2}\right\rfloor}$.

## 2. Proof of Theorem

To determine $\xi(F H(n))$, from (1) we need only to compute the sum of all distances from a given vertex $u$ in $F H(n)$. The computation of this sum for $F H(n)$ is easy, and the detail is left to the readers.

To determine $\pi(F H(n))$, we need to construct a routing $R$ of shortest paths in $F H(n)$ such that the number of paths going through every edge is the same. Let $x=\left(x_{1} x_{2} \cdots x_{n}\right)$ and $y=\left(y_{1} y_{2} \cdots y_{n}\right)$ be any two different vertices in $F H(n)$, and let $H(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$. We define a directed path $R(x, y)$ in $R$ as follows. If $H(x, y) \leqslant\lfloor n / 2\rfloor$,

$$
R(x, y):\left(x_{1} x_{2} \cdots x_{n}\right) \rightarrow\left(y_{1} x_{2} \cdots x_{n}\right) \rightarrow\left(y_{1} y_{2} x_{3} \cdots x_{n}\right) \rightarrow \cdots \rightarrow\left(y_{1} y_{2} \cdots y_{n}\right)
$$

If $n$ is even and $H(x, y)>n / 2$, or $n$ is odd and $H(x, y)>(n+1) / 2$,

$$
R(x, y):\left(x_{1} x_{2} \cdots x_{n}\right) \rightarrow\left(\overline{x_{1}} \overline{x_{2}} \cdots \overline{x_{n}}\right) \rightarrow\left(y_{1} \overline{x_{2}} \cdots \overline{x_{n}}\right) \rightarrow \cdots \rightarrow\left(y_{1} y_{2} \cdots y_{n}\right)
$$

If $n$ is odd and $H(x, y)=(n+1) / 2$,

$$
R(x, y):\left(x_{1} x_{2} \cdots x_{n}\right) \rightarrow\left(y_{1} x_{2} \cdots x_{n}\right) \rightarrow\left(y_{1} y_{2} x_{3} \cdots x_{n}\right) \rightarrow \cdots \rightarrow\left(y_{1} y_{2} \cdots y_{n}\right)
$$

if $w(x)<w(\bar{x})$ and

$$
R(x, y):\left(x_{1} x_{2} \cdots x_{n}\right) \rightarrow\left(\overline{x_{1}} \overline{x_{2}} \cdots \overline{x_{n}}\right) \rightarrow\left(y_{1} \overline{x_{2}} \cdots \overline{x_{n}}\right) \rightarrow \cdots \rightarrow\left(y_{1} y_{2} \cdots y_{n}\right)
$$

otherwise, where $w(x)$ denotes the number of 1 's in a vertex $x, \overline{0}=1$ and $\overline{1}=0$.
It is easy to see from the symmetry that normal edges are used the same number of times, and complementary edges are used the same number of times by $R$. The total number of usage of normal edges by $R$ is

$$
2^{n}\left[\sum_{i=1}^{n / 2} i\binom{n}{i}+\sum_{i=n / 2+1}^{n}(n-i)\binom{n}{n-i}\right]=n 2^{n-1}\left[2^{n}-\binom{n}{\frac{n}{2}}\right]
$$

if $n$ is even, and

$$
\begin{aligned}
2^{n} & {\left[\sum_{i=1}^{(n-1) / 2} i\binom{n}{i}+\sum_{i=(n+3) / 2}^{n}(n-i)\binom{n}{n-i}\right]+2^{n-1}\left[\frac{n+1}{2}\binom{n}{\frac{n+1}{2}}+\frac{n-1}{2}\binom{n}{\frac{n-1}{2}}\right] } \\
& =n 2^{n-1}\left[2^{n}-\binom{n}{\frac{n+1}{2}}\right]
\end{aligned}
$$

if $n$ is odd. And the total number of usage of complementary edges by $R$ is

$$
2^{n} \sum_{i=n / 2+1}^{n}\binom{n}{i}=2^{n-1}\left[2^{n}-\binom{n}{\frac{n}{2}}\right]
$$

if $n$ is even, and

$$
2^{n} \sum_{i=(n+3) / 2}^{n}\binom{n}{i}+2^{n-1}\binom{n}{\frac{n+1}{2}}=2^{n-1}\left[2^{n}-\binom{n}{\frac{n+1}{2}}\right]
$$

if $n$ is odd.

Therefore, the number of usage of every normal edge (resp. every complementary edge) by $R$ can be obtained by dividing the total number of usage of normal edges (resp. complementary edges) with the number of normal edges (resp. complementary edges) of $F H(n)$. Note that the number of normal edges (resp. complementary edges) is equal to $n 2^{n-1}$ (resp. $2^{n-1}$ ), we can easily obtain that the number of paths going through every edge of $F H(n)$ by $R$ equals $2^{n}-\binom{n}{\left\lfloor\frac{n+1}{2}\right\rfloor}$. And by (2), the result follows.

## References

[1] A. Bouabdallah, D. Sotteau, On the edge forwarding index problem for small graphs, Networks 23 (1993) 249-255.
[2] F.K. Chung, E.G. Coffman, M.I. Reiman, B. Simon, The forwarding index of communication networks, IEEE Trans. Inform. Theory 33 (2) (1987) 224-232.
[3] A. El-Amawy, S. Latifi, Properties and performance of folded hypercubes, IEEE Trans. Parallel Distributed Syst. 2 (3) (1991) 31-42.
[4] W. Fernandez de la Vega, Y. Manoussakis, The forwarding index of communication networks with given connectivity, Discrete Appl. Math. 37/38 (1992) 147-155.
[5] G. Gauyacq, Edge-forwarding index of star graphs and other Cayley graphs, Discrete Appl. Math. 80 (1997) 149-160.
[6] M.C. Heydemann, Cayley graphs and inteconnection networks, Graph Symmetry: Algebraic Methods and Applications, Kluwer Academic Publishers, Dordrecht, 1997, pp. 167-226.
[7] M.C. Heydemann, J.C. Meyer, D. Sotteau, On forwarding indices of networks, Discrete Appl. Math. 23 (1989) 103-123.
[8] M.C. Heydemann, J.C. Meyer, J. Opatrny, D. Sotteau, Forwarding indices of $k$-connected graphs, Discrete Appl. Math. $37 / 38$ (1992) 287-296.
[9] M.C. Heydemann, J.C. Meyer, D. Sotteau, J. Opatrny, Forwarding indices of consistent routings and their complexity, Networks 24 (1994) 75-82.
[10] Y. Manoussaki, Z. Tuza, The forwarding index of directed networks, Discrete Appl. Math. 68 (1996) 279-291.
[11] R. Saad, Complexity of the forwarding index problem, SIAM J. Discrete Math. 6 (3) (1993) 418-427.
[12] F. Shahrokhi, L.A. Székely, Constructing integral uniform flows in symmetric networks with application to the edge-forwarding index problem, Discrete Appl. Math. 108 (2001) 175-191.


[^0]:    ${ }^{4}$ The work was supported by NNSF of China (No. 10271114).
    E-mail address: xmhou@ustc.edu.cn (X. Hou)

