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Abstract

The shuffle-cubesQ,, wheren = 2 (mod 4, a new variation of hypercubes proposed by Li et al. [T.-K. Li, J.J.M. Tan,
L.-H. Hsu, T.-Y. Sung, The shuffle-cubes and their generalization, Inform. Process. Lett. 77 (2001) 35-41;regatar
n-connected graph. This paper determines that the super connectiil§,ofs 2 — 4 and the super edge-connectivity is

2n—2forn>6.
0 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The shuffle-cube, denoted b$Q,, where n =
2 (mod 4, as an interconnection network topology
proposed by Li et al. [4], is a new variation of
hypercubesQ, obtained by changing some links.
For ann-bit binary stringQu = u,_1u,_2...uiug €
V(SQ), let pj(u) = up_1up—2...u,—j ands;(u) =
uj_1u;—2...u1ug. The n-dimensional shuffle-cube
SQ,, n =2 (mod 4, is recursively defined as fol-

9 The work was supported by NNSF of China (Nos. 10271114
and 10301031).
* Corresponding author.
E-mail addressxujm@ustc.edu.cn (J.-M. Xu).

lows: SQ is Q». Forn > 3, SQ, consists of 16 sub-
cubeSQ!%**'s, wherei; € {0, 1} for 1< j < 4 and
pa(u) = i1izizig for all verticesu in SG"%**. The
verticesu = u,,_1uy—2...u1ug andv = v,_1v,—2...
vivg in different (n — 4)-dimensional subcubes are
linked by an edge ir8Q, if and only if s,_4(u) =
sp—a(v) and pa(u) @ pa(v) € Vi), Where the sym-
bol @ denotes the addition with modulo 2 and

Voo = {1111 0001 001Q 0013},
Vo1 = {0100 0101 011Q 01113},
V1o = {100Q 1001, 101Q 1011},
Vi1 ={11001101 1110 1113.

0020-0190/$ — see front mattét 2005 Elsevier B.V. All rights reserved.
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Fig. 1. A shuffle-cub& Q.

We illustrateSQ; in Fig. 1 showing only edges inci-
dent at vertices 8@ and omitting others.
Itis convenienttolet =4k +2 andu = u,_1u,_»
kuk=t . utu9, where u§ = uiuo and

SULUQ = Uylly - Uglly,
u4 = U4j1Uajugj-1U4j-2 for 1< j < k. Then two
verticesu andv in SQ, are linked by an edge if and

only if one of the following conditions holds:

Q) uf &) vf € Vug for exactly onej* satisfying 1<
'*<kandu4_vf1 foraIIO<j7éj*<k
(2) u @] € {01, 10} andu4 =v, forall1< j <k.

It has been shown th&Q), is n-regulam-connected
in [4]. In this paper, we further discuss its super con-
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simple connected graph. Fere V(G), let Ng(x) be
the set of neighbors af anddg(x) = |Ng(x)|, the
degree ofx. Forxy € E(G), let Ng(xy) = Ng(x) U
Ng () \ {x, y}, and let

{o(xy) =
£(G) =min{¢g(xy): xy € E(G)};
§c(xy) =dg(x) +dg(y) —

£E(G) = min{gg(xy): Xy € E(G)}.

Lemma 1 [3]. M/(G) < &(G) for any graphG with
order at least four and not a star.

Lemma 2. £(SQ,) = 2n — 4, and the edgezv which
attains this value is only ift = uf...ufud andv =
bl ® eyul .ug, wheree € {0001 001Q
0013 C Voo andud = v9 = 00.

