The super connectivity of shuffle-cubes **

Jun-Ming Xu ${ }^{\text {a,* }}$, Min Xu^{b}, Qiang Zhu ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
${ }^{\mathrm{b}}$ Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China ${ }^{\text {c }}$ Department of Mathematics, XiDian University, Xi'an, Shanxi 710000, China

Received 21 January 2005; received in revised form 23 July 2005; accepted 28 July 2005
Available online 25 August 2005
Communicated by F.Y.L. Chin

Abstract

The shuffle-cube $S Q_{n}$, where $n \equiv 2(\bmod 4)$, a new variation of hypercubes proposed by Li et al. [T.-K. Li, J.J.M. Tan, L.-H. Hsu, T.-Y. Sung, The shuffle-cubes and their generalization, Inform. Process. Lett. 77 (2001) 35-41], is an n-regular n-connected graph. This paper determines that the super connectivity of $S Q_{n}$ is $2 n-4$ and the super edge-connectivity is $2 n-2$ for $n \geqslant 6$.

© 2005 Elsevier B.V. All rights reserved.
Keywords: Combinatorial problems; Shuffle-cubes; Super connectivity; Super edge-connectivity; Hypercubes

1. Introduction

The shuffle-cube, denoted by $S Q_{n}$, where $n \equiv$ $2(\bmod 4)$, as an interconnection network topology proposed by Li et al. [4], is a new variation of hypercubes Q_{n} obtained by changing some links. For an n-bit binary string $u=u_{n-1} u_{n-2} \ldots u_{1} u_{0} \in$ $V\left(S Q_{n}\right)$, let $p_{j}(u)=u_{n-1} u_{n-2} \ldots u_{n-j}$ and $s_{i}(u)=$ $u_{i-1} u_{i-2} \ldots u_{1} u_{0}$. The n-dimensional shuffle-cube $S Q_{n}, n \equiv 2(\bmod 4)$, is recursively defined as fol-

[^0]lows: $S Q_{2}$ is Q_{2}. For $n \geqslant 3, S Q_{n}$ consists of 16 subcube $S Q_{n-4}^{i_{1} i_{2} i_{i} i_{4}}$,s, where $i_{j} \in\{0,1\}$ for $1 \leqslant j \leqslant 4$ and $p_{4}(u)=i_{1} i_{2} i_{3} i_{4}$ for all vertices u in $S Q_{n-4}^{i_{1} i_{2} i_{3} i_{4}}$. The vertices $u=u_{n-1} u_{n-2} \ldots u_{1} u_{0}$ and $v=v_{n-1} v_{n-2} \ldots$ $v_{1} v_{0}$ in different ($n-4$)-dimensional subcubes are linked by an edge in $S Q_{n}$ if and only if $s_{n-4}(u)=$ $s_{n-4}(v)$ and $p_{4}(u) \oplus p_{4}(v) \in V_{s_{2}(u)}$, where the symbol \oplus denotes the addition with modulo 2 and
$V_{00}=\{1111,0001,0010,0011\}$,
$V_{01}=\{0100,0101,0110,0111\}$,
$V_{10}=\{1000,1001,1010,1011\}$,
$V_{11}=\{1100,1101,1110,1111\}$.

Fig. 1. A shuffle-cube $S Q_{6}$.
We illustrate $S Q_{6}$ in Fig. 1 showing only edges incident at vertices in $S Q_{2}^{0000}$ and omitting others.

It is convenient to let $n=4 k+2$ and $u=u_{n-1} u_{n-2}$ $\ldots u_{1} u_{0}=u_{4}^{k} u_{4}^{k-1} \ldots u_{4}^{1} u_{4}^{0}$, where $u_{4}^{0}=u_{1} u_{0}$ and $u_{4}^{j}=u_{4 j+1} u_{4 j} u_{4 j-1} u_{4 j-2}$ for $1 \leqslant j \leqslant k$. Then two vertices u and v in $S Q_{n}$ are linked by an edge if and only if one of the following conditions holds:
(1) $u_{4}^{j^{*}} \oplus v_{4}^{j^{*}} \in V_{u_{4}^{0}}$ for exactly one j^{*} satisfying $1 \leqslant$ $j^{*} \leqslant k$ and $u_{4}^{j}=v_{4}^{j}$ for all $0 \leqslant j \neq j^{*} \leqslant k$.
(2) $u_{4}^{0} \oplus v_{4}^{0} \in\{01,10\}$ and $u_{4}^{j}=v_{4}^{j}$ for all $1 \leqslant j \leqslant k$.

