Edge-fault-tolerant edge-bipancyclicity of hypercubes ${ }^{\text {* }}$

Jun-Ming Xu*, Zheng-Zhong Du, Min Xu
Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China

Received 6 September 2004; received in revised form 6 May 2005
Available online 25 August 2005
Communicated by M. Yamashita

Abstract

In this paper, we consider the problem embedding a cycle into the hypercube Q_{n} with existence of faulty edges and show that for any edge subset F of Q_{n} with $|F| \leqslant n-1$ every edge of $Q_{n}-F$ lies on a cycle of every even length from 6 to 2^{n} inclusive provided $n \geqslant 4$ and all edges in F are not incident with the same vertex. This result improves some known results. © 2005 Published by Elsevier B.V.

Keywords: Cycles; Pancyclicity; Hypercube; Fault tolerance

1. Introduction

To find a cycle of given length in graph G is a cycle embedding problem, and to find cycles of all length from 3 to $|V(G)|$ is a pancyclic problem. The cycle embedding problem is investigated in a lot of interconnection networks [4,5,9,10,12,15]. In general, a graph is of pancyclicity if it contains cycles of all length [2]. The pancyclicity is an important property to determine if a topology of network is suitable for an application where mapping cycles of any length into the topology of network is required. The concept of pancyclicity has been extended to vertex-pancyclicity [6] and edgepancyclicity [1]. A graph is vertex-pancyclic if every

[^0]vertex lies on a cycle of every length from 3 to $|V(G)|$; and edge-pancyclic if every edge lies on a cycle of every length from 3 to $|V(G)|$. It is clear that if a graph G is edge-pancyclic then it is vertex-pancyclic certainly. Bipancyclicity is essentially a restriction of the concept of pancyclicity to bipartite graphs whose cycles are necessarily of even length. A graph G is edge-bipancyclic if every edge lies on a cycle of every even length from 4 to $|V(G)|$ [13]. A graph G is k-edge-fault-tolerant Hamiltonian (edge-pancyclic) if the resulting graph by deleting any k edges from G is Hamiltonian (edge-pancyclic).

The fault-tolerant Hamiltonicity and pancyclicity of many networks are investigated, for example, Hsieh and Chen [7] for Möbius cubes, and Hsieh et al. [8] for arrangement graphs. In this paper we consider edgebipancyclicity of hypercubes with faulty edges. Faulttolerant properties are critical to the performance eval-
uation of the network topology. As a topology for an interconnection network of a multiprocessor system, the hypercube $Q_{n}(n \geqslant 2)$ is a widely used and well-known interconnection model since it possesses many attractive properties [14,17]. Saad and Schultz [14] proved that Q_{n} is bipancyclic. Leu and Kuo [10], Litifi et al. [12] and Sen et al. [15], independently, proved that Q_{n} is ($n-2$)-edge-fault-tolerant Hamiltonian. Sengupta [16] proved that Q_{n} is ($n-1$)-edge-fault-tolerant Hamiltonian if $n \geqslant 4$ and all the faulty edges are not incident with the same vertex. Recently, Li et al. [11] have further showed that Q_{n} is ($n-2$)-edge-fault-tolerant edge-bipancyclic. In this paper, we obtain the following result.

Theorem. For any subset F of $E\left(Q_{n}\right)$ with $|F| \leqslant$ $n-1$, every edge of $Q_{n}-F$ lies on a cycle of every even length from 6 to 2^{n} inclusive provided $n \geqslant 4$ and all edges in F are not incident with the same vertex.

Obviously, a cycle of length 2^{n} in $Q_{n}-F$ is a Hamilton cycle, which is the result of Sengupta. If $|F| \leqslant n-2$ then all edges in F are not incident with the same vertex since Q_{n} is n-regular, which implies that our theorem holds. Also, any edge e in Q_{n} lies on exactly $n-1$ cycles of length four. If $|F| \leqslant n-2$ then every edge in $Q_{n}-F$ must lie on a cycle of length four. Thus, our result implies the result of Li et al.

The proof of theorem is in Section 3. In Section 2, some lemmas are given.

