Information Processing Letters

Super connectivity of line graphs ${ }^{\text {NT}}$

Jun-Ming Xu ${ }^{\text {a,* }}$, Min Lü ${ }^{\text {a }}$, Meijie $\mathrm{Ma}^{\text {a }}$, Angelika Hellwig ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, China
${ }^{\mathrm{b}}$ Lehrstuhl II fïr Mathematik, RWTH Aachen University, 52056 Aachen, Germany

Received 1 January 2005; received in revised form 2 January 2005
Available online 2 March 2005
Communicated by A.A. Bertossi

Abstract

The super connectivity κ^{\prime} and the super edge-connectivity λ^{\prime} are more refined network reliability indices than connectivity κ and edge-connectivity λ. This paper shows that for a connected graph G with order at least four rather than a star and its line graph $L(G), \kappa^{\prime}(L(G))=\lambda^{\prime}(G)$ if and only if G is not super- λ^{\prime}. As a consequence, we obtain the result of Hellwig et al. [Note on the connectivity of line graphs, Inform. Process. Lett. 91 (2004) 7] that $\kappa(L(G))=\lambda^{\prime}(G)$. Furthermore, the authors show that the line graph of a super- λ^{\prime} graph is super- λ if the minimum degree is at least three.

© 2005 Elsevier B.V. All rights reserved.
Keywords: Line graphs; Super connectivity; Super edge-connectivity; Super $-\lambda^{\prime} ; \lambda^{\prime}$-connected; Combinatorial problems

1. Introduction

In general, we use a simple connected graph $G=$ (V, E) to model an interconnection network, where V is the set of processors and E is the set of communication links in the network. The connectivity $\kappa(G)$ or the edge-connectivity $\lambda(G)$ of G is an important measurement for fault-tolerance of the network, and the larger $\kappa(G)$ or $\lambda(G)$ is, the more reliable the network is. It is

[^0]well known that $\kappa(G) \leqslant \lambda(G) \leqslant \delta(G)$, where $\delta(G)$ is the minimum degree of G. One might be interested in more refined indices of reliability. As more refined indices than connectivity and edge-connectivity, super connectivity and super edge-connectivity were proposed in [1,2]. A graph G is super connected, super- κ, for short (resp. super edge-connected, super- λ, for short) if every minimum vertex-cut (resp. edge-cut) isolates a vertex of G.

A quite natural problem is that if a connected graph G is super- κ or super- λ then how many vertices or edges must be removed to disconnect G such that every component of the resulting graph contains no isolated vertices. This problem results in the concept of the super (edge-)connectivity.

A subset $S \subset V(G)$ (resp. $F \subset E(G)$) is called a super vertex-cut (resp. super edge-cut) if $G-S$ (resp. $G-F)$ is not connected and every component contains at least two vertices. In general, super vertex-cuts or super edge-cuts do not always exist. The super connectivity $\kappa^{\prime}(G)$ (resp. super edge-connectivity $\lambda^{\prime}(G)$) is the minimum cardinality over all super vertex-cuts (resp. super edge-cuts) in G if any, and, by convention, is $+\infty$ otherwise. It is easy to see that G is super $-\kappa$ if and only if $\kappa^{\prime}(G)>\kappa(G)$, and super- λ if and only if $\lambda^{\prime}(G)>\lambda(G)$.

It is easy to see from the result of Esfahanian and Hakimi $[3,4]$ that $\lambda^{\prime}(G)$ exists if G has order at least 4 and G is not a star. A connected graph G with order at least 4 is called a λ^{\prime}-graph if G is not a star. A λ^{\prime}-graph is called super- λ^{\prime} if every minimum super edge-cut isolates an edge.

For λ^{\prime}, it has been widely studied by several authors, see, for example, [3-10,13], in which authors called it the restricted edge-connectivity. However, we have known little results on κ^{\prime}.

