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Abstract

In this paper, we consider the problem embedding a cycle into the hypercubeQn with existence of faulty edges and sho
that for any edge subsetF of Qn with |F | � n − 1 every edge ofQn − F lies on a cycle of every even length from 6 ton

inclusive providedn � 4 and all edges inF are not incident with the same vertex. This result improves some known resu
 2005 Published by Elsevier B.V.
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1. Introduction

To find a cycle of given length in graphG is a cycle
embedding problem, and to find cycles of all leng
from 3 to |V (G)| is a pancyclic problem. The cycl
embedding problem is investigated in a lot of interco
nection networks [4,5,9,10,12,15]. In general, a gra
is of pancyclicity if it contains cycles of all length [2
The pancyclicity is an important property to determ
if a topology of network is suitable for an applicatio
where mapping cycles of any length into the topolo
of network is required. The concept of pancyclic
has been extended to vertex-pancyclicity [6] and ed
pancyclicity [1]. A graph is vertex-pancyclic if ever
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vertex lies on a cycle of every length from 3 to|V (G)|;
and edge-pancyclic if every edge lies on a cycle
every length from 3 to|V (G)|. It is clear that if a
graphG is edge-pancyclic then it is vertex-pancyc
certainly. Bipancyclicity is essentially a restriction
the concept of pancyclicity to bipartite graphs who
cycles are necessarily of even length. A graphG is
edge-bipancyclic if every edge lies on a cycle of ev
even length from 4 to|V (G)| [13]. A graph G is
k-edge-fault-tolerant Hamiltonian (edge-pancyclic)
the resulting graph by deleting anyk edges fromG is
Hamiltonian (edge-pancyclic).

The fault-tolerant Hamiltonicity and pancyclicit
of many networks are investigated, for example, Hs
and Chen [7] for Möbius cubes, and Hsieh et al. [8]
arrangement graphs. In this paper we consider e
bipancyclicity of hypercubes with faulty edges. Fau
tolerant properties are critical to the performance e
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uation of the network topology. As a topology f
an interconnection network of a multiprocessor s
tem, the hypercubeQn (n � 2) is a widely used and
well-known interconnection model since it posses
many attractive properties [14,17]. Saad and Sch
[14] proved thatQn is bipancyclic. Leu and Kuo [10]
Litifi et al. [12] and Sen et al. [15], independent
proved thatQn is (n − 2)-edge-fault-tolerant Hamil
tonian. Sengupta [16] proved thatQn is (n − 1)-edge-
fault-tolerant Hamiltonian ifn � 4 and all the faulty
edges are not incident with the same vertex. Rece
Li et al. [11] have further showed thatQn is (n − 2)-
edge-fault-tolerant edge-bipancyclic. In this paper,
obtain the following result.

Theorem. For any subset F of E(Qn) with |F | �
n − 1, every edge of Qn − F lies on a cycle of every
even length from 6 to 2n inclusive provided n � 4 and
all edges in F are not incident with the same vertex.

Obviously, a cycle of length 2n in Qn − F is a
Hamilton cycle, which is the result of Sengupta.
|F | � n − 2 then all edges inF are not incident with
the same vertex sinceQn is n-regular, which implies
that our theorem holds. Also, any edgee in Qn lies on
exactlyn− 1 cycles of length four. If|F | � n− 2 then
every edge inQn − F must lie on a cycle of length
four. Thus, our result implies the result of Li et al.

The proof of theorem is in Section 3. In Section
some lemmas are given.

2. Some lemmas

We follow [3] or [18] for graph-theoretical termi
nology and notation not denned here. A graphG =
(V ,E) always means a simple and connected gra
whereV = V (G) is the vertex-set andE = E(G) is
the edge-set ofG. A uv-path is a sequence of adj
cent vertices, written as〈v0, v1, v2, . . . , vm〉, in which
u = v0, v = vm and all the verticesv0, v1, v2, . . . , vm

are distinct except possiblyv0 = vm. The length of
a pathP is the number of edges inP . A cycle is a
path with at least three vertices such that the first
tex is the same as the last one. A cycle is calle
Hamiltonian cycle if it contains all vertices ofG and a
uv-path is called a Hamiltonian path if it contains
vertices ofG.
An n-dimensional binary hypercubeQn is a graph
with 2n vertices, each vertex denoted by ann-bit bi-
nary stringu = unun−1 . . . u2u1. Two vertices are ad
jacent if and only if their strings differ exactly in on
bit position. It has been proved thatQn is a vertex and
edge transitive bipartite graph (see, for example, [1

