Fault diameter of Cartesian product graphs ${ }^{\kappa \pi}$

Min Xu, Jun-Ming Xu *, Xin-Min Hou
Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China

Received 21 October 2003; received in revised form 7 September 2004
Available online 21 December 2004
Communicated by F.B. Schneider

Abstract

The $(k-1)$-fault diameter $D_{k}(G)$ of a k-connected graph G is the maximum diameter of $G-F$ for any $F \subset V(G)$ with $|F|<k$. Krishnamoorthy and Krishnamurthy first proposed this concept and gave $D_{\kappa\left(G_{1}\right)+\kappa\left(G_{2}\right)}\left(G_{1} \times G_{2}\right) \leqslant D_{\kappa\left(G_{1}\right)}\left(G_{1}\right)+$ $D_{\kappa\left(G_{2}\right)}\left(G_{2}\right)$ when $\kappa\left(G_{1} \times G_{2}\right)=\kappa\left(G_{1}\right)+\kappa\left(G_{2}\right)$, where $\kappa(G)$ is the connectivity of G. This paper gives a counterexample to this bound and establishes $D_{k_{1}+k_{2}}\left(G_{1} \times G_{2}\right) \leqslant D_{k_{1}}\left(G_{1}\right)+D_{k_{2}}\left(G_{2}\right)+1$ for any k_{i}-connected graph G_{i} and $k_{i} \geqslant 1$ for $i=1,2$. © 2004 Elsevier B.V. All rights reserved.

Keywords: Diameter; Connectivity; Fault diameter; Cartesian product graph; Interconnection networks

1. Introduction

We follow [1] for graph-theoretical terminology and notation not defined here. Throughout this paper, a graph $G=(V, E)$ always means a simple graph (without loops and multiple edges), where $V=V(G)$ is the vertex set and $E=E(G)$ is the edge set. The length of a path P is the number of edges in P, denoted by $\ell(P)$. The diameter of $G, d(G)$, is the maximum length over

[^0]all shortest paths between any two vertices in G. Use $N_{G}(x)$ to denote the set of neighbors of node x in G. The connectivity of $G, \kappa(G)$, is the minimum cardinality over all vertex-separating sets in G if G is not a complete graph K_{n}, otherwise $\kappa\left(K_{n}\right)=n-1$. A graph G is said to be k-connected if $\kappa(G) \geqslant k$.

Since nodes of a network do not always work, if some nodes are faulty, the information cannot be transmitted by these nodes and the efficiency of network must be affected. A number of researchers have investigated the design of fault tolerant interconnection networks. A common notion of fault tolerance is based on the connectivity of the underlying graph G. The connectivity $\kappa(G) \geqslant k$ implies that the resulting graph remains connected when at most $k-1$ faulty vertices
occur. However, the diameter of the resulting graph might increase.

The $(k-1)$-fault diameter of a k-connected graph G, $D_{k}(G)$, is defined as
$D_{k}(G)=\max \{d(G-F): F \subset V(G),|F|<k\}$.
It is clear that $D_{k}(G)=\max \{d(G-F): F \subset V(G)$, $|F|=k-1\}$, and for any k-connected graph G we have $d(G)=D_{1}(G) \leqslant D_{2}(G) \leqslant \cdots \leqslant D_{k-1}(G) \leqslant$ $D_{k}(G)$.

The fault diameter of many well-known networks have been determined by several researchers, see, for example, [4-8]. The concept of fault diameter was first proposed by Krishnamoorthy and Krishnamurthy [6] who gave $D_{\kappa\left(G_{1}\right)+\kappa\left(G_{2}\right)}\left(G_{1} \times G_{2}\right) \leqslant D_{\kappa\left(G_{1}\right)}\left(G_{1}\right)+$ $D_{\kappa\left(G_{2}\right)}\left(G_{2}\right)$ when $\kappa\left(G_{1} \times G_{2}\right)=\kappa\left(G_{1}\right)+\kappa\left(G_{2}\right)$. However, this upper bound seems false. For example, consider $G=C_{4} \times C_{4}$, where C_{4} is a cycle with vertex set $\{1,2,3,4\}$. Then $\kappa(G)=4=\kappa\left(C_{4}\right)+\kappa\left(C_{4}\right)$, $\kappa\left(C_{4}\right)=2=d\left(C_{4}\right)=D_{2}\left(C_{4}\right)$. If we choose $F=$ $\{12,14,41\}$, the distance between the two vertices 11 and 43 in $C_{4} \times C_{4}-F$ is 5 and, hence, $D_{4}\left(C_{4} \times C_{4}\right) \geqslant$ $5>4=D_{2}\left(C_{4}\right)+D_{2}\left(C_{4}\right)$. In the present paper, we give the following results.