Proof. Letuv be an edge i8Q, with u = ukut™t. ..

kyk=1

uzud andv = vivi Tt vk, Whereugz uyug. Then
k 1 0
Uy... '+ (u4€Bel)u . .uzllu4

fori ;AO, e1€ Vug, or

k k=1 1,0
ugiy .. .uz(uy ® ez)

fori =0, e € {01, 10}.

z+l

nectivity, a more refined parameter than the connectiv- FO7 convenlence we denote = uj.. (uy ®
ity for measuring the reliability and the fault tolerance  e3)uj *...uju§ for the possible two cases

of a network [2,3]. If u and v have no neighbors in common, then

Let G = (V, E) be a graph. A subset C V (re-
spectivelyF C E) is called asuper vertex-cufrespec-
tively super edge-cyif G — S (respectivelyG — F) is

not connected and every component contains at least «

two vertices. Thesuper connectivity’(G) (respec-
tively super edge-connectivity (G)) is the minimum

cardinality over all super vertex-cuts (respectively su-

per edge-cuts) i@ if they exist.

In [2], Esfahanian proved that (Q,) =1 (Q,) =
2n — 2 for n > 3. In this paper, we prove that
k'(SQ) = 2n — 4 and /(SQ,) = 2n — 2, where
n=2(mod 4 andn > 6.

2. Somelemmas

We follow [1] for graph-theoretical terminology
and notation not defined here. Lét= (V, E) be a

{sq (uv) =2n —2>2n —4.
Suppose now that and v have a neighboww in
common. Sincew is a neighbor oft, then

1
ug... J+ (u4@el)u4 u}lug
for j ;éO, e € Vug, or
uﬁuﬁ_l ) .ui(u?1 ®e))
for j =0, ¢, € {01, 10}.
1,
]*‘ (

For convenience, we denote = uﬁ. u4

e’)ui_l ..u}lug for the possible two cases. Sinae
is a neighbor ob, then
k 1 0
vy Y+ (v ®evy ... Alfv4
_ fors;éo,ele va, or
- ko k=1

Y ) R XA
fors =0,¢} € {01, 10}.
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We denotew = v} ... S+1(v4 ® "y~ v4v4 for t\NeenSQ}k"i’g"“ andSQ;/25* is at least #+2-4-2 =
the possible two cases. Thén= j = s, u) @ ¢’ 2%=4 o

(ui1 @D e3) B e = uil ® (3@ ). If i =0, then

e = e3® ¢” does not holds fofes, ¢’, ¢’} C {01, 10}.

If i #0, thene’ = e3 @ ¢” holds only forud =00 and 3. Main results

{e3, €', €"} = {0001, OOlQ 001]} The two vertices

... l+1(u4@e yuly b udu anduk . u T wl @ Theorem 1. «'(SQ,) = 2n — 4, wheren = 4k + 2 and
eMyul ™t utud are all nelghbors of both andv. S0 k>1

¢sq, (uv) = 2n — 4 and the lemma follows by the arbi-

trary choice of the edgev. O Proof. By Lemma 3, we only need to prowé&(SQ,) >
2n — 4. To the end, letF be an arbitrary set of ver-
Lemma 3. «'(SQ,) < 21 — 4forn > 6. tices in SQ, such that|F| < 2n — 5 andSQ, — F

has no isolated vertices. We prove tf&@, — F is
connected. By definitior§Q, consists of 16 subcube
SQ,_4’s. We partition 16 subcub&Q,_,'s of SQ,
into two subsetsS1 and Sz, where S1 = {SQ,_4 |
SQ,_4 contain atleast: — 4 verticesin F}, Sy =

Proof. By Lemma 2, letuv be an edge oSQ1 such
that ¢sq, (uv) = 2n — 4, whereu =uk .. ulud and
vzuﬁ. '+1(u4®e)u . .ug,eevoo andu4=
vg = 00. We prove thalsq, (uv) is a super vertex-cut, {SQ,_4 | SQ,_4 contain at most — 5 vertices inF).
which meansc’(SQ,) < {sq,(uv) =21 — 4. Tothe  Then g consists of at most three subcuB®),_4’s
end, we need to prove th8Q), — (Nsq, (uv) U {u, v}) since 4n — 4) > 2n — 5 forn > 6, and saSy + .

has no isolated vertices. We prove thaSQ, — F is connected from the fol-

Suppose thatw = wh...wiwd is a vertex in lowing claims.
SQ, — (Nsq, (uv) U{u, v}). We now proveNsq, (w) €
Nsq, (uv), wherew € {00, 01, 10, 11}. Claim 1. S» — F is connected.

