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Abstract

The super connectivityκ ′ and the super edge-connectivityλ′ are more refined network reliability indices than connectivitκ

and edge-connectivityλ. This paper shows that for a connected graphG with order at least four rather than a star and its l
graphL(G), κ ′(L(G)) = λ′(G) if and only if G is not super-λ′. As a consequence, we obtain the result of Hellwig et al. [N
on the connectivity of line graphs, Inform. Process. Lett. 91 (2004) 7] thatκ(L(G)) = λ′(G). Furthermore, the authors sho
that the line graph of a super-λ′ graph is super-λ if the minimum degree is at least three.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In general, we use a simple connected graphG =
(V ,E) to model an interconnection network, whereV

is the set of processors andE is the set of communica
tion links in the network. The connectivityκ(G) or the
edge-connectivityλ(G) of G is an important measure
ment for fault-tolerance of the network, and the larg
κ(G) or λ(G) is, the more reliable the network is. It
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well known thatκ(G) � λ(G) � δ(G), whereδ(G) is
the minimum degree ofG. One might be interested i
more refined indices of reliability. As more refined i
dices than connectivity and edge-connectivity, su
connectivity and super edge-connectivity were p
posed in [1,2]. A graphG is super connected, super-κ ,
for short (resp.super edge-connected, super-λ, for
short) if every minimum vertex-cut (resp. edge-c
isolates a vertex ofG.

A quite natural problem is that if a connected gra
G is super-κ or super-λ then how many vertices o
edges must be removed to disconnectG such that
every component of the resulting graph contains
isolated vertices. This problem results in the conc
of the super (edge-)connectivity.
.
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A subsetS ⊂ V (G) (resp.F ⊂ E(G)) is called a
super vertex-cut (resp.super edge-cut) if G –S (resp.
G –F ) is not connected and every component conta
at least two vertices. In general, super vertex-cut
super edge-cuts do not always exist. Thesuper con-
nectivity κ ′(G) (resp.super edge-connectivity λ′(G))
is the minimum cardinality over all super vertex-cu
(resp. super edge-cuts) inG if any, and, by convention
is +∞ otherwise. It is easy to see thatG is super-κ if
and only if κ ′(G) > κ(G), and super-λ if and only if
λ′(G) > λ(G).

It is easy to see from the result of Esfahanian a
Hakimi [3,4] thatλ′(G) exists if G has order at leas
4 andG is not a star. A connected graphG with or-
der at least 4 is called aλ′-graph if G is not a star.
A λ′-graph is calledsuper-λ′ if every minimum super
edge-cut isolates an edge.

For λ′, it has been widely studied by several a
thors, see, for example, [3–10,13], in which auth
called it the restricted edge-connectivity. However,
have known little results onκ ′.

We consider the relationship between the su
edge-connectivity of a graphG and the super connec
tivity of its line graphL(G). Very recently, Hellwig
et al. [5] have establishedκ(L(G)) = λ′(G) if G is a
λ′-graph. As a result,κ ′(L(G)) � κ(L(G)) = λ′(G) if
κ ′(L(G)) exists. In this paper, we show thatκ ′(L(G))

exists andκ ′(L(G)) = λ′(G) if and only if G is not a
super-λ′ graph. We also show thatL(G) is super-λ if
G is super-λ′ andδ(G) � 3. Our proofs are indepen
dent on the result of Hellwig et al., which is a dire
consequence of our results.

2. Super edge-connectedness of line graphs

We follow [12] for graph-theoretical terminolog
and notation not defined here. LetG = (V ,E) be a
simple connected graph. The line graph ofG, denoted
by L(G), or L shortly, is a graph with the vertex
set V (L) = E(G), and a vertexxy is adjacent to a
vertex wz in L if and only if they are adjacent a
edges inG. Clearly, δ(L) = ξ(G), where ξ(G) =
min{dG(x) + dG(y) − 2 | xy ∈ E(G)}, anddG(x) is
the degree of the vertexx in G.