2. Some lemmas

We follow [3] or [18] for graph-theoretical terminology and notation not denned here. A graph $G=$ (V, E) always means a simple and connected graph, where $V=V(G)$ is the vertex-set and $E=E(G)$ is the edge-set of G. A $u v$-path is a sequence of adjacent vertices, written as $\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{m}\right\rangle$, in which $u=v_{0}, v=v_{m}$ and all the vertices $v_{0}, v_{1}, v_{2}, \ldots, v_{m}$ are distinct except possibly $v_{0}=v_{m}$. The length of a path P is the number of edges in P. A cycle is a path with at least three vertices such that the first vertex is the same as the last one. A cycle is called a Hamiltonian cycle if it contains all vertices of G and a $u v$-path is called a Hamiltonian path if it contains all vertices of G.

An n-dimensional binary hypercube Q_{n} is a graph with 2^{n} vertices, each vertex denoted by an n-bit binary string $u=u_{n} u_{n-1} \ldots u_{2} u_{1}$. Two vertices are adjacent if and only if their strings differ exactly in one bit position. It has been proved that Q_{n} is a vertex and edge transitive bipartite graph (see, for example, [17]).

By the definition, for any $k \in\{1,2, \ldots, n\}, Q_{n}$ can be expressed as $Q_{n}=L_{k} \odot R_{k}$, where L_{k} and R_{k} are the two ($n-1$)-subcubes of Q_{n} induced by the vertices with the k bit position is 0 and 1 , respectively. We call edges between L_{k} and R_{k} to be k-dimensional, which form a perfect matching of Q_{n}. Clearly, for any edge e of Q_{n}, there is some $k \in\{1,2, \ldots, n\}$ such that e is k-dimensional. Use u_{L} and u_{R} to denote two vertices in L_{k} and R_{k}, respectively, linked by the k-dimensional edge $u_{L} u_{R}$ in Q_{n}.

For a subset F of $E\left(Q_{n}\right)$ and any $k \in\{1,2, \ldots, n\}$, we always express Q_{n} as $Q_{n}=L_{k} \odot R_{k}$, and let $F_{L}=$ $F \cap E\left(L_{k}\right), F_{R}=F \cap E\left(R_{k}\right)$ and $F_{k}=F \backslash\left(F_{L} \cup F_{R}\right)$.

Lemma 2.1. For any subset F of $E\left(Q_{n}\right)$ and any given $i \in\{1,2, \ldots, n\}$, if $|F|=n-1$ with $n \geqslant 4$ and all edges in F are not incident with the same vertex, then there is $k \in\{1, \ldots, n\} \backslash\{i\}$ such that $\left|F_{L}\right| \leqslant n-2$ and $\left|F_{R}\right| \leqslant n-2$. Moreover, if $\left|F_{L}\right|=n-2$ (or $\left|F_{R}\right|=$ $n-2$) with $n \geqslant 5$, then all these $n-2$ edges in F_{L} (or F_{R}) are not incident with the same vertex.

Proof. For a given i, let $N_{i}=\{1, \ldots, n\} \backslash\{i\}$. We first choose $j \in N_{i}$ such that $\left|F_{j}\right|$ is as large as possible. If $\left|F_{j}\right| \geqslant 2$, then $\left|F_{L}\right| \leqslant n-3$ and $\left|F_{R}\right| \leqslant n-3$. Let $k=j$ and we are done.

If $\left|F_{j}\right|=1$, then F contains at most one edge of every dimension in N_{i}. Let $I=\left\{t:\left|F_{t}\right|=1, t \in N_{i}\right\}$. Choose $k \in I$ such that the only edge $f_{k} \in F_{k}$ is adjacent other edges in F as many as possible. So the former part in the lemma holds clearly. If $\left|F_{L}\right|=n-2$ (or $\left|F_{R}\right|=n-2$) and all edges in F_{L} are incident with the same vertex, say x, then f_{k} is not incident with x by the hypothesis of F, which contradicts to the choice of k for $n \geqslant 5$. Therefore, if $\left|F_{L}\right|=n-2$ with $n \geqslant 5$, then all edges in F_{L} are not incident with the same vertex.