We consider the relationship between the super edge-connectivity of a graph G and the super connectivity of its line graph $L(G)$. Very recently, Hellwig et al. [5] have established $\kappa(L(G))=\lambda^{\prime}(G)$ if G is a λ^{\prime}-graph. As a result, $\kappa^{\prime}(L(G)) \geqslant \kappa(L(G))=\lambda^{\prime}(G)$ if $\kappa^{\prime}(L(G))$ exists. In this paper, we show that $\kappa^{\prime}(L(G))$ exists and $\kappa^{\prime}(L(G))=\lambda^{\prime}(G)$ if and only if G is not a super- λ^{\prime} graph. We also show that $L(G)$ is super $-\lambda$ if G is super $-\lambda^{\prime}$ and $\delta(G) \geqslant 3$. Our proofs are independent on the result of Hellwig et al., which is a direct consequence of our results.

2. Super edge-connectedness of line graphs

We follow [12] for graph-theoretical terminology and notation not defined here. Let $G=(V, E)$ be a simple connected graph. The line graph of G, denoted by $L(G)$, or L shortly, is a graph with the vertexset $V(L)=E(G)$, and a vertex $x y$ is adjacent to a vertex $w z$ in L if and only if they are adjacent as edges in G. Clearly, $\delta(L)=\xi(G)$, where $\xi(G)=$ $\min \left\{d_{G}(x)+d_{G}(y)-2 \mid x y \in E(G)\right\}$, and $d_{G}(x)$ is the degree of the vertex x in G.

Two edges are said to be independent if they are nonadjacent. A set of edges is said to be an independent edge-set if any two edges of it are independent.

The set of edges incident with a vertex x is said to be the incidence edge-set of x.

Theorem 1. Let G be a connected graph. Then

(a) any minimum edge-cut of G is either an incidence edge-set of some vertex of G or an independent edge-set if $\kappa(G)=\lambda(G)$;
(b) G is super- λ if G is super- κ and $\delta(G) \geqslant 4$.

Proof. We first prove the assertion (a). Let F be an edge-cut of G with $|F|=\lambda(G)$. The vertex set $V(G)$ can be partitioned into two nonempty subsets X and Y such that $G-F$ contains no edges between X and Y and every edge in F has one end-vertex in X and the other end-vertex in Y. Let X_{0} and Y_{0} be the set of the end-vertices of the edges in F in X and Y, respectively. Clearly, $\left|X_{0}\right| \leqslant|F|$ and $\left|Y_{0}\right| \leqslant|F|$.

Without loss of generality, assume $\left|X_{0}\right| \leqslant\left|Y_{0}\right|$. Thus, we only need to prove that $\left|X_{0}\right|=|F|$ if F is not an incidence edge-set of some vertex of G since, in this case, every vertex in X_{0} is matched by an edge in F with a unique vertex in Y_{0}. In fact, if $X-X_{0} \neq \emptyset$, then X_{0} is a vertex-cut of G, so $|F| \geqslant\left|X_{0}\right| \geqslant \kappa(G)=$ $\lambda(G)=|F|$.

We assume $X-X_{0}=\emptyset$. It is clear that $\left|X_{0}\right| \geqslant 2$ if F is not an incidence edge-set of some vertex of G. Let $\left|X_{0}\right|=t$ and $E(x)=\{x y \in E(G) \mid y \in Y\}$ for $x \in X$. Since $2 \leqslant t \leqslant \lambda(G) \leqslant \delta(G)$, we have

$$
\begin{aligned}
\delta(G) & \geqslant \lambda(G)=|F| \\
& =\sum_{x \in X_{0}}|E(x)|=\sum_{x \in X_{0}} d(x)-2\left|E\left(G\left[X_{0}\right]\right)\right| \\
& \geqslant \delta(G) t-t(t-1)=-t^{2}+(\delta(G)+1) t \\
& \geqslant \delta(G)
\end{aligned}
$$

The last inequality holds because the function $f(t)=$ $-t^{2}+(\delta(G)+1) t$ is convex in the integer interval [$2, \delta(G)$] and reaches the minimum value at the right end-point of the interval, that is, $f(t) \geqslant f(\delta(G))=$ $\delta(G)$. The equality is true if and only if $t=\left|X_{0}\right|=$ $\delta(G)=|F|$.