Theorem 1. $D_{k_{1}+k_{2}}\left(G_{1} \times G_{2}\right) \leqslant D_{k_{1}}\left(G_{1}\right)+D_{k_{2}}\left(G_{2}\right)$ +1 for any k_{i}-connected graph G_{i} and $k_{i} \geqslant 1$ for $i=1,2$.

The proof is in Section 3. Section 2 gives some preliminaries about the Cartesian product of graphs. Section 4 gives conclusions that conclude two opened problems.

2. Preliminaries

The Cartesian product of two graphs G_{1} and G_{2}, denoted by $G_{1} \times G_{2}$, is the graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$, and an edge joining a vertex $x=$ $x_{1} x_{2}$ to another $y=y_{1} y_{2}\left(x_{j}, y_{j} \in V\left(G_{j}\right), j=1,2\right)$ if and only if either $x_{1}=y_{1}$ and $x_{2} y_{2} \in E\left(G_{2}\right)$ or $x_{2}=y_{2}$ and $x_{1} y_{1} \in E\left(G_{1}\right)$.

As an operation of graph theory, the Cartesian product method is a very effective method for constructing a large graph from several specified small graphs. The graph constructed by this way can contain the factor graphs as its subgraphs and preserve
many desirable properties of the factor graphs, such as regularity, vertex-transitivity, eulericity, hamiltonicity, and so forth. A number of important graph-theoretic parameters, such as degree, diameter and connectivity, can be easily calculated from the factor graphs. Thus the Cartesian product method is an important method for designing large-scale interconnection networks [9]. For example, the hypercube is one of the most popular, versatile and efficient topological structures of connection networks and it is defined as $Q_{n}=$ $Q_{n-1} \times K_{2}=K_{2} \times K_{2} \times \cdots \times K_{2}$ where K_{2} is an edge. The following result can be found in [2,3,10].

Lemma. $d\left(G_{1} \times G_{2}\right)=d\left(G_{1}\right)+d\left(G_{2}\right)$ and $\kappa\left(G_{1} \times\right.$ $\left.G_{2}\right) \geqslant \kappa\left(G_{1}\right)+\kappa\left(G_{2}\right)$. In particular, $G_{1} \times G_{2}$ is k regular k-connected if G_{i} is k_{i}-regular $k_{i}(\geqslant 1)$-connected, where $k=k_{1}+k_{2}$.

We observe that if we identify isomorphic graphs, the operations of the Cartesian product satisfy the commutative law clearly. This simple observation can greatly simplify proofs of some results concerning the Cartesian product.

We give some notations used in the proof of theorem. If $P\left(x_{1}, y_{1}\right)=\left(x_{1}, v_{1}, v_{2}, \ldots, v_{m}, y_{1}\right)$ is an $\left(x_{1}, y_{1}\right)$-path in G_{1}, then for any $b \in V\left(G_{2}\right),\left(x_{1} b\right.$, $\left.v_{1} b, v_{2} b, \ldots, v_{m} b, y_{1} b\right)$, denoted by $P\left(x_{1}, y_{1}\right) b$, is an $\left(x_{1} b, y_{1} b\right)$-path from the vertex $x_{1} b$ to the vertex $y_{1} b$ in $G_{1} \times G_{2}$. Similarly, if $Q\left(x_{2}, y_{2}\right)=\left(x_{2}\right.$, $\left.u_{1}, u_{2}, \ldots, u_{l}, y_{2}\right)$ is an $\left(x_{2}, y_{2}\right)$-path in G_{2}, then for any $a \in V\left(G_{1}\right),\left(a x_{2}, a u_{1}, a u_{2}, \ldots, a u_{l}, a y_{2}\right)$, denoted by a $Q\left(x_{2}, y_{2}\right)$, is an $\left(a x_{2}, a y_{2}\right)$-path from the vertex $a x_{2}$ to the vertex $a y_{2}$ in $G_{1} \times G_{2}$. Let $x=x_{1} x_{2}$ and $y=y_{1} y_{2}$. If x and y are two distinct vertices in $G_{1} \times G_{2}$, then $P\left(x_{1}, y_{1}\right) x_{2} \cup y_{1} Q\left(x_{2}, y_{2}\right)$ is an (x, y) path from x to y in $G_{1} \times G_{2}$. Such a path will, in this paper, be expressed as
$x=x_{1} x_{2} \xrightarrow{P\left(x_{1}, y_{1}\right) x_{2}} y_{1} x_{2} \xrightarrow{y_{1} Q\left(x_{2}, y_{2}\right)} y_{1} y_{2}=y$.