It has been shown that $S Q_{n}$ is n-regular n-connected in [4]. In this paper, we further discuss its super connectivity, a more refined parameter than the connectivity for measuring the reliability and the fault tolerance of a network [2,3].

Let $G=(V, E)$ be a graph. A subset $S \subset V$ (respectively $F \subset E$) is called a super vertex-cut (respectively super edge-cut) if $G-S$ (respectively $G-F$) is not connected and every component contains at least two vertices. The super connectivity $\kappa^{\prime}(G)$ (respectively super edge-connectivity $\left.\lambda^{\prime}(G)\right)$ is the minimum cardinality over all super vertex-cuts (respectively super edge-cuts) in G if they exist.

In [2], Esfahanian proved that $\kappa^{\prime}\left(Q_{n}\right)=\lambda^{\prime}\left(Q_{n}\right)=$ $2 n-2$ for $n \geqslant 3$. In this paper, we prove that $\kappa^{\prime}\left(S Q_{n}\right)=2 n-4$ and $\lambda^{\prime}\left(S Q_{n}\right)=2 n-2$, where $n \equiv 2(\bmod 4)$ and $n \geqslant 6$.

2. Some lemmas

We follow [1] for graph-theoretical terminology and notation not defined here. Let $G=(V, E)$ be a
simple connected graph. For $x \in V(G)$, let $N_{G}(x)$ be the set of neighbors of x and $d_{G}(x)=\left|N_{G}(x)\right|$, the degree of x. For $x y \in E(G)$, let $N_{G}(x y)=N_{G}(x) \cup$ $N_{G}(y) \backslash\{x, y\}$, and let
$\zeta_{G}(x y)=\left|N_{G}(x y)\right|$,
$\zeta(G)=\min \left\{\zeta_{G}(x y): x y \in E(G)\right\} ;$
$\xi_{G}(x y)=d_{G}(x)+d_{G}(y)-2$,
$\xi(G)=\min \left\{\xi_{G}(x y): x y \in E(G)\right\}$.
Lemma 1 [3]. $\lambda^{\prime}(G) \leqslant \xi(G)$ for any graph G with order at least four and not a star.

Lemma 2. $\zeta\left(S Q_{n}\right)=2 n-4$, and the edge $u v$ which attains this value is only if $u=u_{4}^{k} \ldots u_{4}^{1} u_{4}^{0}$ and $v=$ $u_{4}^{k} \ldots u_{4}^{i+1}\left(u_{4}^{i} \oplus e\right) u_{4}^{i-1} \ldots u_{4}^{0}$, where $e \in\{0001,0010$, $0011\} \subseteq V_{00}$ and $u_{4}^{0}=v_{4}^{0}=00$.

Proof. Let $u v$ be an edge in $S Q_{n}$ with $u=u_{4}^{k} u_{4}^{k-1} \ldots$ $u_{4}^{1} u_{4}^{0}$ and $v=v_{4}^{k} v_{4}^{k-1} \ldots v_{4}^{1} v_{4}^{0}$, where $u_{4}^{0}=u_{1} u_{0}$. Then $v=\left\{\begin{array}{l}u_{4}^{k} \ldots u_{4}^{i+1}\left(u_{4}^{i} \oplus e_{1}\right) u_{4}^{i-1} \ldots u_{4}^{1} u_{4}^{0} \\ \quad \text { for } i \neq 0, e_{1} \in V_{u_{4}^{0}}^{0}, \text { or } \\ u_{4}^{k} u_{4}^{k-1} \ldots u_{4}^{1}\left(u_{4}^{0} \oplus e_{2}\right) \\ \text { for } i=0, e_{2} \in\{01,10\} .\end{array}\right.$
For convenience, we denote $v=u_{4}^{k} \ldots u_{4}^{i+1}\left(u_{4}^{i} \oplus\right.$ $\left.e_{3}\right) u_{4}^{i-1} \ldots u_{4}^{1} u_{4}^{0}$ for the possible two cases.

