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Abstract

The (k − 1)-fault diameterDk(G) of a k-connected graphG is the maximum diameter ofG − F for anyF ⊂ V (G) with
|F | < k. Krishnamoorthy and Krishnamurthy first proposed this concept and gaveDκ(G1)+κ(G2)(G1 × G2) � Dκ(G1)(G1) +
Dκ(G2)(G2) whenκ(G1 × G2) = κ(G1) + κ(G2), whereκ(G) is the connectivity ofG. This paper gives a counterexamp
to this bound and establishesDk1+k2(G1 × G2) � Dk1(G1) + Dk2(G2) + 1 for anyki -connected graphGi andki � 1 for
i = 1,2.
 2004 Elsevier B.V. All rights reserved.
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NG(x) to denote the set of neighbors of nodex in G.
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We follow [1] for graph-theoretical terminolog
and notation not defined here. Throughout this pap
graphG = (V ,E) always means a simple graph (wit
out loops and multiple edges), whereV = V (G) is the
vertex set andE = E(G) is the edge set. The length
a pathP is the number of edges inP , denoted by�(P ).
The diameter ofG, d(G), is the maximum length ove
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The connectivity ofG, κ(G), is the minimum cardi-
nality over all vertex-separating sets inG if G is not a
complete graphKn, otherwiseκ(Kn) = n−1. A graph
G is said to bek-connected ifκ(G) � k.

Since nodes of a network do not always work
some nodes are faulty, the information cannot be tra
mitted by these nodes and the efficiency of netw
must be affected. A number of researchers have
vestigated the design of fault tolerant interconnec
networks. A common notion of fault tolerance is bas
on the connectivity of the underlying graphG. The
connectivityκ(G) � k implies that the resulting grap
remains connected when at mostk − 1 faulty vertices

.
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occur. However, the diameter of the resulting graph
might increase.
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many desirable properties of the factor graphs, such as
regularity, vertex-transitivity, eulericity, hamiltonicity,
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The(k−1)-fault diameter of ak-connected graphG,
Dk(G), is defined as

Dk(G) = max
{
d(G − F): F ⊂ V (G), |F | < k

}
.

It is clear thatDk(G) = max{d(G − F): F ⊂ V (G),

|F | = k − 1}, and for anyk-connected graphG we
have d(G) = D1(G) � D2(G) � · · · � Dk−1(G) �
Dk(G).

The fault diameter of many well-known networ
have been determined by several researchers, se
example, [4–8]. The concept of fault diameter was fi
proposed by Krishnamoorthy and Krishnamurthy
who gaveDκ(G1)+κ(G2)(G1 × G2) � Dκ(G1)(G1) +
Dκ(G2)(G2) when κ(G1 × G2) = κ(G1) + κ(G2).
However, this upper bound seems false. For exam
considerG = C4 × C4, whereC4 is a cycle with ver-
tex set{1,2,3,4}. Thenκ(G) = 4 = κ(C4) + κ(C4),
κ(C4) = 2 = d(C4) = D2(C4). If we chooseF =
{12,14,41}, the distance between the two vertices
and 43 inC4×C4−F is 5 and, hence,D4(C4×C4) �
5 > 4 = D2(C4) + D2(C4). In the present paper, w
give the following results.

Theorem 1. Dk1+k2(G1 ×G2) � Dk1(G1)+Dk2(G2)

+ 1 for any ki -connected graph Gi and ki � 1 for
i = 1,2.

The proof is in Section 3. Section 2 gives som
preliminaries about the Cartesian product of grap
Section 4 gives conclusions that conclude two ope
problems.

2. Preliminaries

The Cartesian product of two graphsG1 andG2,
denoted byG1 × G2, is the graph with vertex se
V (G1) × V (G2), and an edge joining a vertexx =
x1x2 to anothery = y1y2 (xj , yj ∈ V (Gj ), j = 1,2)

if and only if either x1 = y1 and x2y2 ∈ E(G2) or
x2 = y2 andx1y1 ∈ E(G1).

As an operation of graph theory, the Cartes
product method is a very effective method for co
structing a large graph from several specified sm
graphs. The graph constructed by this way can c
tain the factor graphs as its subgraphs and pres
r

and so forth. A number of important graph-theore
parameters, such as degree, diameter and conne
ity, can be easily calculated from the factor grap
Thus the Cartesian product method is an impor
method for designing large-scale interconnection ne
works [9]. For example, the hypercube is one of
most popular, versatile and efficient topological str
tures of connection networks and it is defined asQn =
Qn−1 × K2 = K2 × K2 × · · · × K2 whereK2 is an
edge. The following result can be found in [2,3,10].

Lemma. d(G1 × G2) = d(G1) + d(G2) and κ(G1 ×
G2) � κ(G1) + κ(G2). In particular, G1 × G2 is k-
regular k-connected if Gi is ki -regular ki (� 1)-con-
nected, where k = k1 + k2.