Two edges are said to beindependent if they are
nonadjacent. A set of edges is said to be anindepen-
dent edge-set if any two edges of it are independen
The set of edges incident with a vertexx is said to be
theincidence edge-set of x.

Theorem 1. Let G be a connected graph. Then

(a) any minimum edge-cut of G is either an incidence
edge-set of some vertex of G or an independent
edge-set if κ(G) = λ(G);

(b) G is super-λ if G is super-κ and δ(G) � 4.

Proof. We first prove the assertion (a). LetF be an
edge-cut ofG with |F | = λ(G). The vertex setV (G)

can be partitioned into two nonempty subsetsX and
Y such thatG –F contains no edges betweenX and
Y and every edge inF has one end-vertex inX and
the other end-vertex inY . Let X0 andY0 be the set of
the end-vertices of the edges inF in X andY , respec-
tively. Clearly,|X0| � |F | and|Y0| � |F |.

Without loss of generality, assume|X0| � |Y0|.
Thus, we only need to prove that|X0| = |F | if F is
not an incidence edge-set of some vertex ofG since,
in this case, every vertex inX0 is matched by an edg
in F with a unique vertex inY0. In fact, if X−X0 �= ∅,
thenX0 is a vertex-cut ofG, so|F | � |X0| � κ(G) =
λ(G) = |F |.

We assumeX − X0 = ∅. It is clear that|X0| � 2 if
F is not an incidence edge-set of some vertex ofG. Let
|X0| = t andE(x) = {xy ∈ E(G) | y ∈ Y } for x ∈ X.
Since 2� t � λ(G) � δ(G), we have

δ(G) � λ(G) = |F |
=

∑

x∈X0

∣∣E(x)
∣∣ =

∑

x∈X0

d(x) − 2
∣∣E

(
G[X0]

)∣∣

� δ(G)t − t (t − 1) = −t2 + (
δ(G) + 1

)
t

� δ(G).

The last inequality holds because the functionf (t) =
−t2 + (δ(G) + 1)t is convex in the integer interva
[2, δ(G)] and reaches the minimum value at the rig
end-point of the interval, that is,f (t) � f (δ(G)) =
δ(G). The equality is true if and only ift = |X0| =
δ(G) = |F |.

We now prove the assertion (b).
SinceG is super-κ , κ(G) = δ(G). We haveκ(G) =

λ(G) = δ(G) immediately from κ(G) � λ(G) �
δ(G). Suppose to the contrary thatG is not super-λ.
Then there exists a minimum edge-cutF with |F | =
λ(G) � 4, which is not an incidence edge-set of so
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vertex ofG. By the assertion (a),F is an independen
edge-set. LetX,Y,X0 andY0 be defined as before. Le
λ = |F | and

X0 = {x1, x2, . . . , xλ} and Y0 = {y1, y2, . . . , yλ},
wherexi is matched withyi by an edge inF for i =
1,2, . . . , λ. Consider the following set of vertices inG:

S = {x1, x2, y3, y4, . . . , yλ}.
It is clear thatS is a minimum vertex-cut ofG. Since
G is super-κ , S must be a neighbor-set of some vert
sayu, of G. If u ∈ X, y1u,y2u ∈ F , contradicting to
the assumption thatF is an independent edge-set.
u ∈ Y , x1u,x2u ∈ F , a contradiction too. Thus,G is
super-λ, so the assertion (b) follows.�
Remark. In Theorem 1, the conditionδ(G) � 4 in the
assertion (b) is necessary. For example, the graph
tained by joining two triangles by three edges such
the graph is 3-regular. It is easy to see that the grap
super-κ but not super-λ.

Corollary 1. Let G be a connected graph with
δ(G) � 3. If the line graph L = L(G) is super-κ , then
L is super-λ.

Proof. SinceL is super-κ andδ(L) = ξ(G) � 2δ(G)

− 2� 4 for δ(G) � 3, the corollary follows from The
orem 1. �

3. Super connectivity of line graphs

Many properties of line graphs can be found in [1
two of which are the following lemmas.