If $\left|F_{j}\right|=0$, then $F=F_{i}$. Let $u v$ and $x y$ be two distinct edges in F_{i} and let $u=u_{n} \ldots u_{i} \ldots u_{1}$ and $x=x_{n} \ldots x_{i} \ldots x_{1}$. Then $v=u_{n} \ldots u_{i+1} \bar{u}_{i} u_{i-1} \ldots u_{1}$ and $y=x_{n} \ldots x_{i+1} \bar{x}_{i} x_{i-1} \ldots x_{1}$. Since $u v \neq x y$ and $F=F_{i}$, there exists some $k \in N_{i}$ such that $u_{k} \neq x_{k}$.

Without loss of generality, suppose that $u v$ is in L_{k}. Then $x y$ in R_{k} and so $\left|F_{L}\right| \leqslant n-2$ and $\left|F_{R}\right| \leqslant n-2$. Also since $F=F_{i}$, any two distinct edges in F are not incident with the same vertex and so k is required. The lemma follows.

When we express Q_{n} as $Q_{n}=L_{k} \odot R_{k}$, for an edge $e_{L}=u_{L} v_{L}$ in L_{k}, there is an corresponding edge in R_{k}, denoted by $e_{R}=u_{R} v_{R}$. Similarly, for a path P or a cycle C in L_{k}, we denote the corresponding path or cycle in R_{k} by P^{\prime} or C^{\prime}.

Lemma 2.2. Any two edges in $Q_{n}(n \geqslant 2)$ are included in a Hamiltonian cycle.

Proof. We prove the lemma by induction on $n \geqslant 2$. Obviously, the lemma is true for $n=2$. Assume that the lemma is true for every k with $2 \leqslant k<n$. Let e and e^{\prime} be two edges in Q_{n} and express $Q_{n}=L_{k} \odot R_{k}$ such that none of e and e^{\prime} is k-dimensional. Without loss of generality, we may assume $e \in L_{k}$. Furthermore, we can suppose that e^{\prime} is in L_{k}, otherwise consider e_{L}^{\prime} instead of e^{\prime}. By the induction hypothesis, there exists a Hamiltonian cycle C containing e and e^{\prime} in L_{k}. Let $u_{L} v_{L}$ be an edge on C different from e and e^{\prime}. The corresponding C^{\prime} is a Hamiltonian cycle in R_{k} containing $u_{R} v_{R}, e_{R}$ and e_{R}^{\prime}. Let $P=C-u_{L} v_{L}$ and $P^{\prime}=C^{\prime}-u_{R} v_{R}$. Then $P+u_{L} v_{L}+P^{\prime}+v_{R} v_{L}$ is a Hamiltonian cycle in Q_{n} containing e and e^{\prime}.

Lemma 2.3. For any edge $u v$ of Q_{n}, there is a Hamiltonian cycle C such that it contains uv and two neighbors of $\{u, v\}$ on C are adjacent in Q_{n}.

Proof. We proof the lemma by induction on $n \geqslant 2$. Obviously, the lemma is true for $n=2$. Assume that the lemma is true for all $2 \leqslant k<n$ and denote $Q_{n}=$ $L_{k} \odot R_{k}$ such that $u v$ is not k-dimensional edge. Without loss of generality, we may assume $u v \in L_{k}$. By the induction hypothesis, there exists a Hamiltonian cycle C such that it contains $u v$ and two neighbors $\left\{w_{L}, z_{L}\right\}$ of $\{u, v\}$ on C are adjacent in L_{k}, where w_{L} is a neighbor of u and z_{L} is a neighbor of v on C. Since the length of C is not less than 4 , there exists an edge $x_{L} y_{L}$ on C such that $\left\{x_{L}, y_{L}\right\} \cap\{u, v\}=\emptyset$. Let $P=C-x_{L} y_{L}$. The corresponding P^{\prime} is an $x_{R} y_{R^{-}}$ Hamiltonian path in R_{k}. Thus, $P+y_{L} y_{R}+P^{\prime}+x_{R} x_{L}$ is a desired Hamiltonian cycle in Q_{n}.

Usually, we use P_{l} and C_{l} to denote the path and cycle of length l, respectively.

Lemma 2.4 (Li et al. [11]). Q_{3} is 1-edge-fault-tolerant edge-bipancyclic.

