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Abstract

The (k — 1)-fault diameterD; (G) of a k-connected graplts is the maximum diameter a& — F for any F C V(G) with
|F| < k. Krishnamoorthy and Krishnamurthy first proposed this concept and Baug,)+«(G,) (G1 x G2) < D(G,)(G1) +
Dy (G5)(G2) whenk(G1 x G2) =k (G1) + k(G2), wherek (G) is the connectivity ofG. This paper gives a counterexample
to this bound and establishé¥, 1,(G1 x G2) < Dy, (G1) + Dy,(Gp) + 1 for anyk;-connected graples; andk; > 1 for
i=12.
00 2004 Elsevier B.V. All rights reserved.
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1. Introduction all shortest paths between any two verticeginUse
Ng(x) to denote the set of neighbors of nadén G.

We follow [1] for graph-theoretical terminology  The connectivity ofG, «(G), is the minimum cardi-
and notation not defined here. Throughout this paper, a nality over all vertex-separating setséhif G is not a
graphG = (V, E) always means a simple graph (with- complete graplk,,, otherwisec(K,) =n— 1. Agraph
out loops and multiple edges), where= V (G) is the G is said to be&-connected ik (G) > k.
vertex set and: = E(G) is the edge set. The length of Since nodes of a network do not always work, if
a pathp is the number of edges iR, denoted by (P). some nodes are faulty, the information cannot be trans-
The diameter of7, d(G), is the maximum length over  mitted by these nodes and the efficiency of network

must be affected. A number of researchers have in-
vestigated the design of fault tolerant interconnection

_— ) networks. A common notion of fault tolerance is based
Y The work was supported by NNSF of China (No. 10271114 and

No. 10301031). on the connectivity of the underlying gragh. The
* Corresponding author. connectivityx (G) > k implies that the resulting graph
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occur. However, the diameter of the resulting graph many desirable properties of the factor graphs, such as

might increase. regularity, vertex-transitivity, eulericity, hamiltonicity,
The(k —1)-fault diameter of &-connected grap&, and so forth. A number of important graph-theoretic
Dy (G), is defined as parameters, such as degree, diameter and connectiv-

ity, can be easily calculated from the factor graphs.

Di(G) = max{a’(G — P FCVG), [Fl < k}' Thus the Cartesian product method is an important

It is clear thatD,(G) = maxX{d(G — F). F C V(G), method for designing largseale interconnection net-
|F| =k — 1}, and for anyk-connected grapl&: we works [9]. For example, the hypercube is one of the
haved(G) = D1(G) < D2(G) < --- < Di_1(G) <€ most popular, versatile and efficient topological struc-
Dy (G). tures of connection networks and it is definedls=

The fault diameter of many well-known networks Q,,_1 x K2 = K2 x K2 x --- x K> whereK> is an
have been determined by several researchers, see, foedge. The following result can be found in [2,3,10].
example, [4—-8]. The concept of fault diameter was first
proposed by Krishnamoorthy and Krishnamurthy [6] Lemma. d(G1 x G2) =d(G1) +d(G2) and k (G1 x
who gave Dy (G,)+«(G») (G1 X G2) < DeG,)(G1) + G2) 2 k(G1) + «(G2). In particular, G1 x G2 iS k-
Dy (G, (G2) when k(G x G2) = k(G1) + «(G2). regular k-connected if G; is k;-regular k; (> 1)-con-
However, this upper bound seems false. For example, nected, where k = k1 + k.
considerG = C4 x C4, WhereCy is a cycle with ver-

tex set{l, 2, 3,4}. Thenk (G) =4 =k (Cs) + k(Cy), We observe that if we identify isomorphic graphs,

k(Cq) = 2 =d(Cq) = D2(Cy). If we chooseF = the operations of the Cartesian product satisfy the

{12, 14, 41}, the distance between the two vertices 11 commutative law clearly. This simple observation can

and 43inC4 x C4— F is 5 and, hences(Ca x Ca) > greatly simplify proofs of some results concerning the