3. Proof of Theorem 1

Let $G=G_{1} \times G_{2}$ and $k=k_{1}+k_{2}$. By lemma, we have $\kappa(G) \geqslant k$ and, hence, $D_{k}(G)$ is well-defined. Let δ_{i} be the minimum degree of G_{i} for $i=1,2$ in the following discussion, then $\delta_{1} \geqslant k_{1}, \delta_{2} \geqslant k_{2}$. Let F be a subset of $V(G)$ with $|F|=k-1, x$ and y be any two
distinct vertices in $G-F$. We will complete the proof of Theorem 1 by constructing an (x, y)-path $R(x, y)$ in $G-F$ with required length.

Throughout this section, we use the following terminology and notation. Let H be a subgraph of G, and we say H avoids F if H contains no vertices in F. Let $x=x_{1} x_{2}$ and $y=y_{1} y_{2}$, where $x_{1}, y_{1} \in V\left(G_{1}\right)$ and $x_{2}, y_{2} \in V\left(G_{2}\right)$. We always use $P\left(x_{1}, y_{1}\right)$ to denote a shortest $\left(x_{1}, y_{1}\right)$-path in G_{1}, and $Q\left(x_{2}, y_{2}\right)$ to denote a shortest $\left(x_{2}, y_{2}\right)$-path in G_{2}.

We first prove that

$$
\begin{aligned}
& D_{k}(G) \leqslant \max \left\{2+d\left(G_{1}\right), D_{k_{1}}\left(G_{1}\right)\right\} \\
& \quad \text { if } x_{2}=y_{2} \text { or }
\end{aligned}
$$

$$
D_{k}(G) \leqslant \max \left\{2+d\left(G_{2}\right), D_{k_{2}}\left(G_{2}\right)\right\}
$$

if $x_{1}=y_{1}$.
By the commutative law, we can assume $x_{2}=$ y_{2}. If $\left|F \cap V\left(G_{1} x_{2}\right)\right|<k_{1}$, then there is a path in $G_{1} x_{2}-F$ with length at most $D_{k_{1}}\left(G_{1}\right)$. Otherwise, let $b_{1}, b_{2}, \ldots, b_{\delta_{2}} \in N_{G_{2}}\left(x_{2}\right)$, then δ_{2} disjoint subgraphs $G_{1} b_{1}, G_{1} b_{2}, \ldots, G_{1} b_{\delta_{2}}$ all are isomorphic to G_{1}, of which at least one, say $G_{1} b_{1}$, avoids F. Thus,
$R: x_{1} x_{2} \rightarrow x_{1} b_{1} \xrightarrow{P\left(x_{1}, y_{1}\right) b_{1}} y_{1} b_{1} \rightarrow y_{1} y_{2}$
is an (x, y)-path in $G-F$ with length at most $d\left(G_{1}\right)+2$.

We assume $x_{1} \neq y_{1}$ and $x_{2} \neq y_{2}$ below. There are two cases depending on whether $y_{1} x_{2}$ and $x_{1} y_{2}$ are in F or not.

Case 1. $y_{1} x_{2} \notin F$ or $x_{1} y_{2} \notin F$. Assume without loss of generality that $y_{1} x_{2} \notin F$.

Subcase 1.1. $\left|V\left(G_{1} x_{2}\right) \cap F\right| \geqslant k_{1}$ or $\mid V\left(y_{1} G_{2}\right) \cap$ $F \mid \geqslant k_{2}$.