By the definition, for anyk ∈ {1,2, . . . , n}, Qn can
be expressed asQn = Lk � Rk , whereLk andRk are
the two (n − 1)-subcubes ofQn induced by the ver
tices with thek bit position is 0 and 1, respectivel
We call edges betweenLk andRk to bek-dimensional,
which form a perfect matching ofQn. Clearly, for any
edgee of Qn, there is somek ∈ {1,2, . . . , n} such
thate is k-dimensional. UseuL anduR to denote two
vertices inLk andRk , respectively, linked by thek-di-
mensional edgeuLuR in Qn.

For a subsetF of E(Qn) and anyk ∈ {1,2, . . . , n},
we always expressQn asQn = Lk �Rk , and letFL =
F ∩E(Lk), FR = F ∩E(Rk) andFk = F\(FL ∪FR).

Lemma 2.1. For any subset F of E(Qn) and any given
i ∈ {1,2, . . . , n}, if |F | = n − 1 with n � 4 and all
edges in F are not incident with the same vertex, then
there is k ∈ {1, . . . , n}\{i} such that |FL| � n − 2 and
|FR| � n − 2. Moreover, if |FL| = n − 2 (or |FR| =
n − 2) with n � 5, then all these n − 2 edges in FL (or
FR) are not incident with the same vertex.

Proof. For a giveni, let Ni = {1, . . . , n}\{i}. We first
choosej ∈ Ni such that|Fj | is as large as possible
If |Fj | � 2, then|FL| � n − 3 and|FR| � n − 3. Let
k = j and we are done.

If |Fj | = 1, thenF contains at most one edge
every dimension inNi . Let I = {t : |Ft | = 1, t ∈ Ni}.
Choosek ∈ I such that the only edgefk ∈ Fk is ad-
jacent other edges inF as many as possible. So t
former part in the lemma holds clearly. If|FL| = n−2
(or |FR| = n−2) and all edges inFL are incident with
the same vertex, sayx, thenfk is not incident withx
by the hypothesis ofF , which contradicts to the choic
of k for n � 5. Therefore, if|FL| = n − 2 with n � 5,
then all edges inFL are not incident with the sam
vertex.

If |Fj | = 0, thenF = Fi . Let uv and xy be two
distinct edges inFi and let u = un . . . ui . . . u1 and
x = xn . . . xi . . . x1. Thenv = un . . . ui+1ūiui−1 . . . u1
and y = xn . . . xi+1x̄ixi−1 . . . x1. Sinceuv �= xy and
F = Fi , there exists somek ∈ Ni such thatuk �= xk .
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Without loss of generality, suppose thatuv is in Lk .
Thenxy in Rk and so|FL| � n − 2 and|FR| � n − 2.
Also sinceF = Fi , any two distinct edges inF are not
incident with the same vertex and sok is required. The
lemma follows. �

When we expressQn asQn = Lk �Rk , for an edge
eL = uLvL in Lk , there is an corresponding edge
Rk , denoted byeR = uRvR . Similarly, for a pathP or
a cycleC in Lk , we denote the corresponding path
cycle inRk by P ′ or C′.

Lemma 2.2. Any two edges in Qn (n � 2) are in-
cluded in a Hamiltonian cycle.

Proof. We prove the lemma by induction onn � 2.
Obviously, the lemma is true forn = 2. Assume tha
the lemma is true for everyk with 2� k < n. Let e and
e′ be two edges inQn and expressQn = Lk �Rk such
that none ofe ande′ is k-dimensional. Without loss o
generality, we may assumee ∈ Lk . Furthermore, we
can suppose thate′ is in Lk , otherwise considere′

L

instead ofe′. By the induction hypothesis, there e
ists a Hamiltonian cycleC containinge ande′ in Lk .
Let uLvL be an edge onC different from e and e′.
The correspondingC′ is a Hamiltonian cycle inRk

containinguRvR , eR ande′
R . Let P = C − uLvL and

P ′ = C′ − uRvR . ThenP + uLvL + P ′ + vRvL is a
Hamiltonian cycle inQn containinge ande′. �
Lemma 2.3. For any edge uv of Qn, there is a Hamil-
tonian cycle C such that it contains uv and two neigh-
bors of {u,v} on C are adjacent in Qn.