5> 4 = Dy(Cs) + D2(Cs). In the present paper, we Cartesian product.

give the following results. We give some notations used in the proof of the-
orem. If P(x1,y1) = (x1,v1,v2,...,U5,y1) IS a@n

Theorem 1. Dy, 14,(G1 x G2) < Dy, (G1) + Di,(G2) (x1, y1)-path in G1, then for anyb € V(G2), (x1b,
+ 1 for any k;-connected graph G; and k; > 1 for v1b, v2b, ..., v,b, y1b), denoted by P(x1, y1)b, is
i=12. an (x1b, y1b)-path from the vertexc1b to the ver-
tex y1b in G1 x Ga. Similarly, if Q(x2, y2) = (x2,
The proof is in Section 3. Section 2 gives some uq, uy,...,u;, y2) is an(xz, y2)-path in G, then for
preliminaries about the Cartesian product of graphs. any a € V(G1), (ax2, aui, aup,...,au;,ays), de-
Section 4 gives conclusions that conclude two opened noted bya Q(x2, y»2), is an (axz, ay2)-path from the
problems. vertexaxs to the vertexayz in G1 x Go. Letx = x1x2
andy = y1y2. If x andy are two distinct vertices in
G1x G2, thenP(x1, y1)x2Uy10Q(x2, y2) is an(x, y)-

2. Preliminaries path fromx to y in G1 x G2. Such a path will, in this
paper, be expressed as

The Cartesian prod_uct of two grap_hlsl and Ga, Py 110G232)
denoted byG1 x Ga, is the graph with vertex set x=x1xo2 — “ywx2' " — " yiy2=y.

V(G1) x V(G2), and an edge joining a vertex=

x1x2 to anothery = y1y2 (x;,y; € V(Gj), j=1,2)

if and only if eitherxqs = y1 and x2y2 € E(G2) or 3. Proof of Theorem 1
x2 = yp andx1y1 € E(G1).

As an operation of graph theory, the Cartesian Let G = G1 x Gz andk = k1 + k2. By lemma, we
product method is a very effective method for con- havex (G) > k and, henceD; (G) is well-defined. Let
structing a large graph from several specified small §; be the minimum degree af; for i = 1,2 in the
graphs. The graph constructed by this way can con- following discussion, theé1 > k1, §2 > k2. Let F be
tain the factor graphs as its subgraphs and preservea subset o¥/ (G) with |F| =k —1,x andy be any two
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distinct vertices inG — F. We will complete the proof
of Theorem 1 by constructing am, y)-path R(x, y)
in G — F with required length.

Throughout this section, we use the following ter-
minology and notation. LeH be a subgraph of;,
and we sayH avoidsF if H contains no vertices in
F. Letx = x1x2 andy = y1y2, wherexy, y1 € V(G1)
andxz, y2 € V(G2). We always useP (x1, y1) to de-
note a shortestx1, y1)-path inG1, and Q(x2, y2) to
denote a shortesty, y2)-path inGo.

We first prove that

Di(G) < max{2+d(G1), D, (G1)}
if xop= y2 Or

Di(G) <max{2+d(G2), Dy, (G2))
if x1=y1.

By the commutative law, we can assumg =
y2. If |F N V(Gix2)| < k1, then there is a path in
G1x2 — F with length at mosDy, (G1). Otherwise, let
b1,bo, ..., bs, € Ng,(x2), thend, disjoint subgraphs
G1b1, G1bo, ..., G1bs, all are isomorphic taG,, of
which at least one, sa§1b1, avoidsF. Thus,

P(x1,y1)b1
—

R:x1x2 — x1b1 yib1 — yiy2

is an (x, y)-path in G — F with length at most
d(G1) + 2.

We assume; # y1 andxz # y2 below. There are
two cases depending on whethgk, andxiy» are in
F or not.

Casel.yixp ¢ F orx1ys ¢ F. Assume withoutloss
of generality thay1xo ¢ F.

Subcase 1.1. |V (G1x2) N F| = k1 or |V (y1G2) N
F| > ko.