We now prove the assertion (b).
Since G is super- $\kappa, \kappa(G)=\delta(G)$. We have $\kappa(G)=$ $\lambda(G)=\delta(G)$ immediately from $\kappa(G) \leqslant \lambda(G) \leqslant$ $\delta(G)$. Suppose to the contrary that G is not super- λ. Then there exists a minimum edge-cut F with $|F|=$ $\lambda(G) \geqslant 4$, which is not an incidence edge-set of some
vertex of G. By the assertion (a), F is an independent edge-set. Let X, Y, X_{0} and Y_{0} be defined as before. Let $\lambda=|F|$ and
$X_{0}=\left\{x_{1}, x_{2}, \ldots, x_{\lambda}\right\} \quad$ and $\quad Y_{0}=\left\{y_{1}, y_{2}, \ldots, y_{\lambda}\right\}$,
where x_{i} is matched with y_{i} by an edge in F for $i=$ $1,2, \ldots, \lambda$. Consider the following set of vertices in G :
$S=\left\{x_{1}, x_{2}, y_{3}, y_{4}, \ldots, y_{\lambda}\right\}$.
It is clear that S is a minimum vertex-cut of G. Since G is super- κ, S must be a neighbor-set of some vertex, say u, of G. If $u \in X, y_{1} u, y_{2} u \in F$, contradicting to the assumption that F is an independent edge-set. If $u \in Y, x_{1} u, x_{2} u \in F$, a contradiction too. Thus, G is super $-\lambda$, so the assertion (b) follows.

Remark. In Theorem 1, the condition $\delta(G) \geqslant 4$ in the assertion (b) is necessary. For example, the graph obtained by joining two triangles by three edges such that the graph is 3-regular. It is easy to see that the graph is super- κ but not super- λ.

Corollary 1. Let G be a connected graph with $\delta(G) \geqslant 3$. If the line graph $L=L(G)$ is super $-\kappa$, then L is super- λ.

Proof. Since L is super- κ and $\delta(L)=\xi(G) \geqslant 2 \delta(G)$ $-2 \geqslant 4$ for $\delta(G) \geqslant 3$, the corollary follows from Theorem 1 .

3. Super connectivity of line graphs

Many properties of line graphs can be found in [11], two of which are the following lemmas.

Lemma 1. Let G be a graph with at least two edges. Then G is connected if and only if the line graph $L(G)$ is connected.

Lemma 2. Let G be a graph with at least two edges. Then
$\kappa(G) \leqslant \lambda(G) \leqslant \kappa(L(G)) \leqslant \lambda(L(G))$.
Lemma 3 [4]. If G is a λ^{\prime}-graph, then
$\lambda(G) \leqslant \lambda^{\prime}(G) \leqslant \xi(G)$.

For a subset $E^{\prime} \subseteq E(G)$, we use $G\left[E^{\prime}\right]$ to denote the edge-induced subgraph of G by E^{\prime}. Let L_{1} be a subgraph of $L(G)$ and $E_{1}=V\left(L_{1}\right)$. Define $G_{1}=$ $G\left[E_{1}\right]$.

Lemma 4. Using the above notations, we have that if L_{1} is a connected subgraph of L with at least two vertices, then the subgraph $G_{1} \subseteq G$ is connected and $\left|V\left(G_{1}\right)\right| \geqslant 3$.