Lemma 2.5. Every edge of $Q_{4}-F$ lies on a cycle of every even length from 6 to 16 inclusive for any $F \subset$ $E\left(Q_{4}\right)$ with $|F|=3$ provided all edges in F are not incident with the same vertex.

Proof. Let F be a subset of $E\left(Q_{4}\right)$ with $|F|=3$ and suppose that all edges in F are not incident with the same vertex. Let e be an edge in $Q_{4}-F$ and suppose that e is i-dimensional for some $i \in\{1,2,3,4\}$. By Lemma 2.1 we can choose $k \in\{1,2,3,4\} \backslash\{i\}$ and express $Q_{4}=L_{k} \odot R_{k}$ such that $\left|F_{L}\right| \leqslant 2$ and $\left|F_{R}\right| \leqslant 2$. Let l be any even integer with $6 \leqslant l \leqslant 16$. To prove the lemma, we need to construct a cycle of length l in $Q_{4}-F$ containing e. Since $k \neq i$, without loss of generality, we may assume that $e \in L_{k}$. There are four cases.

Case 1. $\left|F_{L}\right| \leqslant 1$ and $\left|F_{R}\right| \leqslant 1$.
Since $\left|F_{L}\right| \leqslant 1$, by Lemma 2.4, the edge e lies on a cycle of even length l in $L_{k}-F_{L}$, with $4 \leqslant l \leqslant 8$. In particular, we use C_{8} to denote such a cycle of length 8 .

We now assume $10 \leqslant l \leqslant 16$. Since $\left|E\left(C_{8}-e\right)\right|=$ $8-1>2|F|$, there is an edge $u_{L} v_{L}$ on $C_{8}-e$ such that $\left\{u_{L} u_{R}, v_{L} v_{R}, u_{R} v_{R}\right\} \cap F=\emptyset$. Let $P_{7}=C_{8}-u_{L} v_{L}$. Then $P_{7}+u_{L} u_{R}+u_{R} v_{R}+v_{R} v_{L}$ is a cycle of length 10 in $Q_{4}-F$ containing e. Assume $l \geqslant 12$ below. Since $\left|F_{R}\right| \leqslant 1$, by Lemma 2.4, the edge $u_{R} v_{R}$ lies on a cycle C_{l-8}^{\prime} of even length $l-8$ in $R_{k}-F_{R}$. Let $P_{l-9}^{\prime}=$ $C_{l-8}^{\prime}-u_{R} v_{R}$. Then $P_{7}+v_{L} v_{R}+P_{l-9}^{\prime}+u_{R} u_{L}$ is a cycle of even length l in $Q_{4}-F$ containing e.

Case 2. $\left|F_{L}\right|=2$ and $\left|F_{R}\right| \leqslant 1$.
Since $\left|F_{L}\right|=2,\left|F_{k} \cup F_{R}\right|=1$ and all edges in F are not incident with the same vertex, there is an edge $u_{L} v_{L} \in F_{L}$ such that $\left\{u_{L} u_{R}, v_{L} v_{R}, u_{R} v_{R}\right\} \cap F=\emptyset$. By Lemma 2.4, e lies on a cycle $C_{l_{0}}$ of even length l_{0} in $L_{k}-\left(F_{L}-u_{L} v_{L}\right\}$ for $4 \leqslant l_{0} \leqslant 8$.

Suppose that $6 \leqslant l \leqslant 8$. If $u_{L} v_{L} \notin C_{l}$, then the cycle C_{l} is required. If $u_{L} v_{L} \in C_{l}$ and $u_{L} v_{L} \in C_{l-2}$, let $P_{l-3}=C_{l-2}-u_{L} v_{L}$. Then $P_{l-3}+u_{L} u_{R}+v_{L} v_{R}+$ $u_{R} v_{R}$ is a cycle of length l in $Q_{4}-F$ containing e. If $u_{L} v_{L} \in C_{l}$ and $u_{L} v_{L} \notin C_{l-2}$, choose an edge $x_{L} y_{L} \in$ $C_{l-2}-e$ such that $\left\{x_{L} x_{R}, y_{L} y_{R}, x_{R} x_{R}\right\} \cap F=\emptyset$ for
$\left|F_{k} \cup F_{R}\right|=1$. Let $P_{l-3}=C_{l-2}-x_{L} y_{L}$, then $P_{l-3}+$ $x_{L} x_{R}+x_{R} y_{R}+y_{R} y_{L}$ is a cycle of length l in $Q_{4}-F$ containing e.