If u and v have no neighbors in common, then $\zeta S Q_{n}(u v)=2 n-2>2 n-4$.

Suppose now that u and v have a neighbor w in common. Since w is a neighbor of u, then
$w=\left\{\begin{array}{l}u_{4}^{k} \ldots u_{4}^{j+1}\left(u_{4}^{j} \oplus e_{1}^{\prime}\right) u_{4}^{j-1} \ldots u_{4}^{1} u_{4}^{0} \\ \quad \text { for } j \neq 0, e_{1}^{\prime} \in V_{u_{4}^{0}}^{0}, \text { or } \\ u_{4}^{k} u_{4}^{k-1} \ldots u_{4}^{1}\left(u_{4}^{0} \oplus e_{2}^{\prime}\right) \\ \text { for } j=0, e_{2}^{\prime} \in\{01,10\} .\end{array}\right.$
For convenience, we denote $w=u_{4}^{k} \ldots u_{4}^{j+1}\left(u_{4}^{j} \oplus\right.$ $\left.e^{\prime}\right) u_{4}^{j-1} \ldots u_{4}^{1} u_{4}^{0}$ for the possible two cases. Since w is a neighbor of v, then

$$
w=\left\{\begin{array}{c}
v_{4}^{k} \ldots v_{4}^{s+1}\left(v_{4}^{s} \oplus e_{1}^{\prime \prime}\right) v_{4}^{s-1} \ldots v_{4}^{1} v_{4}^{0} \\
\text { for } s \neq 0, e_{1}^{\prime \prime} \in V_{v_{4}^{0}}^{0} \text {,or } \\
v_{4}^{k} v_{4}^{k-1} \ldots v_{4}^{1}\left(v_{4}^{0} \oplus e_{2}^{\prime \prime}\right) \\
\text { for } s=0, e_{2}^{\prime \prime} \in\{01,10\} .
\end{array}\right.
$$

We denote $w=v_{4}^{k} \ldots v_{4}^{s+1}\left(v_{4}^{s} \oplus e^{\prime \prime}\right) v_{4}^{s-1} \ldots v_{4}^{1} v_{4}^{0}$ for the possible two cases. Then $i=j=s, u_{4}^{i} \oplus e^{\prime}=$ $\left(u_{4}^{i} \oplus e_{3}\right) \oplus e^{\prime \prime}=u_{4}^{i} \oplus\left(e_{3} \oplus e^{\prime \prime}\right)$. If $i=0$, then $e^{\prime}=e_{3} \oplus e^{\prime \prime}$ does not holds for $\left\{e_{3}, e^{\prime}, e^{\prime \prime}\right\} \subseteq\{01,10\}$. If $i \neq 0$, then $e^{\prime}=e_{3} \oplus e^{\prime \prime}$ holds only for $u_{4}^{0}=00$ and $\left\{e_{3}, e^{\prime}, e^{\prime \prime}\right\}=\{0001,0010,0011\}$. The two vertices $u_{4}^{k} \ldots u_{4}^{i+1}\left(u_{4}^{i} \oplus e^{\prime}\right) u_{4}^{i-1} \ldots u_{4}^{1} u_{4}^{0}$ and $u_{4}^{k} \ldots u_{4}^{i+1}\left(u_{4}^{i} \oplus\right.$ $\left.e^{\prime \prime}\right) u_{4}^{i-1} \ldots u_{4}^{1} u_{4}^{0}$ are all neighbors of both u and v. So $\zeta_{S Q_{n}}(u v)=2 n-4$ and the lemma follows by the arbitrary choice of the edge $u v$.