Proof. Assume that x and y are any two vertices of G_{1}. There is an edge e of G_{1} such that x is incident with the edge e. Without loss of generality, we denote the edge e by $x z$. If $z=y, x$ can reach y by the edge e. If $z \neq y, y$ is incident with another edge e^{\prime}. Without loss of generality, we can assume the edge $e^{\prime}=$ $w y$. So, $e=x z$ and $e^{\prime}=w y$ are two vertices in L_{1}. Since L_{1} is connected, there is a path in L_{1} connecting $e=x z$ to $e^{\prime}=w y:\left(x z, z z_{1}, z_{1} z_{2}, \ldots, z_{k} w, w y\right)$. The corresponding edges $x z, z z_{1}, z_{1} z_{2}, \ldots, z_{k} w, w y$ form a walk in G_{1} between x and $y:\left(x, z, z_{1}, z_{2}, \ldots\right.$, $\left.z_{k}, w, y\right)$. Therefore, x and y are connected, which implies G_{1} is connected. Since $\left|E\left(G_{1}\right)\right|=\left|V\left(L_{1}\right)\right| \geqslant 2$ and G is a simple graph, $\left|V\left(G_{1}\right)\right| \geqslant 3$.

The complete bipartite graph $K_{1,3}$ is usually called a claw, and any graph that does not contain an induced claw is called claw-free. It is easy to see that every line graph is claw-free.

Lemma 5. Let G be a connected claw-free graph. Then $G-S$ contains exactly two components for any minimum super vertex-cut S of G.

Proof. Let S be a minimum super vertex-cut of G and $G_{1}, G_{2}, \ldots, G_{t}$ be connected components of $G-S$. Then G_{i} contains at least two vertices for $i=1,2, \ldots, t, t \geqslant 2$, and there are no edges between G_{i} and G_{j} for any $i \neq j$. Since S is a vertex-cut, there is a vertex x adjacent to some component. Furthermore, the vertex $x \in S$ is adjacent to every component, otherwise $S^{\prime}=S \backslash\{x\}$ is also a super vertex-cut, contradicting the minimality of S. If $t \geqslant 3$, the vertex x is adjacent to at least three components, which is impossible for G is a claw-free graph. Therefore, $t=2$ and the lemma follows.

Theorem 2. Let G be a λ^{\prime}-graph. Then $\kappa^{\prime}(L(G))$ exists and $\kappa^{\prime}(L(G))=\lambda^{\prime}(G)$ if and only if G is not super $-\lambda^{\prime}$.

Proof. We first note that $\lambda^{\prime}(G)$ exists for a λ^{\prime}-graph G. Suppose G is not super $-\lambda^{\prime}$, so there exists a minimum super edge-cut F such that each of the two components of $G-F, G_{1}$ and G_{2}, has order at least three. By Lemma 1, $L\left(G_{1}\right), L\left(G_{2}\right)$ are both connected in $L=L(G)$. And $\left|V\left(L\left(G_{i}\right)\right)\right|=\left|E\left(G_{i}\right)\right| \geqslant 2$ for $i=$ 1,2 . There are no edges between $L\left(G_{1}\right)$ and $L\left(G_{2}\right)$ in $L-F$ and, hence, F is a super vertex-cut of L. It follows that $\kappa^{\prime}(L)$ exists and $\kappa^{\prime}(L) \leqslant|F|=\lambda^{\prime}(G)$.

We now show that $\kappa^{\prime}(L) \geqslant \lambda^{\prime}(G)$. To the end, let S be a minimum super vertex-cut of L. Since every line graph is claw-free, by Lemma $5 L-S$ contains exactly two components, L_{1} and L_{2} with $\left|V\left(L_{i}\right)\right| \geqslant 2$ for $i=1,2$. By Lemma 4 , for each $i=1,2, G_{i}=$ $G\left[V\left(L_{i}\right)\right]$, the subgraph of G induced by $V\left(L_{i}\right)$, is connected and $\left|V\left(G_{i}\right)\right| \geqslant 3$. Thus S is a super edge-cut of G. It follows that $\lambda^{\prime}(G) \leqslant|S|=\kappa^{\prime}(L)$. Therefore, $\kappa^{\prime}(L)=\lambda^{\prime}(G)$.