Without loss of generality assume the former holds.
Subiject to this condition we hau&’ (y1G2) N F| <
|F| —|V(Gux2) N F| <ki+ky—1—ki=ko— 1.
Sincebs, by, ..., bs, € Ng,(x2), considers, disjoint
subgraphsG1b1, G1bo, ..., G1bs,, of which at least
one, sayG1b1, avoidsF. So, an(x, y)-path inG — F
can be constructed as follows:

R:x1x2 — x1b1 Pyt y1b1 not yiy2
with length€(R) < 1+ d(G1) + Di,(G2).

Subcase1l.2.|V(G1x2) N F| <ki—21and|V(y1G2)
NF| <k —1.

An (x, y)-path inG — F can be constructed as fol-
lows:
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. Gixo—F nGa—F
R:xix2 — yix2" —> yiy2

with length£(R) < Dy, (G1) + Di,(G2).

Case 2. {y1x2, x1y2} C F. In this case, choosa,
€2,...,¢5 € Ng,(x1) anddy, da, ..., ds, € Ng,(y2).
We considel; + 82) pairs of vertices

)
2

Since|F| < k1+ k2 — 1 < 81+ 81, there exists at least
one pair of vertices in (1) and (2), sdyix2, c1y2},
thatis notinF (similarly if such a pair of vertices is in
(2)). Thency # y1 sinceyixp € F. We will construct
an(x, y)-path inG — F with required length according
to the following three cases.

Subcase2.1.|V(G1y2) N F| > k1.

Subject to this condition we hav® (x1G2) N F| <
ko —1 and|V(G — G1y2) N F| < ko — 1. Consider
8> disjoint subgraphsGidi, Gida, ..., Gids,. Since
82 > ko > ko — 1, at least one of these subgraphs, say
G1d1, avoidsF. Note thatc; # y1, we can construct
an(x, y)-pathinG — F as follows:

{c1x2, c1y2}, {cax2, c2y2}, ..., {cs;x2, c5,y2},

{x1d1, yadi}, {x1d2, y1d2}, ..., {x1ds,, y1ds,}.

F P(x1,y1)d1
—

. x1G2—
R:x1x2 — x1d1 y1d1 — y1y2,

with length£(R) < 1+ d(G1) + Di,(G2).

Subcase2.2.|V(c1G2) N F| = k.

Subject to this condition, we haV& (G1y2) N F| <
k1—2and|V(G —c1G2—x1G2)NF| <k1—2.Con-
sidersy —1 disjoint subgraph& G, ¢3Go, .. ., ¢s5,G2.
Sinced1 — 1> k1 — 1> kg — 2, at least one of these
subgraphs, say».G2, avoidsF. We can construct an
(x,y)-path inG — F as follows:

c20(x2,y2) Giy2—F

R x1xo0— coxp "—="" coy2 = y1y2,

with length¢(R) < 1+ Dy, -1(G1) + d(G2).
SQubcase2.3.|V(G1y2) NF| < ki—landV(c1G2)
NF|<ky— 1.
An (x, y)-pathinG — F can be constructed as fol-
lows:

Go—F

c1 Gi1y,—F
R:x1x0 = c1x2 —> c1y2

y
— Yiy2
with length¢(R) < 14 Dy, (G1) + Di,(G2).
Summing up all possible cases, we get the upper
bound in Theorem 1.
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4. Conclusions

The fault diameter is ammportant measurement
for reliability and efficiencyof an interconnection net-
work. In the present paper, we establBp 4, (G1 x
G2) < Dy, (G1) + Dy, (G2) + 1 for anyk;-connected
graphG; andk; > 1 fori =1, 2.

The fault diameter of many well-known networks

have been determined by several authors see, for ex-

ample, [4-8]. However, there are a lot of problems that
are still open so far. One of them is whether or not
determining Dy (G) is NP-hard for anyk-connected
graphG, and another is for a fixed < «(G) how to
choose a1-connected grapky/1 and akz-connected
graph G, such thatk = k1 + k2 and G = G1 x G2
such thatDy (G) is as small as possible.
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