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Abstract

The super connectivity’ and the super edge-connectivityare more refined network reliability indices than connectivity
and edge-connectivity. This paper shows that for a connected graptvith order at least four rather than a star and its line
graphL(G), ' (L(G)) = V/(G) if and only if G is not superx’. As a consequence, we obtain the result of Hellwig et al. [Note
on the connectivity of line graphs, Inform. Process. Lett. 91 (2004) 7]¢hatG)) = A’ (G). Furthermore, the authors show
that the line graph of a supéf-graph is supei-if the minimum degree is at least three.
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1. Introduction

In general, we use a simple connected grépk
(V, E) to model an interconnection network, whéfe
is the set of processors atdis the set of communica-
tion links in the network. The connectiviig(G) or the
edge-connectivity (G) of G is an important measure-
ment for fault-tolerance of the network, and the larger
«(G) or A(G) is, the more reliable the network is. Itis
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well known thatc (G) < A(G) < 8(G), wheres (G) is
the minimum degree afi. One might be interested in
more refined indices of reliability. As more refined in-
dices than connectivity and edge-connectivity, super
connectivity and super edge-connectivity were pro-
posed in [1,2]. A grapld; is super connected, super-«,
for short (resp.super edge-connected, super-i, for
short) if every minimum vertex-cut (resp. edge-cut)
isolates a vertex of;.

A quite natural problem is that if a connected graph
G is superk or superx then how many vertices or
edges must be removed to disconnéttsuch that
every component of the resulting graph contains no
isolated vertices. This problem results in the concept
of the super (edge-)connectivity.
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A subsetS C V(G) (resp.F C E(G)) is called a
super vertex-cut (resp.super edge-cut) if G—S (resp.

G — F) is not connected and every component contains
at least two vertices. In general, super vertex-cuts or
super edge-cuts do not always exist. Huper con-
nectivity «'(G) (resp.super edge-connectivity 1'(G))

is the minimum cardinality over all super vertex-cuts
(resp. super edge-cuts)dnif any, and, by convention,

is +o0 otherwise. It is easy to see thatis superx if

and only if«’(G) > «(G), and superx if and only if
M(G) > A(G).

It is easy to see from the result of Esfahanian and
Hakimi [3,4] that)'(G) exists if G has order at least
4 andG is not a star. A connected gragh with or-
der at least 4 is called @-graph if G is not a star.

A )/-graph is calledsuper-2 if every minimum super
edge-cut isolates an edge.

For 2/, it has been widely studied by several au-
thors, see, for example, [3-10,13], in which authors
called it the restricted edge-connectivity. However, we
have known little results or’.

We consider the relationship between the super
edge-connectivity of a grapi and the super connec-
tivity of its line graph L(G). Very recently, Hellwig
et al. [5] have established(L(G)) =1/ (G) if G is a
A -graph. As aresuli’(L(G)) > «(L(G)) = A (G) if
k'(L(G)) exists. In this paper, we show that L (G))
exists andc’(L(G)) = A/(G) if and only if G is not a
supera’ graph. We also show thdt(G) is super if
G is superr’ and§(G) > 3. Our proofs are indepen-
dent on the result of Hellwig et al., which is a direct
consequence of our results.

2. Super edge-connectedness of line graphs

We follow [12] for graph-theoretical terminology
and notation not defined here. Lét= (V, E) be a
simple connected graph. The line graphthfdenoted
by L(G), or L shortly, is a graph with the vertex-
setV(L) = E(G), and a vertexcy is adjacent to a
vertex wz in L if and only if they are adjacent as
edges inG. Clearly, (L) = £(G), where&(G) =
min{dg(x) + dg(y) — 2| xy € E(G)}, anddg(x) is
the degree of the vertexin G.

Two edges are said to hadependent if they are
nonadjacent. A set of edges is said to be ratepen-
dent edge-set if any two edges of it are independent.
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The set of edges incident with a vertexs said to be
theincidence edge-set of x.

Theorem 1. Let G be a connected graph. Then

(a) any minimum edge-cut of G iseither an incidence
edge-set of some vertex of G or an independent
edge-set if K (G) = A(G);

(b) G issuper-A if G issuper-« and §(G) > 4.

Proof. We first prove the assertion (a). L&t be an
edge-cut ofG with |F| = A(G). The vertex seV (G)
can be partitioned into two nonempty subs&tand
Y such thatG — F contains no edges betweéhand
Y and every edge i has one end-vertex iX and
the other end-vertex iii. Let Xg andYg be the set of
the end-vertices of the edges#hin X andY, respec-
tively. Clearly,| Xo| < |F| and|Yp| < | F|.

Without loss of generality, assumeo| < |Yol.
Thus, we only need to prove thgXg| = |F| if F is
not an incidence edge-set of some vertexGosince,
in this case, every vertex iKig is matched by an edge
in F with a unique vertex itYp. In fact, if X — Xg # 9,
thenXg is a vertex-cut ofG, so|F| > | Xo| = «(G) =
A(G) =|F]|.