Conversely, suppose $\kappa^{\prime}(L)$ exists and $\kappa^{\prime}(L)=$ $\lambda^{\prime}(G)$. We prove that G is not super- λ^{\prime} by contradiction. Assume that G is super $-\lambda^{\prime}$, which means every minimum super edge-cut isolates one edge. Let S be a super vertex-cut of L with $|S|=\kappa^{\prime}(L)=\lambda^{\prime}(G)$. By Lemma 5, $L-S$ is partitioned into two components, denoted by L_{1} and L_{2}, respectively. Applying Lemma 4 to G_{1} and G_{2}, the subgraph of G induced by $V\left(L_{1}\right)$ and $V\left(L_{2}\right)$, respectively, are connected and $\left|V\left(G_{1}\right)\right| \geqslant 3,\left|V\left(G_{2}\right)\right| \geqslant 3$. There are no edges between G_{1} and G_{2}, so S is a super edge-cut of G with $|S|=\kappa^{\prime}(L)=\lambda^{\prime}(G)$, which implies that S is a minimum super edge-cut of G. But $G-S$ contains no isolated edges. We get a contradiction, so G is not super- λ^{\prime}.

Corollary 2. Let G be a connected graph with $\xi(G)>$ $\delta(G)$. Then $\kappa^{\prime}(L(G))$ exists and $\kappa^{\prime}(L(G))=\lambda(G)$ if and only if G is not super- λ.

Proof. Assume G is not super $-\lambda$. Then $\lambda^{\prime}(G)$ exists and $\lambda^{\prime}(G)=\lambda(G) \leqslant \delta(G)$. Since $\xi(G)>\delta(G), G$ is not super- λ^{\prime}. By Theorem $2, \kappa^{\prime}(L)$ exists and $\kappa^{\prime}(L)=$ $\lambda^{\prime}(G)=\lambda(G)$.

Conversely, suppose $\kappa^{\prime}(L)$ exists and $\kappa^{\prime}(L)=$ $\lambda(G)$. We assume G is super- λ, which means that
every minimum edge-cut isolates one vertex. Let S be a super vertex-cut of L with $|S|=\kappa^{\prime}(L)=\lambda(G)$. By Lemma 5, $L-S$ is partitioned into exactly two components L_{1} and L_{2} with at least two vertices. By Lemma $4, G_{1}$ and G_{2}, the induced subgraph of G by $V\left(L_{1}\right)$ and $V\left(L_{2}\right)$, respectively, are connected and $\left|V\left(G_{1}\right)\right| \geqslant 3,\left|V\left(G_{2}\right)\right| \geqslant 3$. There are no edges between G_{1} and G_{2} in $G-S$. So S is an edge-cut of G with $|S|=\kappa^{\prime}(L)=\lambda(G)$, which implies that S is a minimum edge-cut of G. But $G-S$ contains no isolated vertices, a contradiction, so G is not super $-\lambda$.

Corollary 3. Let G be a λ^{\prime}-graph. Then $L(G)$ is super- κ if and only if G is super $-\lambda^{\prime}$.

Proof. Suppose that $L=L(G)$ is super- κ. Then $\kappa(L)=\delta(L)$ and $\kappa^{\prime}(L)>\kappa(L)$. Assume G is not super $-\lambda^{\prime}$. By Theorem 2, we have $\kappa^{\prime}(L)=\lambda^{\prime}(G)$. By Lemma 3,
$\xi(G)=\delta(L)=\kappa(L)<\kappa^{\prime}(L)=\lambda^{\prime}(G) \leqslant \xi(G)$,
a contradiction, so G is super $-\lambda^{\prime}$.
Conversely, suppose that G is super $-\lambda^{\prime}$. Then $\lambda^{\prime}(G)=\xi(G)$ and every minimum super edge-cut of G isolates one edge. Suppose to the contrary that L is not super- κ. Then $\kappa^{\prime}(L)=\kappa(L)$. Let S be a super vertex-cut of L with $|S|=\kappa^{\prime}(L)=\kappa(L)$. In the same way as above, we have that S is a super edge-cut of G and that the two components of $G-S$ both contains at least three vertices. Hence,
$\xi(G)=\lambda^{\prime}(G) \leqslant|S|=\kappa(L) \leqslant \delta(L)=\xi(G)$,
which implies that $|S|=\lambda^{\prime}(G)$. Thus, S is a minimum super edge-cut of G but S does not isolate one edge, a contradiction. Thus, L is super $-\kappa$.