Lemma 3. $\kappa^{\prime}\left(S Q_{n}\right) \leqslant 2 n-4$ for $n \geqslant 6$.
Proof. By Lemma 2, let $u v$ be an edge of $S Q_{n}$ such that $\zeta_{S Q_{n}}(u v)=2 n-4$, where $u=u_{4}^{k} \ldots u_{4}^{1} u_{4}^{0}$ and $v=u_{4}^{k} \ldots u_{4}^{i+1}\left(u_{4}^{i} \oplus e\right) u_{4}^{i-1} \ldots u_{4}^{0}, e \in V_{00}$ and $u_{4}^{0}=$ $v_{4}^{0}=00$. We prove that $N_{S Q_{n}}(u v)$ is a super vertex-cut, which means $\kappa^{\prime}\left(S Q_{n}\right) \leqslant \zeta_{S Q_{n}}(u v)=2 n-4$. To the end, we need to prove that $S Q_{n}-\left(N_{S Q_{n}}(u v) \cup\{u, v\}\right)$ has no isolated vertices.

Suppose that $w=w_{4}^{k} \ldots w_{4}^{1} w_{4}^{0}$ is a vertex in $S Q_{n}-\left(N_{S Q_{n}}(u v) \cup\{u, v\}\right)$. We now prove $N_{S Q_{n}}(w) \nsubseteq$ $N_{S Q_{n}}(u v)$, where $w_{4}^{0} \in\{00,01,10,11\}$.

If $w_{4}^{0}=00$, since $w \notin N_{S Q_{n}}(u v) \cup\{u, v\}$, then the vertex $w^{\prime}=w_{4}^{k} \ldots w_{4}^{1}\left(w_{4}^{0} \oplus 01\right)$ is a neighbor of w and $w^{\prime} \notin N_{S Q_{n}}(u v)$.

If $w_{4}^{0} \in\{01,10\}$, the vertex $w^{\prime}=w_{4}^{k} \ldots w_{4}^{1} 11$ is a neighbor of w and $w^{\prime} \notin N_{S Q_{n}}(u v)$.

If $w_{4}^{0}=11$, the vertex $w^{\prime}=w_{4}^{k} \ldots w_{4}^{i+1}\left(w_{4}^{i} \oplus\right.$ $\left.e^{\prime}\right) w_{4}^{i-1} \ldots w_{4}^{1} w_{4}^{0}$ is a neighbor of w and $w^{\prime} \notin$ $N_{S Q_{n}}(u v)$ where $e^{\prime} \in V_{11}$.

Owning to the above discussion, we have $N_{S Q_{n}}(w) \nsubseteq N_{S Q_{n}}(u v)$ for $n \geqslant 6$.

Lemma 4. Let $n=4 k+2, k \geqslant 1$. Then the number of non-adjacent edges between any two distinct $(4 k-2)$ subcubes is at least $2^{4 k-4}$.

Proof. Let $S Q_{4 k-2}^{i_{1} i_{2} i_{3} i_{4}}$ and $S Q_{4 k-2}^{j_{1} j_{2} j_{3} j_{4}}$ be two distinct $(4 k-2)$-subcubes in $S Q_{4 k+2}$. Obviously, the edges between $S Q_{4 k-2}^{i_{1} i_{2} i_{3} i_{4}}$ and $S Q_{4 k-2}^{j_{1} j_{2} j_{3} j_{4}}$ are non-adjacent since $i_{1} i_{2} i_{3} i_{4} \neq j_{1} j_{2} j_{3} j_{4}$. By the definition of $S Q_{4 k+2}$, every edge $u v$ between $S Q_{4 k-2}^{i_{1} i_{2} i_{3} i_{4}}$ and $S Q_{4 k-2}^{j_{1} j_{2} j_{3} j_{4}}$ satisfies $s_{4 k-2}(u)=s_{4 k-2}(v)$, and $p_{4}(u) \oplus p_{4}(v)=$ $i_{1} i_{2} i_{3} i_{4} \oplus j_{1} j_{2} j_{3} j_{4} \in V_{s_{2}(u)}$. Therefore, $s_{2}(u)$ is determined. Then the number of non-adjacent edges be-
tween $S Q_{4 k-2}^{i_{1} i_{2} i_{3} i_{4}}$ and $S Q_{4 k-2}^{j_{1} j_{2} j_{3} j_{4}}$ is at least $2^{4 k+2-4-2}=$ $2^{4 k-4}$.

3. Main results

Theorem 1. $\kappa^{\prime}\left(S Q_{n}\right)=2 n-4$, where $n=4 k+2$ and $k \geqslant 1$.