We assume&X — Xo =@. It is clear that Xo| > 2 if
F is not an incidence edge-set of some verteg ok et
|Xol=t andE(x) ={xy € E(G) | y e Y} for x € X.
Since 2<t < A(G) < 6(G), we have

8(G) 2 M(G) =|F|

= Y |E|=)_ d(x) — 2| E(G[Xo])|

xeXo xeXo
>8(G)t —t(t — 1) =—1*+ (8(G) + 1)t
> 8(G).

The last inequality holds because the functiff) =
—12 4+ (8(G) + 1) is convex in the integer interval
[2,8(G)] and reaches the minimum value at the right
end-point of the interval, that isf(z) > f(6(G)) =
3(G). The equality is true if and only if = |Xg| =
§(G) = |F|.

We now prove the assertion (b).

SincegG is superk, k (G) = §(G). We havec(G) =
A(G) = §(G) immediately from«(G) < A(G) <
8(G). Suppose to the contrary thatis not superx.
Then there exists a minimum edge-dutwith |F| =
A(G) > 4, which is not an incidence edge-set of some
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vertex of G. By the assertion (a) is an independent
edge-set. LeX, Y, Xo andYy be defined as before. Let
A=|F|and

and Yo={y1, y2,..., .},

wherex; is matched withy; by an edge inF for i =
1,2,..., A Consider the following set of vertices @

Xo={x1,x2,..., %)

S ={x1,x2,y3, y4,..., ya}.

Itis clear thatS is a minimum vertex-cut of;. Since

G is superk, S must be a neighbor-set of some vertex,
sayu, of G. If u € X, y1u, you € F, contradicting to
the assumption thaf is an independent edge-set. If
u €Y, xiu, xou € F, a contradiction too. Thusz is
supera, so the assertion (b) follows.o

Remark. In Theorem 1, the conditiod(G) > 4 in the
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For a subseE’ C E(G), we useG[E’] to denote
the edge-induced subgraph 6f by E’. Let L1 be
a subgraph of.(G) and E1 = V(L1). DefineGy =
Gl E1].

Lemma 4. Using the above notations, we have that
if L1 isa connected subgraph of L with at least two
vertices, then the subgraph G1 € G is connected and
IV(G1)| = 3.

Proof. Assume thatx and y are any two vertices
of G1. There is an edge of G1 such thatv is incident
with the edgee. Without loss of generality, we denote
the edge by xz. If z =y, x can reacty by the edge:.

If z = y, y is incident with another edge’. With-
out loss of generality, we can assume the edge
wy. S0,e = xz ande’ = wy are two vertices in_j.

assertion (b) is necessary. For example, the graph Ob'SinceLl is connected, there is a path in connect-

tained by joining two triangles by three edges such that
the graph is 3-regular. It is easy to see that the graph is The corresponding edges, zz1

superx but not supetk.

Corollary 1. Let G be a connected graph with
8(G) = 3. If thelinegraph L = L(G) issuper-«, then
L issuper-a.

Proof. SincelL is superx ands(L) = £(G) > 25(G)
— 22> 4for8(G) > 3, the corollary follows from The-
oreml. O

3. Super connectivity of line graphs

Many properties of line graphs can be found in [11],
two of which are the following lemmas.

Lemma 1. Let G be a graph with at least two edges.
Then G isconnected if and only if theline graph L(G)
is connected.

Lemma 2. Let G be a graph with at least two edges.
Then

K(G) < AMG) <k (L(G)) < A(L(G)).

Lemma3[4]. If G isaA’-graph, then
MG) <A(G) <E(G).

ing e =xz t0 ¢ = wy: (xz,221, 2122, - - - ZkW, WY).
2122y« o+ 5 2k W, WY
form a walk inG1 betweenx andy: (x, z, z1, 22, - - -,
Zk, w, ). Thereforex andy are connected, which im-
plies G1 is connected. SincgE(G1)| = |V (L1)| > 2

andG is a simple graph,V(G1)| > 3. O

The complete bipartite grapki; 3 is usually called
aclaw, and any graph that does not contain an induced
claw is called claw-free. It is easy to see that every line
graph isclaw-free.

Lemma 5. Let G be a connected claw-free graph.
Then G —S contains exactly two components for any
minimum super vertex-cut S of G.

Proof. Let S be a minimum super vertex-cut @
and Gi1,G2,...,G; be connected components of
G-—S. Then G; contains at least two vertices for
i=12,...,t,t > 2, and there are no edges between
G, andG for anyi # j. SinceS is a vertex-cut, there
is a vertexx adjacent to some component. Further-
more, the vertex € S is adjacent to every component,
otherwiseS’ = S\ {x} is also a super vertex-cut, con-
tradicting the minimality ofS. If z > 3, the vertex is
adjacent to at least three components, which is impos-
sible for G is a claw-free graph. Therefore= 2 and
the lemma follows. O
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Theorem 2. Let G be a A’-graph. Then «'(L(G)) ex-
ists and «'(L(G)) = A'(G) if and only if G is not
super-1/.