Suppose that $10 \leqslant l \leqslant 16$.
If $u_{L} v_{L} \in C_{8}$, let $P_{7}=C_{8}-u_{L} v_{L}$. Then $P_{7}+$ $u_{L} u_{R}+v_{L} v_{R}+u_{R} v_{R}$ is a cycle of length 10 in $Q_{4}-F$ containing e. Assume $l \geqslant 12$ below. Since $\left|F_{R}\right| \leqslant 1$, by Lemma 2.4, there is a cycle C_{l-8}^{\prime} of length $l-8$ in R_{k} containing $u_{R} v_{R}$. Let $P_{l-9}^{\prime}=C_{l-8}^{\prime}-u_{R} v_{R}$. Then $P_{7}+u_{L} u_{R}+P_{l-9}^{\prime}+v_{R} v_{L}$ is a cycle of length l with in $Q_{4}-F$ containing e.

If $u_{L} v_{L} \notin C_{8}$, choose an edge $x_{L} y_{L} \in C_{8}-e$ such that $\left\{x_{L} x_{R}, y_{L} y_{R}, x_{R} y_{R}\right\} \cap F=\emptyset$ for $\left|F_{k} \cup F_{R}\right|=1$. Let $P_{7}=C_{8}-x_{L} y_{L}$. Then $P_{7}+x_{L} x_{R}+x_{R} y_{R}+y_{R} y_{L}$ is a cycle of length 10 in $Q_{4}-F$ containing e. Assume $l \geqslant 12$ below. Since $\left|F_{R}\right| \leqslant 1$, by Lemma 2.4 , let C_{l-8}^{\prime} be a cycle of even length $l-8$ in R_{k} containing $x_{R} y_{R}$ and $P_{l-9}^{\prime}=C_{l-8}^{\prime}-x_{R} y_{R}$. Then $P_{7}+x_{L} x_{R}+P_{l-9}^{\prime}+$ $y_{R} y_{L}$ is a cycle of even length l in $Q_{4}-F$ containing e.

Case 3. $\left|F_{L}\right|=0$ and $\left|F_{R}\right|=2$.
By Lemma 2.4, the edge e lies on a cycle of even length l with $4 \leqslant l \leqslant 8$ in L_{k}. In particular, we use C_{8} to denote such a cycle of length 8 . Since $\mid E\left(C_{8}-\right.$ $e)|=8-1>2| F \mid$, we can choose an edge $x_{L} y_{L}$ on $C_{8}-e$ such that $\left\{x_{L} x_{R}, y_{L} y_{R}, x_{R} y_{R}\right\} \cap F=\emptyset$. Let $P_{7}=C_{8}-x_{L} y_{L}$. Then $P_{7}+x_{L} x_{R}+x_{R} y_{R}+y_{R} y_{L}$ is a cycle of length 10 in $Q_{4}-F$ containing e. Next, we suppose that $12 \leqslant l \leqslant 16$.

Since $\left|F_{R}\right|=2,\left|F_{k}\right|=1$ and all edges in F are not incident with the same vertex, there is an edge $u_{R} v_{R} \in$ F_{R} such that $\left\{u_{L} u_{R}, v_{L} v_{R}, u_{L} v_{L}\right\} \cap F=\emptyset$.

Suppose that $e \neq u_{L} v_{L}$. By Lemma 2.2, there is a cycle C_{8} of length 8 containing e and $u_{L} v_{L}$ in L_{k}. Let $P_{7}=C_{8}-u_{L} v_{L}$. By Lemma 2.4, the edge $u_{R} v_{R}$ lies on a cycle C_{l-8}^{\prime} of even length $l-8$ in $R_{k}-\left(F_{R}-u_{R} v_{R}\right)$ and let $P_{l-9}^{\prime}=C_{l-8}^{\prime}-u_{R} v_{R}$. Then $P_{7}+u_{L} u_{R}+P_{l-9}^{\prime}+v_{R} v_{L}$ a cycle of length l in $Q_{4}-F$ containing e.