Proof. By Lemma 3, we only need to prove $\kappa^{\prime}\left(S Q_{n}\right) \geqslant$ $2 n-4$. To the end, let F be an arbitrary set of vertices in $S Q_{n}$ such that $|F| \leqslant 2 n-5$ and $S Q_{n}-F$ has no isolated vertices. We prove that $S Q_{n}-F$ is connected. By definition, $S Q_{n}$ consists of 16 subcube $S Q_{n-4}$'s. We partition 16 subcube $S Q_{n-4}$'s of $S Q_{n}$ into two subsets S_{1} and S_{2}, where $S_{1}=\left\{S Q_{n-4} \mid\right.$ $S Q_{n-4}$ contain at least $n-4$ vertices in $\left.F\right\}, S_{2}=$ $\left\{S Q_{n-4} \mid S Q_{n-4}\right.$ contain at most $n-5$ vertices in $\left.F\right\}$. Then S_{1} consists of at most three subcube $S Q_{n-4}$'s since $4(n-4)>2 n-5$ for $n \geqslant 6$, and so $S_{2} \neq \emptyset$.

We prove that $S Q_{n}-F$ is connected from the following claims.

Claim 1. $S_{2}-F$ is connected.
Proof. Let $n=4 k+2, k \geqslant 1$. Since every $(4 k-2)$ subcube in S_{2} is $(4 k-2)$-connected and contains at most $n-5(=4 k-3)$ vertices in F, it is connected in $S_{2}-F$.

If $k=1$, then $n=6,|F| \leqslant 7$ and every subcube $S Q_{2}$ in S_{2} contains at most one vertex in F. We decompose S_{2} into two subgraphs H_{1} and H_{2}, where $H_{1}=$ $\left\{S Q_{2} \mid V\left(S Q_{2}\right) \cap F \neq \emptyset\right\}$ and $H_{2}=\left\{S Q_{2} \mid V\left(S Q_{2}\right) \cap\right.$ $F=\emptyset\}$. Then H_{2} contains at least 9 subcube $S Q_{2}$'s. It is easy to observe that H_{2} is connected. If $H_{1}=\emptyset$, then the claim follows. Assume $H_{1} \neq \emptyset$ below. Let $G^{\prime}=S Q_{2}$ be a subcube in H_{1}. Since G^{\prime} contains at most one vertex in $F, G^{\prime}-F$ is connected and G^{\prime} has at least 11 neighbors in other subcube $S Q_{2}$'s, at least one of them is in H_{2} since there are at most 7 subcubes in $H_{1} \cup S_{1}$. Since H_{2} is connected, each subcube in H_{1} connects with H_{2} in $S Q_{6}-F$, and so $S_{2}-F$ is connected.

If $k \geqslant 2$, let G_{1} and G_{2} be two arbitrary distinct ($4 k-2$)-subcubes in S_{2}. We only need to prove that G_{1} connects with G_{2} in $S_{2}-F$. Let E_{12} be the set of non-adjacent edges between G_{1} and G_{2}. Then $\left|E_{12}\right| \geqslant$ $2^{4 k-4}$ by Lemma 4 . Since $2^{4 k-4}>2(4 k-3)=2(n-$
5) for $k \geqslant 2, G_{1}$ connects with G_{2} in $S_{2}-F$ for $k \geqslant 2$.

If $S_{1}=\emptyset$, then there is nothing to do by Claim 1. Assume $S_{1} \neq \emptyset$ below.

Claim 2. Let G_{1} be a subcube $S Q_{n-4}$ in S_{1} and T a connected component with t vertices in $G_{1}-F$. Then T connects with $S_{2}-F$.

Proof. If $t=1$, since $S Q_{n}-F$ has no isolated vertices, the vertex u_{1} in T connects with a vertex u_{2} in $\left(S Q_{n}-G_{1}\right)-F$.