Without loss of generality assume the former holds. Subject to this condition we have $\left|V\left(y_{1} G_{2}\right) \cap F\right| \leqslant$ $|F|-\left|V\left(G_{1} x_{2}\right) \cap F\right| \leqslant k_{1}+k_{2}-1-k_{1}=k_{2}-1$. Since $b_{1}, b_{2}, \ldots, b_{\delta_{2}} \in N_{G_{2}}\left(x_{2}\right)$, consider δ_{2} disjoint subgraphs $G_{1} b_{1}, G_{1} b_{2}, \ldots, G_{1} b_{\delta_{2}}$, of which at least one, say $G_{1} b_{1}$, avoids F. So, an (x, y)-path in $G-F$ can be constructed as follows:
$R: x_{1} x_{2} \rightarrow x_{1} b_{1} \xrightarrow{P\left(x_{1}, y_{1}\right) b_{1}} y_{1} b_{1} \xrightarrow{y_{1} G_{2}-F} y_{1} y_{2}$
with length $\ell(R) \leqslant 1+d\left(G_{1}\right)+D_{k_{2}}\left(G_{2}\right)$.
Subcase 1.2. $\left|V\left(G_{1} x_{2}\right) \cap F\right| \leqslant k_{1}-1$ and $\mid V\left(y_{1} G_{2}\right)$ $\cap F \mid \leqslant k_{2}-1$.

An (x, y)-path in $G-F$ can be constructed as follows:
$R: x_{1} x_{2} \xrightarrow{G_{1} x_{2}-F} y_{1} x_{2} \xrightarrow{y_{1} G_{2}-F} y_{1} y_{2}$
with length $\ell(R) \leqslant D_{k_{1}}\left(G_{1}\right)+D_{k_{2}}\left(G_{2}\right)$.
Case 2. $\left\{y_{1} x_{2}, x_{1} y_{2}\right\} \subseteq F$. In this case, choose c_{1}, $c_{2}, \ldots, c_{\delta_{1}} \in N_{G_{1}}\left(x_{1}\right)$ and $d_{1}, d_{2}, \ldots, d_{\delta_{2}} \in N_{G_{2}}\left(y_{2}\right)$. We consider $\left(\delta_{1}+\delta_{2}\right)$ pairs of vertices
$\left\{c_{1} x_{2}, c_{1} y_{2}\right\},\left\{c_{2} x_{2}, c_{2} y_{2}\right\}, \ldots,\left\{c_{\delta_{1}} x_{2}, c_{\delta_{1}} y_{2}\right\}$,
$\left\{x_{1} d_{1}, y_{1} d_{1}\right\},\left\{x_{1} d_{2}, y_{1} d_{2}\right\}, \ldots,\left\{x_{1} d_{\delta_{2}}, y_{1} d_{\delta_{2}}\right\}$.
Since $|F| \leqslant k_{1}+k_{2}-1<\delta_{1}+\delta_{1}$, there exists at least one pair of vertices in (1) and (2), say $\left\{c_{1} x_{2}, c_{1} y_{2}\right\}$, that is not in F (similarly if such a pair of vertices is in (2)). Then $c_{1} \neq y_{1}$ since $y_{1} x_{2} \in F$. We will construct an (x, y)-path in $G-F$ with required length according to the following three cases.

Subcase 2.1. $\left|V\left(G_{1} y_{2}\right) \cap F\right| \geqslant k_{1}$.
Subject to this condition we have $\left|V\left(x_{1} G_{2}\right) \cap F\right| \leqslant$ $k_{2}-1$ and $\left|V\left(G-G_{1} y_{2}\right) \cap F\right| \leqslant k_{2}-1$. Consider δ_{2} disjoint subgraphs $G_{1} d_{1}, G_{1} d_{2}, \ldots, G_{1} d_{\delta_{2}}$. Since $\delta_{2} \geqslant k_{2}>k_{2}-1$, at least one of these subgraphs, say $G_{1} d_{1}$, avoids F. Note that $c_{1} \neq y_{1}$, we can construct an (x, y)-path in $G-F$ as follows:

$$
R: x_{1} x_{2} \xrightarrow{x_{1} G_{2}-F} x_{1} d_{1} \xrightarrow{P\left(x_{1}, y_{1}\right) d_{1}} y_{1} d_{1} \rightarrow y_{1} y_{2},
$$