Suppose that $e=u_{L} v_{L}$. By Lemma 2.3, there is a cycle $C_{8}=u_{L} v_{L}+v_{L} v_{L}^{\prime}+v_{L}^{\prime} v_{L}^{\prime \prime}+P_{3}+u_{L}^{\prime \prime} u_{L}^{\prime}+u_{L}^{\prime} u_{L}$ of length 8 in L_{k} such that $u_{L}^{\prime} v_{L}^{\prime} \in E\left(L_{k}\right)$. For $\left|F_{k}\right|=$ 1, we assume that $\left\{v_{L}^{\prime} v_{R}^{\prime}, v_{L}^{\prime \prime} v_{R}^{\prime \prime}\right\} \cap F_{k}=\emptyset$ (or $\left\{u_{L}^{\prime} u_{R}^{\prime}\right.$, $\left.u_{L}^{\prime \prime} u_{R}^{\prime \prime}\right\} \cap F_{k}=\emptyset$). By Lemma 2.4, there is a cycle C_{l-8}^{\prime} of even length $l-8$ in $R_{k}-\left(F_{R}-u_{R} v_{R}\right)+v_{R}^{\prime} v_{R}^{\prime \prime}$ containing $v_{R}^{\prime} v_{R}^{\prime \prime}$, where the edge $v_{R}^{\prime} v_{R}^{\prime \prime}$ is added only if $v_{R}^{\prime} v_{R}^{\prime \prime} \in F_{R}$. If $u_{R} v_{R} \notin C_{l-8}^{\prime}$, let $P_{l-9}^{\prime}=C_{l-8}^{\prime}-v_{R}^{\prime} v_{R}^{\prime \prime}$. Then we get a cycle $C_{l}=u_{L} v_{L}+v_{L} v_{L}^{\prime}+v_{L}^{\prime} v_{R}^{\prime}+$
$P_{l-9}^{\prime}+v_{R}^{\prime \prime} v_{L}^{\prime \prime}+P_{3}+u_{L}^{\prime \prime} u_{L}^{\prime}+u_{L}^{\prime} u_{L}$ of length l in $Q_{4}-F$ containing e. If $u_{R} v_{R} \in C_{l-8}^{\prime}$, we may write C_{l-8}^{\prime} as $u_{R} v_{R}+P_{r}^{\prime}+v_{R}^{\prime} v_{R}^{\prime \prime}+P_{s}^{\prime}\left(\right.$ or $u_{R} v_{R}+P_{r}^{\prime}+$ $\left.v_{R}^{\prime \prime} v_{R}^{\prime}+P_{s}^{\prime}\right)$ with $r+s=l-10$. Then we get a cycle $C_{l}=u_{L} v_{L}+v_{L} v_{R}+P_{r}^{\prime}+v_{R}^{\prime} v_{L}^{\prime}+v_{L}^{\prime} u_{L}^{\prime}+u_{L}^{\prime} u_{L}^{\prime \prime}+$ $P_{3}+v_{L}^{\prime \prime} v_{R}^{\prime \prime}+P_{s}^{\prime}+u_{R} u_{L}\left(\right.$ or $u_{L} v_{L}+v_{L} v_{R}+P_{r}^{\prime}+$ $\left.v_{R}^{\prime \prime} v_{L}^{\prime \prime}+P_{3}+u_{L}^{\prime \prime} u_{L}^{\prime}+u_{L}^{\prime} v_{L}^{\prime}+v_{L}^{\prime} v_{R}^{\prime}+P_{s}^{\prime}+u_{R} u_{L}\right)$ of length l in $Q_{4}-F$ containing e.

Case 4. $\left|F_{L}\right|=1$ and $\left|F_{R}\right|=2$.
Since $\left|F_{L}\right|=1$, by Lemma 2.4, e lies on a cycle C_{4} of length four. By the choice of k in the proof of Lemma 2.1, we deduce $F=F_{i}$ from $\left|F_{k}\right|=0$ and $\left|F_{k}\right| \geqslant\left|F_{j}\right|$ for all $j \in\{1,2,3,4\} \backslash\{i\}$. Express $Q_{n}=L_{i} \odot R_{i}$, then $\left|F_{R}\right|=\left|F_{L}\right|=0$. Let $e=x_{L} x_{R}$ and $C_{4}=e+x_{L} y_{L}+y_{L} y_{R}+y_{R} x_{R}$.