If $t \geqslant 2$, for any edge $x y$ in T, we have $\mid V(T) \cap$ $N_{G_{1}}(x y) \mid \leqslant t-2$, and $N_{G_{1}}(x y) \geqslant 2(n-4)-4$ by Lemma 2. Since every vertex in G_{1} has the same k th 4-bit, different vertices in G_{1} have different neighbors in $S Q_{n}-G_{1}$. So T has $4 t$ neighbors in $S Q_{n}-G_{1}$. Thus, T has at least $2(n-4)-4-(t-2)+4 t$ neighbors in $S Q_{n}-T$. Since $2(n-4)-4-(t-2)+4 t=$ $2 n+3 t-10>2 n-5 \geqslant|F|$ and T is a component of $G_{1}-F$, there exist a vertex u_{1} in T and a vertex u_{2} in $\left(S Q_{n}-G_{1}\right)-F$ such that $u_{1} u_{2} \in E\left(S Q_{n}-F\right)$.

Let G_{2} be a subcube $S Q_{n-4}$ that contains u_{2}. If $G_{2} \in S_{2}$, then the claim follows. Assume $G_{2} \in S_{1}$ below. Since each of G_{1} and G_{2} contains at least $n-4$ vertices in F and $(2 n-5)-2(n-4)=3, F$ contains at most three vertices of $S Q_{n}-G_{1}-G_{2}$. By Lemma 2, u_{1} and u_{2} have at most two neighbors in common. Note that each vertex in a subcube $S Q_{n-4}$ has four neighbors in other subcubes. Thus, $\left\{u_{1}, u_{2}\right\}$ has at least four neighbors in $S Q_{n}-G_{1}-G_{2}$, at least one of them, say u_{3}, is not in F and $\left|V\left(G_{3}\right) \cap F\right| \leqslant 1$, where G_{3} is the $(n-4)$-subcube containing u_{3}. Since $\left|V\left(G_{3}\right) \cap F\right| \leqslant 1 \leqslant n-5, G_{3} \in S_{2}$, and so the claim follows.

By the above discussion, we prove that $S Q_{n}-F$ is connected, which means $\kappa^{\prime}\left(S Q_{n}\right) \geqslant 2 n-4$ for $n \geqslant 6$. The theorem follows.

Theorem 2. $\lambda^{\prime}\left(S Q_{n}\right)=2 n-2$, where $n=4 k+2$ and $k \geqslant 1$.

Proof. By Lemma 1, we only need to prove $\lambda^{\prime}\left(S Q_{n}\right) \geqslant$ $2 n-2$ for $n \geqslant 6$.

Let F be an arbitrary set of edges in $S Q_{n}$ such that $|F| \leqslant 2 n-3$ and $S Q_{n}-F$ has no isolated vertices. We prove that $S Q_{n}-F$ is connected.

We partition 16 subcube $S Q_{n-4}$'s of $S Q_{n}$ into two subsets S_{1} and S_{2}, where $S_{1}=\left\{S Q_{n-4} \mid S Q_{n-4}\right.$ contain at least $n-4$ edges in $F\}, S_{2}=\left\{S Q_{n-4} \mid S Q_{n-4}\right.$ contain at most $n-5$ edges in F \}. Then S_{1} consists of at most four subcube $S Q_{n-4}$'s since $5(n-4)>2 n-3$ for $n \geqslant 6$, and so $S_{2} \neq \emptyset$. We complete the proof by the following claims.

Claim 1. $S_{2}-F$ is connected.
Proof. Let $n=4 k+2, k \geqslant 1$. Since $S Q_{n}$ is n-regular n-connected in [4], we conclude that $S Q_{n}$ is n-edgeconnected. Then every $(4 k-2)$-subcube in S_{2} is also connected in $S_{2}-F$. Let G_{1} and G_{2} be two arbitrary distinct $(4 k-2)$-subcubes in S_{2}. We only need to prove G_{1} connects with G_{2} in $S_{2}-F$. Let B_{12} be a set of edges between G_{1} and G_{2}. Then $\left|B_{12}\right| \geqslant 2^{4 k-4}$. If $B_{12} \nsubseteq F$, then there is noting to do. Assume $B_{12} \subseteq F$ below.