Lemma 1. Let G be a graph with at least two edges.
Then G is connected if and only if the line graph L(G)

is connected.

Lemma 2. Let G be a graph with at least two edges.
Then

κ(G) � λ(G) � κ
(
L(G)

)
� λ

(
L(G)

)
.

Lemma 3 [4]. If G is a λ′-graph, then

λ(G) � λ′(G) � ξ(G).
For a subsetE′ ⊆ E(G), we useG[E′] to denote
the edge-induced subgraph ofG by E′. Let L1 be
a subgraph ofL(G) and E1 = V (L1). DefineG1 =
G[E1].

Lemma 4. Using the above notations, we have that
if L1 is a connected subgraph of L with at least two
vertices, then the subgraph G1 ⊆ G is connected and
|V (G1)| � 3.

Proof. Assume thatx and y are any two vertices
of G1. There is an edgee of G1 such thatx is incident
with the edgee. Without loss of generality, we deno
the edgee by xz. If z = y, x can reachy by the edgee.
If z �= y, y is incident with another edgee′. With-
out loss of generality, we can assume the edgee′ =
wy. So, e = xz and e′ = wy are two vertices inL1.
SinceL1 is connected, there is a path inL1 connect-
ing e = xz to e′ = wy: (xz, zz1, z1z2, . . . , zkw,wy).
The corresponding edgesxz, zz1, z1z2, . . . , zkw,wy

form a walk inG1 betweenx andy: (x, z, z1, z2, . . . ,

zk,w,y). Therefore,x andy are connected, which im
plies G1 is connected. Since|E(G1)| = |V (L1)| � 2
andG is a simple graph,|V (G1)| � 3. �

The complete bipartite graphK1,3 is usually called
aclaw, and any graph that does not contain an indu
claw is called claw-free. It is easy to see that every l
graph isclaw-free.

Lemma 5. Let G be a connected claw-free graph.
Then G – S contains exactly two components for any
minimum super vertex-cut S of G.

Proof. Let S be a minimum super vertex-cut ofG
and G1,G2, . . . ,Gt be connected components
G –S. Then Gi contains at least two vertices fo
i = 1,2, . . . , t , t � 2, and there are no edges betwe
Gi andGj for anyi �= j . SinceS is a vertex-cut, there
is a vertexx adjacent to some component. Furth
more, the vertexx ∈ S is adjacent to every componen
otherwiseS′ = S \ {x} is also a super vertex-cut, co
tradicting the minimality ofS. If t � 3, the vertexx is
adjacent to at least three components, which is imp
sible forG is a claw-free graph. Therefore,t = 2 and
the lemma follows. �
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Theorem 2. Let G be a λ′-graph. Then κ ′(L(G)) ex-
ists and κ ′(L(G)) = λ′(G) if and only if G is not
super-λ′.

Proof. We first note thatλ′(G) exists for aλ′-graphG.
SupposeG is not super-λ′, so there exists a minimum
super edge-cutF such that each of the two comp
nents ofG –F , G1 andG2, has order at least thre
By Lemma 1,L(G1),L(G2) are both connected i
L = L(G). And |V (L(Gi))| = |E(Gi)| � 2 for i =
1,2. There are no edges betweenL(G1) andL(G2)

in L –F and, hence,F is a super vertex-cut ofL. It
follows thatκ ′(L) exists andκ ′(L) � |F | = λ′(G).

We now show thatκ ′(L) � λ′(G). To the end, let
S be a minimum super vertex-cut ofL. Since every
line graph is claw-free, by Lemma 5L –S contains
exactly two components,L1 andL2 with |V (Li)| � 2
for i = 1,2. By Lemma 4, for eachi = 1,2, Gi =
G[V (Li)], the subgraph ofG induced byV (Li), is
connected and|V (Gi)| � 3. ThusS is a super edge-cu
of G. It follows thatλ′(G) � |S| = κ ′(L). Therefore,
κ ′(L) = λ′(G).