We observe that if we identify isomorphic graph
the operations of the Cartesian product satisfy
commutative law clearly. This simple observation c
greatly simplify proofs of some results concerning
Cartesian product.

We give some notations used in the proof of th
orem. If P(x1, y1) = (x1, v1, v2, . . . , vm, y1) is an
(x1, y1)-path in G1, then for anyb ∈ V (G2), (x1b,

v1b, v2b, . . . , vmb, y1b), denoted byP(x1, y1)b, is
an (x1b, y1b)-path from the vertexx1b to the ver-
tex y1b in G1 × G2. Similarly, if Q(x2, y2) = (x2,

u1, u2, . . . , ul, y2) is an (x2, y2)-path inG2, then for
any a ∈ V (G1), (ax2, au1, au2, . . . , aul, ay2), de-
noted byaQ(x2, y2), is an (ax2, ay2)-path from the
vertexax2 to the vertexay2 in G1 × G2. Let x = x1x2
andy = y1y2. If x andy are two distinct vertices in
G1 ×G2, thenP(x1, y1)x2 ∪y1Q(x2, y2) is an(x, y)-
path fromx to y in G1 × G2. Such a path will, in this
paper, be expressed as

x = x1x2
P(x1,y1)x2−→ y1x2

y1Q(x2,y2)−→ y1y2 = y.

3. Proof of Theorem 1

Let G = G1 × G2 andk = k1 + k2. By lemma, we
haveκ(G) � k and, hence,Dk(G) is well-defined. Let
δi be the minimum degree ofGi for i = 1,2 in the
following discussion, thenδ1 � k1, δ2 � k2. Let F be
a subset ofV (G) with |F | = k −1,x andy be any two
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distinct vertices inG − F . We will complete the proof
of Theorem 1 by constructing an(x, y)-pathR(x, y)

er-

n

ds.

l-

R :x1x2
G1x2−F−→ y1x2

y1G2−F−→ y1y2

t
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per
in G − F with required length.
Throughout this section, we use the following t

minology and notation. LetH be a subgraph ofG,
and we sayH avoidsF if H contains no vertices in
F . Let x = x1x2 andy = y1y2, wherex1, y1 ∈ V (G1)

andx2, y2 ∈ V (G2). We always useP(x1, y1) to de-
note a shortest(x1, y1)-path inG1, andQ(x2, y2) to
denote a shortest(x2, y2)-path inG2.

We first prove that

Dk(G) � max
{
2+ d(G1),Dk1(G1)

}

if x2 = y2 or

Dk(G) � max
{
2+ d(G2),Dk2(G2)

}

if x1 = y1.

By the commutative law, we can assumex2 =
y2. If |F ∩ V (G1x2)| < k1, then there is a path i
G1x2−F with length at mostDk1(G1). Otherwise, let
b1, b2, . . . , bδ2 ∈ NG2(x2), thenδ2 disjoint subgraphs
G1b1,G1b2, . . . ,G1bδ2 all are isomorphic toG1, of
which at least one, sayG1b1, avoidsF . Thus,

R :x1x2 → x1b1
P(x1,y1)b1−→ y1b1 → y1y2

is an (x, y)-path in G − F with length at most
d(G1) + 2.

We assumex1 �= y1 andx2 �= y2 below. There are
two cases depending on whethery1x2 andx1y2 are in
F or not.

Case 1.y1x2 /∈ F orx1y2 /∈ F . Assume without loss
of generality thaty1x2 /∈ F .

Subcase 1.1. |V (G1x2) ∩ F | � k1 or |V (y1G2) ∩
F | � k2.

Without loss of generality assume the former hol
Subject to this condition we have|V (y1G2) ∩ F | �
|F | − |V (G1x2) ∩ F | � k1 + k2 − 1 − k1 = k2 − 1.
Sinceb1, b2, . . . , bδ2 ∈ NG2(x2), considerδ2 disjoint
subgraphsG1b1,G1b2, . . . ,G1bδ2, of which at least
one, sayG1b1, avoidsF . So, an(x, y)-path inG − F

can be constructed as follows:

R :x1x2 → x1b1
P(x1,y1)b1−→ y1b1

y1G2−F−→ y1y2

with length�(R) � 1+ d(G1) + Dk2(G2).
Subcase 1.2.|V (G1x2)∩F | � k1−1 and|V (y1G2)

∩ F | � k2 − 1.
An (x, y)-path inG − F can be constructed as fo

lows:
with length�(R) � Dk1(G1) + Dk2(G2).
Case 2. {y1x2, x1y2} ⊆ F . In this case, choosec1,

c2, . . . , cδ1 ∈ NG1(x1) andd1, d2, . . . , dδ2 ∈ NG2(y2).
We consider(δ1 + δ2) pairs of vertices

{c1x2, c1y2}, {c2x2, c2y2}, . . . , {cδ1x2, cδ1y2}, (1)

{x1d1, y1d1}, {x1d2, y1d2}, . . . , {x1dδ2, y1dδ2}. (2)

Since|F | � k1 + k2 − 1 < δ1 + δ1, there exists at leas
one pair of vertices in (1) and (2), say{c1x2, c1y2},
that is not inF (similarly if such a pair of vertices is in
(2)). Thenc1 �= y1 sincey1x2 ∈ F . We will construct
an(x, y)-path inG−F with required length accordin
to the following three cases.