Using Theorem 2, we obtain the main result in [5].
Corollary 4. $\kappa(L(G))=\lambda^{\prime}(G)$ for any $\lambda^{\prime}-$ graph G.
Proof. If G is not super $-\lambda^{\prime}$ then $\kappa^{\prime}(L(G))=\lambda^{\prime}(G)$ by Theorem 2. Thus, by Corollary $3, L(G)$ is not super- κ, which means $\kappa(L(G))=\kappa^{\prime}(L(G))$. Therefore, $\kappa(L(G))=\lambda^{\prime}(G)$.

If G is a super- λ^{\prime} graph, $\lambda^{\prime}(G)=\xi(G)$. By Corollary $3, L(G)$ is super- κ, so $\kappa(L(G))=\delta(L(G))=$ $\xi(G)=\lambda^{\prime}(G)$.

Corollaries 1 and 3 lead to the following corollary immediately.

Corollary 5. Let G be a λ^{\prime} - graph with $\delta(G) \geqslant 3$. If G is super $-\lambda^{\prime}, L(G)$ is super $-\lambda$.

References

[1] D. Bauer, F. Boesch, C. Suffel, R. Tindell, Connectivity extremal problems and the design of reliable probabilistic networks, in: The Theory and Application of Graphs, Wiley, New York, 1981, pp. 45-54.
[2] F.T. Boesch, Synthesis of reliable networks. A survey, IEEE Trans. Reliability 35 (1986) 240-246.
[3] A.H. Esfahanian, Generalized measures of fault tolerance with application to n-cube networks, IEEE Trans. Comput. 38 (11) (1989) 1586-1591.
[4] A.H. Esfahanian, S.L. Hakimi, On computing a conditional edge-connectivity of a graph, Inform. Process. Lett. 27 (1988) 195-199.
[5] A. Hellwig, D. Rautenbach, L. Volkmann, Note on the connectivity of line graphs, Inform. Process. Lett. 91 (1) (2004) 7-10.
[6] A. Hellwig, L. Volkmann, Sufficient conditions for λ^{\prime}-optimality in graphs of diameter 2, Discrete Math. 283 (2004) 113-120.
[7] A. Hellwig, L. Volkmann, Sufficient conditions for graphs to be λ^{\prime}-optimal, super-edge-connected and maximally edgeconnected, J. Graph Theory, submitted for publication.
[8] J.-X. Meng, Y.-H. Ji, On a kind of restricted edge connectivity of graphs, Discrete Appl. Math. 117 (2002) 183-193.
[9] M. Wang, Q. Li, Conditional edge connectivity properties, reliability comparisons and transitivity of graphs, Discrete Math. 258 (2002) 205-214.
[10] Y.Q. Wang, Super restricted edge-connectivity of vertextransitive graphs, Discrete Math. 289 (2004) 199-205.
[11] J.-M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht, 2001.
[12] J.-M. Xu, Theory and Application of Graphs, Kluwer Academic Publishers, Dordrecht, 2003.
[13] J.-M. Xu, K.-L. Xu, On restricted edge-connectivity of graphs, Discrete Math. 243 (1-3) (2002) 291-298.

[^0]: * The work was supported by NNSF of China (Nos. 10271114 and 10301031).
 * Corresponding author.

 E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