Proof. We proof the lemma by induction onn � 2.
Obviously, the lemma is true forn = 2. Assume tha
the lemma is true for all 2� k < n and denoteQn =
Lk �Rk such thatuv is notk-dimensional edge. With
out loss of generality, we may assumeuv ∈ Lk . By
the induction hypothesis, there exists a Hamilton
cycle C such that it containsuv and two neighbors
{wL,zL} of {u,v} on C are adjacent inLk , wherewL

is a neighbor ofu and zL is a neighbor ofv on C.
Since the length ofC is not less than 4, there exis
an edgexLyL on C such that{xL, yL} ∩ {u,v} = ∅.
Let P = C −xLyL. The correspondingP ′ is anxRyR-
Hamiltonian path inRk . Thus,P +yLyR +P ′ +xRxL

is a desired Hamiltonian cycle inQn. �
Usually, we usePl andCl to denote the path an
cycle of lengthl, respectively.

Lemma 2.4 (Li et al. [11]). Q3 is 1-edge-fault-tolerant
edge-bipancyclic.

Lemma 2.5. Every edge of Q4 − F lies on a cycle of
every even length from 6 to 16 inclusive for any F ⊂
E(Q4) with |F | = 3 provided all edges in F are not
incident with the same vertex.

Proof. Let F be a subset ofE(Q4) with |F | = 3 and
suppose that all edges inF are not incident with the
same vertex. Lete be an edge inQ4 − F and suppose
that e is i-dimensional for somei ∈ {1,2,3,4}. By
Lemma 2.1 we can choosek ∈ {1,2,3,4}\{i} and ex-
pressQ4 = Lk � Rk such that|FL| � 2 and|FR| � 2.
Let l be any even integer with 6� l � 16. To prove
the lemma, we need to construct a cycle of lengl
in Q4 − F containinge. Sincek �= i, without loss of
generality, we may assume thate ∈ Lk . There are four
cases.

Case 1. |FL| � 1 and|FR| � 1.
Since|FL| � 1, by Lemma 2.4, the edgee lies on

a cycle of even lengthl in Lk − FL, with 4 � l � 8.
In particular, we useC8 to denote such a cycle o
length 8.

We now assume 10� l � 16. Since|E(C8 − e)| =
8−1> 2|F |, there is an edgeuLvL onC8−e such that
{uLuR, vLvR,uRvR} ∩ F = ∅. Let P7 = C8 − uLvL.
ThenP7+uLuR +uRvR +vRvL is a cycle of length 10
in Q4 − F containinge. Assumel � 12 below. Since
|FR| � 1, by Lemma 2.4, the edgeuRvR lies on a cycle
C′

l−8 of even lengthl − 8 in Rk − FR . Let P ′
l−9 =

C′
l−8 − uRvR . ThenP7 + vLvR + P ′

l−9 + uRuL is a
cycle of even lengthl in Q4 − F containinge.

Case 2. |FL| = 2 and|FR| � 1.
Since|FL| = 2, |Fk ∪ FR| = 1 and all edges inF

are not incident with the same vertex, there is an e
uLvL ∈ FL such that{uLuR, vLvR,uRvR} ∩ F = ∅.
By Lemma 2.4,e lies on a cycleCl0 of even lengthl0
in Lk − (FL − uLvL} for 4� l0 � 8.