Subcase 2.1. |V (G1y2) ∩ F | � k1.
Subject to this condition we have|V (x1G2)∩F | �

k2 − 1 and |V (G − G1y2) ∩ F | � k2 − 1. Consider
δ2 disjoint subgraphsG1d1,G1d2, . . . ,G1dδ2. Since
δ2 � k2 > k2 − 1, at least one of these subgraphs,
G1d1, avoidsF . Note thatc1 �= y1, we can construc
an(x, y)-path inG − F as follows:

R :x1x2
x1G2−F−→ x1d1

P(x1,y1)d1−→ y1d1 → y1y2,

with length�(R) � 1+ d(G1) + Dk2(G2).
Subcase 2.2. |V (c1G2) ∩ F | � k2.
Subject to this condition, we have|V (G1y2)∩F | �

k1 −2 and|V (G− c1G2 −x1G2)∩F | � k1 −2. Con-
siderδ1−1 disjoint subgraphsc2G2, c3G2, . . . , cδ1G2.
Sinceδ1 − 1 � k1 − 1 > k1 − 2, at least one of thes
subgraphs, sayc2G2, avoidsF . We can construct a
(x, y)-path inG − F as follows:

R :x1x2 → c2x2
c2Q(x2,y2)−→ c2y2

G1y2−F−→ y1y2,

with length�(R) � 1+ Dk1−1(G1) + d(G2).
Subcase 2.3.|V (G1y2)∩F | � k1−1 and|V (c1G2)

∩ F | � k2 − 1.
An (x, y)-path inG − F can be constructed as fo

lows:

R :x1x2 → c1x2
c1G2−F−→ c1y2

G1y2−F−→ y1y2

with length�(R) � 1+ Dk1(G1) + Dk2(G2).
Summing up all possible cases, we get the up

bound in Theorem 1.
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4. Conclusions
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The fault diameter is animportant measuremen
for reliability and efficiencyof an interconnection net
work. In the present paper, we establishDk1+k2(G1 ×
G2) � Dk1(G1) + Dk2(G2) + 1 for anyki-connected
graphGi andki � 1 for i = 1,2.

The fault diameter of many well-known networ
have been determined by several authors see, fo
ample, [4–8]. However, there are a lot of problems t
are still open so far. One of them is whether or n
determiningDk(G) is NP-hard for anyk-connected
graphG, and another is for a fixedk � κ(G) how to
choose ak1-connected graphG1 and ak2-connected
graphG2 such thatk = k1 + k2 and G = G1 × G2
such thatDk(G) is as small as possible.

Acknowledgement

The authors would like to thank the anonymo
referees for their helpful comments and suggestio
which led to this revised version.
[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Application
Macmillan Press, London, 1976.

[2] W.-S. Chiue, B.-S. Shieh, On connectivity of the Cartes
product of two graphs, Appl. Math. Comput. 102 (1999) 12
137.

[3] K. Day, A.-E. Al-Ayyoub, The cross product of interconne
tion networks, IEEE Trans. Parallel Distributed Systems 8
(1997) 109–118.

[4] D.Z. Du, D.F. Hsu, Y.D. Lyuu, On the diameter vulnerabili
of Kautz digraphs, Discrete Math. 151 (1996) 81–85.

[5] D.R. Duh, G.H. Chen, On the Rabin number problem, N
works 30 (1997) 219–230.

[6] M.S. Krishnamoorthy, B. Krishnamurthy, Fault diameter of
terconnection networks, Comput. Math. Appl. 13 (5/6) (1987
577–582.

[7] S.C. Liaw, G.J. Chang, Wide diameters of butterfly networ
Taiwanese J. Math. 3 (1) (1999) 83–88.

[8] S.C. Liaw, G.J. Chang, F. Cao, D.F. Hsu, Fault-tolerant ro
ing in circulant networks and cycle prefix networks, Ann
Comb. 2 (5–6) (1998) 165–172.

[9] J.-M. Xu, Topological Structure and Analysis of Interconnec
tion Networks, Kluwer Academic Publishers, Dordrecht, 2001

[10] J.-M. Xu, Connectivity of Cartesian product digraphs and fa
tolerant routing of generalized hypercube, Appl. Math. J. C
nese Univ. Ser. B 13 (2) (1998) 179–187.