If wg= OO sincew ¢ Nsgq, (uv) U {u, v}, then the
vertexw’ = w4 w4(w46901) is a neighbor ofv and Proof. Letn =4k + 2, k > 1. Since every4k — 2)-

w’ ¢ Nsq, (uv). subcube inS; is (4k — 2)-connected and contains at
If wg € {01, 10}, the vertexw’ = wﬁ .. w%ll is a mostn — 5 (= 4k — 3) vertices inF, it is connected in
neighbor ofw andw’ ¢ Nsq, (uv). So—F
If w2 = 11, the vertexw’ = wk ... l+1(w4 If k=1, thenn =6, |F| < 7 and every subcube

SQ in S7 contains at most one vertexin We decom-
poses; into two subgraphgi; and H,, where Hy =
{SQ | V(SQ)NF #@}andHz = {SQ | V(SQ) N
F = ¢}. ThenH> contains at least 9 subcuB€)’s. It
is easy to observe thdt, is connected. IfH; = ¢
then the claim follows. Assumél; # ¢ below. Let
G’ = SQ, be a subcube /1. SinceG’ contains at
most one vertex i, G’ — F is connected and’ has
at least 11 neighbors in other subcub®’s, at least
e L one of them is inf> since there are at most 7 subcubes

Proof. Let SGj*3* and Sql}cj—zém, be two distinct i, 5.5, SinceH, is connected, each subcubef
(4k — 2)-subcubes iSQy . Obviously, the edges  ¢onnects withir, in SQ — F, and oS, — F is con-
betweenSQ;?3“ and SQ;/2** are non-adjacent npected.

Hwi™t. . wiwl is a neighbor ofw and w’ ¢

Nsq, (uv) wheree’ € V1.
Owning to the above discussion, we have
Nsq, (w) ¢ Nsq,(uv) forn >6. O

Lemma4. Letn =4k + 2, k > 1. Then the number of
non-adjacent edges between any two distikt— 2)-
subcubes is at leag* 4.

sinceiizizis # j1j2j3ja- By the definition 0fSQy 2, If k> 2, let G1 and G, be two arbitrary distinct
every edgev betweenSQA’m’4 and SQ;/?)** sat- (4k — 2)-subcubes irf,>. We only need to prove that
isfies sax—2(1t) = sag—2(v), and pa(u) & pa(v) = G1 connects withG, in S, — F. Let E1» be the set of
i1i2i3i4 ® j1j2j3ja € Vsyw). Therefore,sa(u) is de- non-adjacent edges betwe6n andG,. Then|E12| >

termined. Then the number of non-adjacent edges be-2%~* by Lemma 4. Since®~* > 2(4k — 3) = 2(n —
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5) for k > 2, G1 connects withG, in So — F for
k>2. O

If S1 =0, then there is nothing to do by Claim 1.

AssumeS; # ¢ below.

Claim 2. Let G1 be a subcube SQ4 in S; andT a
connected component wittvertices inG1 — F. Then
T connects withs, — F.

Proof. If + =1, sinceSQ, — F has no isolated ver-
tices, the vertext1 in T connects with a vertex, in
(SQ,—G1) - F.

If ¢+ > 2, for any edgexy in T, we have|V(T) N
Ng,(xy)| <t — 2, andNg, (xy) > 2(n — 4) — 4 by
Lemma 2. Since every vertex ifi; has the saméth
4-bit, different vertices inG1 have different neighbors
in SQ, — G1. So T has 4 neighbors inSQ, — G1.
Thus,T has at least@ —4) —4— (¢ — 2) + 4¢ neigh-
borsinSQ,—T.Since2n —4) —4—(t —2)+ 4t =
2n+3t — 10> 2n —5> |F| andT is a component of
G1— F, there exist a vertexy in T and a vertex» in
(SQ, — G1) — F such thaujus € E(SQ, — F).