Suppose that 6� l � 8. If uLvL /∈ Cl , then the cy-
cle Cl is required. IfuLvL ∈ Cl anduLvL ∈ Cl−2, let
Pl−3 = Cl−2 − uLvL. ThenPl−3 + uLuR + vLvR +
uRvR is a cycle of lengthl in Q4 − F containinge. If
uLvL ∈ Cl anduLvL /∈ Cl−2, choose an edgexLyL ∈
Cl−2 − e such that{xLxR, yLyR, xRxR} ∩ F = ∅ for
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|Fk ∪ FR| = 1. LetPl−3 = Cl−2 − xLyL, thenPl−3 +
xLxR + xRyR + yRyL is a cycle of lengthl in Q4 − F

containinge.
Suppose that 10� l � 16.
If uLvL ∈ C8, let P7 = C8 − uLvL. Then P7 +

uLuR +vLvR +uRvR is a cycle of length 10 inQ4−F

containinge. Assumel � 12 below. Since|FR| � 1,
by Lemma 2.4, there is a cycleC′

l−8 of lengthl − 8 in
Rk containinguRvR . Let P ′

l−9 = C′
l−8 − uRvR . Then

P7 + uLuR + P ′
l−9 + vRvL is a cycle of lengthl with

in Q4 − F containinge.
If uLvL /∈ C8, choose an edgexLyL ∈ C8 − e such

that {xLxR, yLyR, xRyR} ∩ F = ∅ for |Fk ∪ FR| = 1.
Let P7 = C8−xLyL. ThenP7+xLxR +xRyR +yRyL

is a cycle of length 10 inQ4−F containinge. Assume
l � 12 below. Since|FR| � 1, by Lemma 2.4, letC′

l−8
be a cycle of even lengthl − 8 in Rk containingxRyR

andP ′
l−9 = C′

l−8 − xRyR . ThenP7 + xLxR + P ′
l−9 +

yRyL is a cycle of even lengthl in Q4 − F contain-
ing e.

Case 3. |FL| = 0 and|FR| = 2.
By Lemma 2.4, the edgee lies on a cycle of even

length l with 4 � l � 8 in Lk . In particular, we use
C8 to denote such a cycle of length 8. Since|E(C8 −
e)| = 8 − 1 > 2|F |, we can choose an edgexLyL on
C8 − e such that{xLxR, yLyR, xRyR} ∩ F = ∅. Let
P7 = C8 − xLyL. ThenP7 + xLxR + xRyR + yRyL is
a cycle of length 10 inQ4 − F containinge. Next, we
suppose that 12� l � 16.

Since|FR| = 2, |Fk| = 1 and all edges inF are not
incident with the same vertex, there is an edgeuRvR ∈
FR such that{uLuR, vLvR,uLvL} ∩ F = ∅.

Suppose thate �= uLvL. By Lemma 2.2, there is
a cycle C8 of length 8 containinge and uLvL in
Lk . Let P7 = C8 − uLvL. By Lemma 2.4, the edg
uRvR lies on a cycleC′

l−8 of even lengthl − 8 in
Rk − (FR −uRvR) and letP ′

l−9 = C′
l−8 −uRvR . Then

P7 + uLuR + P ′
l−9 + vRvL a cycle of lengthl in

Q4 − F containinge.
Suppose thate = uLvL. By Lemma 2.3, there is

cycleC8 = uLvL +vLv′
L +v′

Lv′′
L +P3+u′′

Lu′
L +u′

LuL

of length 8 inLk such thatu′
Lv′

L ∈ E(Lk). For |Fk| =
1, we assume that{v′

Lv′
R, v′′

Lv′′
R} ∩ Fk = ∅ (or {u′

Lu′
R,

u′′
Lu′′

R}∩Fk = ∅). By Lemma 2.4, there is a cycleC′
l−8

of even lengthl −8 in Rk − (FR −uRvR)+v′
Rv′′

R con-
taining v′

Rv′′
R , where the edgev′

Rv′′
R is added only if

v′
Rv′′

R ∈ FR . If uRvR /∈ C′
l−8, let P ′

l−9 = C′
l−8 − v′

Rv′′
R .

Then we get a cycleCl = uLvL + vLv′ + v′ v′ +
L L R
P ′
l−9 + v′′

Rv′′
L + P3 + u′′

Lu′
L + u′

LuL of length l in
Q4 − F containinge. If uRvR ∈ C′

l−8, we may write
C′

l−8 as uRvR + P ′
r + v′

Rv′′
R + P ′

s (or uRvR + P ′
r +

v′′
Rv′

R + P ′
s ) with r + s = l − 10. Then we get a cycl

Cl = uLvL + vLvR + P ′
r + v′

Rv′
L + v′

Lu′
L + u′

Lu′′
L +

P3 + v′′
Lv′′

R + P ′
s + uRuL (or uLvL + vLvR + P ′

r +
v′′
Rv′′

L + P3 + u′′
Lu′

L + u′
Lv′

L + v′
Lv′

R + P ′
s + uRuL) of

lengthl in Q4 − F containinge.
Case 4. |FL| = 1 and|FR| = 2.
Since |FL| = 1, by Lemma 2.4,e lies on a cycle