Suppose that $6 \leqslant l \leqslant 10$. By Lemma 2.4, there is a cycle C_{l-2} of length $l-2$ in L_{i} containing $x_{L} y_{L}$. Let $P_{l-3}=C_{l-2}-x_{L} y_{L}$. Then $P_{l-3}+e+x_{R} y_{R}+$ $y_{R} y_{L}$ is a cycle of length l in $Q_{4}-F$ containing e. In particular, let $P_{7}=C_{8}-x_{L} y_{L}$.

Suppose that $12 \leqslant l \leqslant 16$. By Lemma 2.4, there is a cycle C_{l-8}^{\prime} of length $l-8$ in R_{i} containing $x_{R} y_{R}$. Let $P_{l-9}^{\prime}=C_{l-8}^{\prime}-x_{R} y_{R}$. Then $P_{7}+e+P_{l-9}^{\prime}+y_{R} y_{L}$ is a cycle of length l in $Q_{4}-F$ containing e.

The lemma is proved.

3. Proof of theorem

We prove the theorem stated in Introduction by induction on $n \geqslant 4$. By Lemma 2.5, the theorem is true for $n=4$. Suppose that the theorem is true for every m with $4 \leqslant m<n$. Let F be a subset of $E\left(Q_{n}\right)$ with $|F|=n-1$ and suppose that all edges in F are not incident with the same vertex. Let e be an i-dimensional edge in $Q_{n}-F$ for some $i \in\{1,2, \ldots, n\}$. By Lemma 2.1 we can choose $k \in\{1$, $2, \ldots, n\} \backslash\{i\}$ and express $Q_{n}=L_{k} \odot R_{k}$ such that $\left|F_{L}\right| \leqslant n-2$ and $\left|F_{R}\right| \leqslant n-2$. Moreover, if the equality hold, then all these $n-2$ edges in either L_{k} or R_{k} are not incident with the same vertex.

Without loss of generality, assume $e \in L_{k}$ and let l be any even integer with $6 \leqslant l \leqslant 2^{n}$. To prove the theorem, we only need to construct a cycle of length l in $Q_{n}-F$ containing e.

If $6 \leqslant l \leqslant 2^{n-1}$ then, since $\left|F_{L}\right| \leqslant n-2$ and by the induction hypothesis, e lies on a cycle of even length l in $L_{k}-F_{L}$.

In particular, let $C_{2^{n-1}}$ and $C_{2^{n-1}-2}$ denote such a cycle of length 2^{n-1} and $2^{n-1}-2$, respectively. Since $\left|E\left(C_{2^{n-1}}-e\right)\right|=2^{n-1}-1>2(n-1)=2|F|$ for $n \geqslant 5$, there is an edge $u_{L} v_{L}$ on $C_{2^{n-1}}$ such that $u_{L} v_{L} \neq e$ and $\left\{u_{L} u_{R}, v_{L} v_{R}, u_{R} v_{R}\right\} \cap F=\emptyset$. Let $P_{2^{n-1}-1}=C_{2^{n-1}}-u_{L} v_{L}$. Since $\left|E\left(C_{2^{n-1}-2}-e\right)\right|=$ $2^{n-1}-2-1>2(n-1)=2|F|$ for $n \geqslant 5$, there is an edge $x_{L} y_{L}$ on $C_{2^{n-1}-2}$ such that $x_{L} y_{L} \neq e$ and $\left\{x_{L} x_{R}, y_{L} y_{R}, x_{R} y_{R}\right\} \cap F=\emptyset$. Let $P_{2^{n-1}-3}=$ $C_{2^{n-1}-2}-x_{L} y_{L}$.

If $l=2^{n-1}+2$, then $P_{2^{n-1}-1}+u_{L} u_{R}+u_{R} v_{R}+$ $v_{R} v_{L}$ is a cycle of length l in $Q_{n}-F$ containing e.