Conversely, supposeκ ′(L) exists andκ ′(L) =
λ′(G). We prove thatG is not super-λ′ by contradic-
tion. Assume thatG is super-λ′, which means every
minimum super edge-cut isolates one edge. LetS be
a super vertex-cut ofL with |S| = κ ′(L) = λ′(G).
By Lemma 5,L –S is partitioned into two compo
nents, denoted byL1 andL2, respectively. Applying
Lemma 4 toG1 andG2, the subgraph ofG induced
by V (L1) andV (L2), respectively, are connected a
|V (G1)| � 3, |V (G2)| � 3. There are no edges b
tweenG1 andG2, soS is a super edge-cut ofG with
|S| = κ ′(L) = λ′(G), which implies thatS is a min-
imum super edge-cut ofG. But G –S contains no
isolated edges. We get a contradiction, soG is not
super-λ′. �
Corollary 2. Let G be a connected graph with ξ(G) >

δ(G). Then κ ′(L(G)) exists and κ ′(L(G)) = λ(G) if
and only if G is not super-λ.

Proof. AssumeG is not super-λ. Thenλ′(G) exists
andλ′(G) = λ(G) � δ(G). Sinceξ(G) > δ(G), G is
not super-λ′. By Theorem 2,κ ′(L) exists andκ ′(L) =
λ′(G) = λ(G).

Conversely, supposeκ ′(L) exists andκ ′(L) =
λ(G). We assumeG is super-λ, which means tha
every minimum edge-cut isolates one vertex. LeS

be a super vertex-cut ofL with |S| = κ ′(L) = λ(G).
By Lemma 5,L –S is partitioned into exactly two
componentsL1 andL2 with at least two vertices. By
Lemma 4,G1 and G2, the induced subgraph ofG
by V (L1) andV (L2), respectively, are connected a
|V (G1)| � 3, |V (G2)| � 3. There are no edges b
tweenG1 and G2 in G –S. So S is an edge-cut o
G with |S| = κ ′(L) = λ(G), which implies thatS is
a minimum edge-cut ofG. But G –S contains no iso-
lated vertices, a contradiction, soG is not super-λ. �
Corollary 3. Let G be a λ′-graph. Then L(G) is
super-κ if and only if G is super-λ′.

Proof. Suppose thatL = L(G) is super-κ . Then
κ(L) = δ(L) and κ ′(L) > κ(L). AssumeG is not
super-λ′. By Theorem 2, we haveκ ′(L) = λ′(G). By
Lemma 3,

ξ(G) = δ(L) = κ(L) < κ ′(L) = λ′(G) � ξ(G),

a contradiction, soG is super-λ′.
Conversely, suppose thatG is super-λ′. Then

λ′(G) = ξ(G) and every minimum super edge-cut
G isolates one edge. Suppose to the contrary thaL

is not super-κ . Thenκ ′(L) = κ(L). Let S be a super
vertex-cut ofL with |S| = κ ′(L) = κ(L). In the same
way as above, we have thatS is a super edge-cut ofG
and that the two components ofG –S both contains a
least three vertices. Hence,

ξ(G) = λ′(G) � |S| = κ(L) � δ(L) = ξ(G),

which implies that|S| = λ′(G). Thus,S is a minimum
super edge-cut ofG butS does not isolate one edge
contradiction. Thus,L is super-κ . �

Using Theorem 2, we obtain the main result in [5

Corollary 4. κ(L(G)) = λ′(G) for any λ′-graph G.

Proof. If G is not super-λ′ then κ ′(L(G)) = λ′(G)

by Theorem 2. Thus, by Corollary 3,L(G) is not
super-κ , which meansκ(L(G)) = κ ′(L(G)). There-
fore,κ(L(G)) = λ′(G).

If G is a super-λ′ graph,λ′(G) = ξ(G). By Corol-
lary 3, L(G) is super-κ , so κ(L(G)) = δ(L(G)) =
ξ(G) = λ′(G). �
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Corollaries 1 and 3 lead to the following corolla
immediately.

Corollary 5. Let G be a λ′- graph with δ(G) � 3. If G

is super-λ′, L(G) is super-λ.
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