Since S_{1} consists of at most four $(4 k-2)$-subcubes, $\left|S_{2}\right| \geqslant 12$. For each of other 10 subcubes in $S_{2}-F$, if at most one of subcube in $\left\{G_{1}, G_{2}\right\}$ connects with it, then
$|F| \geqslant(10+1) \cdot\left|B_{12}\right| \geqslant 11 \cdot 2^{4 k-4}>|F|$,
a contradiction. Thus, there exists a $(4 k-2)$-subcube, say G_{3}, such that G_{3} connects each of G_{1} and G_{2} in $S_{2}-F$. This implies G_{1} and G_{2} are connected in $S_{2}-F$.

If $S_{1}=\emptyset$, then there is nothing to do by Claim 1 . Assume $S_{1} \neq \emptyset$ below.

Claim 2. Let G_{1} be a subcube $S Q_{n-4}$ in S_{1} and T connected component with t vertices in $G_{1}-F$. Then T connects with $S_{2}-F$.

Proof. If $t=1$, since there is no isolated vertex in $S Q_{n}-F$, the vertex u_{1} in T connects with a vertex u_{2} in $\left(S Q_{n}-G_{1}\right)-F$.

If $t=2$, there exist two vertices u_{1} in T and u_{2} in $S Q_{n}-G_{1}$ such that $u_{1} u_{2} \notin F$ for $\xi(G)=2 n-2$ and $|F| \leqslant 2 n-3$.

If $t \geqslant 3$, let $x y$ be an edge in T and A the set of edges that are incident with x or y in G_{1}. Then $|A|=2(n-4)-2$ and $|E(T) \cap A| \leqslant t$. Since G_{1} is a subcube $S Q_{n-4}$ and every vertex in G_{1} has the same k th 4-bit, different vertices in G_{1} have different
neighbors in $S Q_{n}-G_{1}$. So there are $4 t$ other edges between T and $S Q_{n}-G_{1}$. Thus, there are at least $2(n-4)-2-t+4 t$ edges between T and $S Q_{n}-T$. Since $2(n-4)-2-t+4 t=2 n+3 t-10>2 n-3 \geqslant$ $|F|$ and T is a component of $G_{1}-F$, there exist two vertices u_{1} in T and u_{2} in $S Q_{n}-G_{1}$ such that $u_{1} u_{2} \notin F$.

Let G_{2} be a subcube $S Q_{n-4}$ that contains u_{2}. If $G_{2} \in S_{2}$, the claim follows. Assume $G_{2} \in S_{1}$ below. Since each of G_{1} and G_{2} contains at least $n-4$ edges in F and $(2 n-3)-2(n-4)=5, F$ contains at most five edges of $E\left(S Q_{n}-G_{1}-G_{2}\right)$. By Lemma 2, u_{1} and u_{2} have at most two neighbors in common. Note that each vertex of 16 subcube $S Q_{n-4}$'s has only four neighbors in other subcubes (see Fig. 1). Thus, $\left\{u_{1}, u_{2}\right\}$ connects with at least four neighbors in $S Q_{n}-G_{1}-G_{2}$ by six edges, at least one of them, say u_{3}, satisfies $u_{1} u_{3} \notin F$ or $u_{2} u_{3} \notin F$ and $\left|E\left(G_{3}\right) \cap F\right| \leqslant$

1 , where G_{3} is the $(n-4)$-subcube containing u_{3}. Since $\left|E\left(G_{3}\right) \cap F\right| \leqslant 1 \leqslant n-5, G_{3} \in S_{2}$, and so the claim follows.

By the above discussion, we prove that $S Q_{n}-F$ is connected, which means $\lambda^{\prime}\left(S Q_{n}\right) \geqslant 2 n-2$ for $n \geqslant 6$, and so the theorem follows.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
[2] A.H. Esfahanian, Generalized measures of fault tolerance with application to n-cube networks, IEEE Trans. Comput. 38 (11) (1989) 1586-1591.
[3] A.H. Esfahanian, S.L. Hakimi, On computing a conditional edge-connectivity of a graph, Inform. Process. Lett. 27 (1988) 195-199.
[4] T.-K. Li, J.J.M. Tan, L.-H. Hsu, T.-Y. Sung, The shuffle-cubes and their generalization, Inform. Process. Lett. 77 (2001) 3541.

[^0]: * The work was supported by NNSF of China (Nos. 10271114 and 10301031).
 * Corresponding author.

 E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