If $l=2^{n-1}+4$ then, since $\left|F_{R}\right| \leqslant n-2$ and by the induction hypothesis, $x_{R} y_{R}$ lies on a cycle C_{6}^{\prime} of length 6 in $R_{k}-F_{R}$. Let $P_{5}^{\prime}=C_{6}^{\prime}-x_{R} y_{R}$. Then $P_{2^{n-1}-3}+x_{L} x_{R}+P_{5}^{\prime}+y_{R} y_{L}$ is a cycle of even length l in $Q_{n}-F$ containing e.

If $2^{n-1}+6 \leqslant l \leqslant 2^{n}$ then, since $\left|F_{R}\right| \leqslant n-2$ and by the induction hypothesis, $u_{R} v_{R}$ lies on a cycle $C_{l-2^{n-1}}^{\prime}$ of even length $l-2^{n-1}$ in $R_{k}-F_{R}$. Let $P_{l-2^{n-1}-1}^{\prime}=C_{l-2^{n-1}}^{\prime}-u_{R} v_{R}$. Then $P_{2^{n-1}-1}+u_{L} u_{R}+$ $P_{l-2^{n-1}-1}^{\prime}+v_{R} v_{L}$ is a cycle of even length l in $Q_{n}-F$ containing e.

The theorem is proved.

References

[1] B. Alspach, D. Hare, Edge-pancyclic block-intersection graphs, Discrete Math. 97 (1-3) (1991) 17-24.
[2] J.A. Bondy, Pancyclic graphs, I, J. Combin. Theory 11 (1971) 80-84.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan Press, London, 1976.
[4] K. Day, A. Tripathi, Embedding of cycles in arrangement graphs, IEEE Trans. Comput. 42 (1993) 1002-1006.
[5] A. Germa, M.C. Heydemann, D. Sotteau, Cycles in the cubeconnected cycles graphs, Discrete Appl. Math. 83 (1998) 135155.
[6] A. Hobbs, The square of a block is vertex pancyclic, J. Combin. Theory B 20 (1) (1976) 1-4.
[7] S.-Y. Hsieh, C.-H. Chen, Pancyclicity on Möbius cubes with maximal edge faults, Parallel Comput. 30 (3) (2004) 407-421.
[8] S.-Y. Hsieh, C.-W. Ho, G.-H. Chen, Fault-free Hamiltonian cycles in faulty arrangement graphs, IEEE Trans. Parallel Distributed Systems 10 (3) (1999) 223-237.
[9] S.C. Hwang, G.H. Chen, Cycles in butterfly graphs, Networks 35 (2) (2000) 161-171.
[10] Y.-R. Leu, S.-Y. Kuo, Distributed fault-tolerant ring embedding and reconfiguration in hypercubes, IEEE Trans. Comput. 48 (1) (1999) 81-88.
[11] T.K. Li, C.H. Tsai, J.J.M. Tan, L.H. Hsu, Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes, Inform. Process. Lett. 87 (2003) 107-110.
[12] S. Litifi, S. Zheng, N. Bagherzadeh, Optimal ring embedding in hypercubes with faulty links, in: Proc. Fault-Tolerant Computing Symp., 1992, pp. 178-184.
[13] J. Mitchem, E. Schmeichel, Pancyclic and bipancyclic graphs—a survey, in: Proc. First Colorado Symp. on Graphs and Applications, Boulder, CO, Wiley-Interscience, New York, 1985, pp. 271-278.
[14] Y. Saad, M.H. Schultz, Topological properties of hypercubes, IEEE Trans. Comput. 37 (7) (1988) 867-872.
[15] S. Sen, A. Sengupta, S. Bandyopadhyay, On some topological properties of hypercube, incomplete hypercube and supercube, in: Proc. Internat. Parallel Processing Symp., 1993, pp. 636642.
[16] A. Sengupta, On ring in hypercubes with faulty nodes and links, Inform. Process. Lett. 68 (1998) 207-214.
[17] J.-M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht/Boston/London, 2001.
[18] J.-M. Xu, Theory and Application of Graphs, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.

[^0]: * The work was supported by NNSF of China (No. 10271114).
 * Corresponding author.

 E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