with length $\ell(R) \leqslant 1+d\left(G_{1}\right)+D_{k_{2}}\left(G_{2}\right)$.
Subcase 2.2. $\left|V\left(c_{1} G_{2}\right) \cap F\right| \geqslant k_{2}$.
Subject to this condition, we have $\left|V\left(G_{1} y_{2}\right) \cap F\right| \leqslant$ $k_{1}-2$ and $\left|V\left(G-c_{1} G_{2}-x_{1} G_{2}\right) \cap F\right| \leqslant k_{1}-2$. Consider $\delta_{1}-1$ disjoint subgraphs $c_{2} G_{2}, c_{3} G_{2}, \ldots, c_{\delta_{1}} G_{2}$. Since $\delta_{1}-1 \geqslant k_{1}-1>k_{1}-2$, at least one of these subgraphs, say $c_{2} G_{2}$, avoids F. We can construct an (x, y)-path in $G-F$ as follows:
$R: x_{1} x_{2} \rightarrow c_{2} x_{2} \xrightarrow{c_{2} Q\left(x_{2}, y_{2}\right)} c_{2} y_{2} \xrightarrow{G_{1} y_{2}-F} y_{1} y_{2}$,
with length $\ell(R) \leqslant 1+D_{k_{1}-1}\left(G_{1}\right)+d\left(G_{2}\right)$.
Subcase 2.3. $\left|V\left(G_{1} y_{2}\right) \cap F\right| \leqslant k_{1}-1$ and $\mid V\left(c_{1} G_{2}\right)$ $\cap F \mid \leqslant k_{2}-1$.

An (x, y)-path in $G-F$ can be constructed as follows:
$R: x_{1} x_{2} \rightarrow c_{1} x_{2} \xrightarrow{c_{1} G_{2}-F} c_{1} y_{2} \xrightarrow{G_{1} y_{2}-F} y_{1} y_{2}$
with length $\ell(R) \leqslant 1+D_{k_{1}}\left(G_{1}\right)+D_{k_{2}}\left(G_{2}\right)$.
Summing up all possible cases, we get the upper bound in Theorem 1.

4. Conclusions

The fault diameter is an important measurement for reliability and efficiency of an interconnection network. In the present paper, we establish $D_{k_{1}+k_{2}}\left(G_{1} \times\right.$ $\left.G_{2}\right) \leqslant D_{k_{1}}\left(G_{1}\right)+D_{k_{2}}\left(G_{2}\right)+1$ for any k_{i}-connected graph G_{i} and $k_{i} \geqslant 1$ for $i=1,2$.

The fault diameter of many well-known networks have been determined by several authors see, for example, [4-8]. However, there are a lot of problems that are still open so far. One of them is whether or not determining $D_{k}(G)$ is NP-hard for any k-connected graph G, and another is for a fixed $k \leqslant \kappa(G)$ how to choose a k_{1}-connected graph G_{1} and a k_{2}-connected graph G_{2} such that $k=k_{1}+k_{2}$ and $G=G_{1} \times G_{2}$ such that $D_{k}(G)$ is as small as possible.

Acknowledgement

The authors would like to thank the anonymous referees for their helpful comments and suggestions, which led to this revised version.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan Press, London, 1976.
[2] W.-S. Chiue, B.-S. Shieh, On connectivity of the Cartesian product of two graphs, Appl. Math. Comput. 102 (1999) 129137.
[3] K. Day, A.-E. Al-Ayyoub, The cross product of interconnection networks, IEEE Trans. Parallel Distributed Systems 8 (2) (1997) 109-118.
[4] D.Z. Du, D.F. Hsu, Y.D. Lyuu, On the diameter vulnerability of Kautz digraphs, Discrete Math. 151 (1996) 81-85.
[5] D.R. Duh, G.H. Chen, On the Rabin number problem, Networks 30 (1997) 219-230.
[6] M.S. Krishnamoorthy, B. Krishnamurthy, Fault diameter of interconnection networks, Comput. Math. Appl. 13 (5/6) (1987) 577-582.
[7] S.C. Liaw, G.J. Chang, Wide diameters of butterfly networks, Taiwanese J. Math. 3 (1) (1999) 83-88.
[8] S.C. Liaw, G.J. Chang, F. Cao, D.F. Hsu, Fault-tolerant routing in circulant networks and cycle prefix networks, Ann. Comb. 2 (5-6) (1998) 165-172.
[9] J.-M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht, 2001.
[10] J.-M. Xu, Connectivity of Cartesian product digraphs and faulttolerant routing of generalized hypercube, Appl. Math. J. Chinese Univ. Ser. B 13 (2) (1998) 179-187.

[^0]: 4. The work was supported by NNSF of China (No. 10271114 and No. 10301031).

 * Corresponding author.

 E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