C4 of length four. By the choice ofk in the proof
of Lemma 2.1, we deduceF = Fi from |Fk| = 0
and |Fk| � |Fj | for all j ∈ {1,2,3,4}\{i}. Express
Qn = Li � Ri , then |FR| = |FL| = 0. Let e = xLxR

andC4 = e + xLyL + yLyR + yRxR .
Suppose that 6� l � 10. By Lemma 2.4, there i

a cycleCl−2 of length l − 2 in Li containingxLyL.
Let Pl−3 = Cl−2 − xLyL. ThenPl−3 + e + xRyR +
yRyL is a cycle of lengthl in Q4 − F containinge. In
particular, letP7 = C8 − xLyL.

Suppose that 12� l � 16. By Lemma 2.4, there i
a cycleC′

l−8 of length l − 8 in Ri containingxRyR .
Let P ′

l−9 = C′
l−8 − xRyR . ThenP7 + e +P ′

l−9 + yRyL

is a cycle of lengthl in Q4 − F containinge.
The lemma is proved. �

3. Proof of theorem

We prove the theorem stated in Introduction
induction on n � 4. By Lemma 2.5, the theorem
is true for n = 4. Suppose that the theorem is tr
for every m with 4 � m < n. Let F be a subse
of E(Qn) with |F | = n − 1 and suppose that a
edges inF are not incident with the same verte
Let e be ani-dimensional edge inQn − F for some
i ∈ {1,2, . . . , n}. By Lemma 2.1 we can choosek ∈ {1,

2, . . . , n}\{i} and expressQn = Lk � Rk such that
|FL| � n−2 and|FR| � n−2. Moreover, if the equal
ity hold, then all thesen − 2 edges in eitherLk or Rk

are not incident with the same vertex.
Without loss of generality, assumee ∈ Lk and let

l be any even integer with 6� l � 2n. To prove the
theorem, we only need to construct a cycle of lengl
in Qn − F containinge.

If 6 � l � 2n−1 then, since|FL| � n − 2 and by the
induction hypothesis,e lies on a cycle of even lengthl
in Lk − FL.
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In particular, letC2n−1 andC2n−1−2 denote such
a cycle of length 2n−1 and 2n−1 − 2, respectively.
Since|E(C2n−1 − e)| = 2n−1 − 1 > 2(n − 1) = 2|F |
for n � 5, there is an edgeuLvL on C2n−1 such that
uLvL �= e and {uLuR, vLvR,uRvR} ∩ F = ∅. Let
P2n−1−1 = C2n−1 − uLvL. Since|E(C2n−1−2 − e)| =
2n−1 − 2 − 1 > 2(n − 1) = 2|F | for n � 5, there
is an edgexLyL on C2n−1−2 such thatxLyL �= e

and {xLxR, yLyR, xRyR} ∩ F = ∅. Let P2n−1−3 =
C2n−1−2 − xLyL.

If l = 2n−1 + 2, thenP2n−1−1 + uLuR + uRvR +
vRvL is a cycle of lengthl in Qn − F containinge.

If l = 2n−1 + 4 then, since|FR| � n − 2 and by
the induction hypothesis,xRyR lies on a cycleC′

6
of length 6 inRk − FR . Let P ′

5 = C′
6 − xRyR . Then

P2n−1−3 + xLxR +P ′
5 + yRyL is a cycle of even length

l in Qn − F containinge.
If 2n−1 + 6 � l � 2n then, since|FR| � n − 2

and by the induction hypothesis,uRvR lies on a cy-
cle C′

l−2n−1 of even lengthl − 2n−1 in Rk − FR . Let
P ′

l−2n−1−1
= C′

l−2n−1 −uRvR . ThenP2n−1−1+uLuR +
P ′

l−2n−1−1
+vRvL is a cycle of even lengthl in Qn −F

containinge.
The theorem is proved.
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