Let G be a subcub&Q,_, that containsus. If
G € S, then the claim follows. Assum@; € S; be-
low. Since each of5, and G2 contains at least — 4
vertices inF and (2n — 5) — 2(n — 4) = 3, F con-
tains at most three vertices &Q, — G1 — G2. By
Lemma 2,u1; anduy have at most two neighbors in
common. Note that each vertex in a subci8@,_,
has four neighbors in other subcubes. Thug, u>}
has at least four neighbors 8Q, — G1 — G2, at least
one of them, say3, isnotinF and|V(G3) N F| < 1,
whereGs is the(n — 4)-subcube containings. Since
[V(G3)NF|<1<n-5,G3e€ S, and so the claim
follows.

By the above discussion, we prove tis, — F is
connected, which means(SQ,) > 2n — 4 forn > 6.
The theorem follows. O

Theorem 2. '(SQ,) = 2n — 2, wheren = 4k + 2 and
k>1.

Proof. By Lemma 1, we only need to prow&(SQ,) >
2n —2forn>6.

Let F be an arbitrary set of edges 8Q, such that
|F| < 2n — 3 andSQ, — F has no isolated vertices.
We prove thaSQ, — F is connected.

We partition 16 subcub8Q,_,’s of SQ, into two
subsetss; andS2, whereS; = {SQ,_4 | SQ,_4 contain
at leastn — 4 edges inF'}, S> = {SQ,_4 | SQ,_4 con-
tain at most: — 5 edges inF'}. ThenS; consists of at
most four subcub&Q,_4's since 5n —4) > 2n — 3
for n > 6, and soS, # . We complete the proof by
the following claims.

Claim 1. S, — F is connected.

Proof. Letn =4k 4 2, k > 1. SinceSQ, is n-regular
n-connected in [4], we conclude th8Q), is n-edge-
connected. Then evergk — 2)-subcube inS; is also
connected inS, — F. Let G1 and G2 be two arbi-
trary distinct(4k — 2)-subcubes ir$>. We only need to
proveG1 connects withGz in S — F. Let B1o be a set
of edges betweei1 andG». Then|Bio| > 2% 4. If
B12 € F, then there is noting to do. Assunig, C F
below.

Sinces; consists of at most fou@k — 2)-subcubes,
|S2] > 12. For each of other 10 subcubesSin— F, if
at most one of subcube G4, G2} connects with it,
then

|F| > (10+1) - |Big > 11-2%4 5 |F|,

a contradiction. Thus, there exist$4 — 2)-subcube,
say G3, such thatGs connects each of;; and G
in So — F. This impliesG, and G, are connected in
S>—F. O

If S1 =, then there is nothing to do by Claim 1.
AssumeS; # ¥ below.

Claim 2. Let G1 be a subcube SQ4 in S; and T
connected component wittvertices inG1 — F. Then
T connects with, — F.

Proof. If + =1, since there is no isolated vertex in
SQ, — F, the vertexu; in T connects with a vertex
uzin (SQ,— G1) — F.

If + =2, there exist two vertices; in T andu» in
SQ, — G1 such thatujus ¢ F for £(G) =2n — 2 and
|F|<2n—3.

If t >3, letxy be an edge il and A the set
of edges that are incident with or y in G1. Then
|A| =2(n — 4) — 2 and|E(T) N A| < t. Since G,
is a subcubesQ,_, and every vertex inG; has the
samekth 4-bit, different vertices irG1 have different
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neighbors inSQ, — G1. So there are Aother edges 1, whereGs is the (n — 4)-subcube containings.
betweenT and SQ, — G1. Thus, there are at least Since|E(G3) N F|<1<n—5,Gsze Sz, and so the
2(n —4) — 2—1t + 4t edges betweefi andSQ, — T. claim follows.
Sincedn—4)—2—t+4=2n+3t—10>2n—-3 > By the above discussion, we prove ti$, — F is
|F| and T is a component oGy — F, there exist connected, which means(SQ,) > 2n — 2 forn > 6,
two verticesu1 in T anduz in SQ, — G1 such that and so the theorem follows.O
uius ¢ F.
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