Proof. We first note that'(G) exists for a.’-graphG.
SupposeS is not superk’, so there exists a minimum
super edge-cuf such that each of the two compo-
nents ofG—F, G1 and Gy, has order at least three.
By Lemma 1,L(G1), L(G2) are both connected in
L =L(G). And |V(L(G;))| = |E(G})| =2 fori =
1,2. There are no edges betwekEnG1) and L(G2)
in L-F and, henceF is a super vertex-cut of. It
follows thatk’(L) exists andc’(L) < |F| = A (G).

We now show thak’(L) > A/(G). To the end, let
S be a minimum super vertex-cut @f. Since every
line graph is claw-free, by Lemma b—S contains
exactly two componentd,; and L, with |V (L;)| > 2
fori =1,2. By Lemma 4, for eaci =1,2, G;, =
G[V(L;)], the subgraph of5 induced byV(L;), is
connected anf¥ (G;)| > 3. ThusS is a super edge-cut
of G. It follows thatA'(G) < |S| = «/(L). Therefore,
«'(L) =1/ (G).

Conversely, suppose’(L) exists and«’(L) =
A (G). We prove thaiG is not superx’ by contradic-
tion. Assume thats is superi’, which means every
minimum super edge-cut isolates one edge. § &
a super vertex-cut of. with |S| = «'(L) = V(G).
By Lemma 5,L—S is partitioned into two compo-
nents, denoted by.; and Lo, respectively. Applying
Lemma 4 toG; and G, the subgraph o7 induced
by V(L1) andV (L>), respectively, are connected and
[V(G1)| = 3, |V(G2)| = 3. There are no edges be-
tweenG, andGo, so S is a super edge-cut @ with
|S| = /(L) = A (G), which implies thatS is a min-
imum super edge-cut of;. But G—S contains no
isolated edges. We get a contradiction, Gois not
superd’. O

Corollary 2. Let G bea connected graph with £(G) >
8(G). Then k/(L(G)) exists and k' (L(G)) = A(G) if
and only if G isnot super-A.

Proof. AssumeG is not superx. Then1'(G) exists
and’(G) = A(G) < 8(G). Since&(G) > §(G), G is
not super:’. By Theorem 2,’(L) exists andc’ (L) =
1(G) = AMG).

Conversely, suppose’(L) exists andx’(L) =
A(G). We assumeG is supera, which means that
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every minimum edge-cut isolates one vertex. ISet
be a super vertex-cut df with |S| = «'(L) = A(G).
By Lemma 5,L—S is partitioned into exactly two
componentd.; and L, with at least two vertices. By
Lemma 4,G1 and G2, the induced subgraph af
by V(L1) andV (L>), respectively, are connected and
[V(G1)| > 3, |V(G2)| > 3. There are no edges be-
tweenG1 and G2 in G—S. So S is an edge-cut of
G with |S| = «'(L) = A(G), which implies thatS is

a minimum edge-cut of;. But G — S contains no iso-
lated vertices, a contradiction, gbis not supetx. O

Corollary 3. Let G be a A’-graph. Then L(G) is
super-« if and only if G is super-1/.

Proof. Suppose thatL = L(G) is supers. Then
k(L) = 8(L) and «'(L) > k(L). AssumeG is not
superi’. By Theorem 2, we have’(L) = 1'(G). By
Lemma 3,

£(G)=38(L)=«(L) <«'(L) =1(G) <&(G),

a contradiction, s@ is super.’.

Conversely, suppose thaf is superr’. Then
A (G) = £(G) and every minimum super edge-cut of
G isolates one edge. Suppose to the contrary that
is not supere. Thenk'(L) = k(L). Let S be a super
vertex-cut ofL with |S| =«'(L) =« (L). In the same
way as above, we have th&iis a super edge-cut @f
and that the two components 6f— S both contains at
least three vertices. Hence,

£(G) =1 (G) < ISI=k(L) <8(L) =§(G),

which implies thatS| = A'(G). Thus,S is a minimum
super edge-cut af but S does not isolate one edge, a
contradiction. ThusL is supers. O

Using Theorem 2, we obtain the main result in [5].
Corallary 4. x (L(G)) = A'(G) for any A’-graph G.

Proof. If G is not superx’ then«'(L(G)) = 1'(G)
by Theorem 2. Thus, by Corollary 3,(G) is not
superx, which meansc(L(G)) = «'(L(G)). There-
fore,k (L(G)) = ) (G).

If G is a superx’ graph,\’(G) = &(G). By Corol-
lary 3, L(G) is superk, S0 «(L(G)) = §(L(G)) =
£§G)=)(G). O
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