

Available online at www.sciencedirect.com

Information Processing Letters 96 (2005) 136-140

www.elsevier.com/locate/ipl

Edge-pancyclicity of Möbius cubes [☆]

Min Xu^{a,b}, Jun-Ming Xu^{b,*}

^a Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China ^b Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China

Received 4 March 2004; received in revised form 6 July 2005; accepted 13 July 2005

Available online 25 August 2005

Communicated by F. Schneider

Abstract

The Möbius cube M_n is a variant of the hypercube Q_n and has better properties than Q_n with the same number of links and processors. It has been shown by Fan [J. Fan, Hamilton-connectivity and cycle-embedding of Möbius cubes, Inform. Process. Lett. 82 (2002) 113–117] and Huang et al. [W.-T. Huang, W.-K. Chen, C.-H. Chen, Pancyclicity of Möbius cubes, in: Proc. 9th Internat. Conf. on Parallel and Distributed Systems (ICPADS'02), 17–20 Dec. 2002, pp. 591–596], independently, that M_n contains a cycle of every length from 4 to 2^n . In this paper, we improve this result by showing that every edge of M_n lies on a cycle of every length from 4 to 2^n inclusive.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Combinatorial problems; Cycles; Möbius cubes; Hypercubes; Pancyclicity; Edge-pancyclicity

1. Introduction

The hypercube network has proved to be one of the most popular interconnection networks. The Möbius cubes, proposed first by Cull and Larson [1–3], form a class of hypercube variants. Like hypercubes, Möbius cubes are expansible, have a simple routing algorithm, and have a high fault tolerance. The Möbius cubes are superior to the hypercube in having about half of

* Corresponding author.

the diameter of the hypercube, about two-thirds of the average distance of hypercube. Various properties of Möbius cubes have been extensively investigated in the literature, see, for example, [1–5,7–9,13].

The cycle embedding problem is to find a cycle of given length in graph, which is of practical importance in interconnection networks (see Section 1.3.2 in [11]). Recently, it has been shown by several authors that every edge of *n*-dimensional crossed cube, another variants of the hypercube, lies on a cycle of every length from 4 to 2^n inclusive for $n \ge 2$ (see [6, 10,12,14]).

Fan [5] and Huang et al. [9] have proved that the *n*-dimensional Möbius cube contains a cycle of length

 $^{^{*}}$ The work was supported by NNSF of China (Nos. 10271114, 10301031, 70221001 and 60373012).

E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

^{0020-0190/\$ –} see front matter $\,$ © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.ipl.2005.07.003

from 4 to 2^n . In this paper, we improve this result by showing the following theorem.

Theorem. Every edge of *n*-dimensional Möbius cube lies on a cycle of every length from 4 to 2^n inclusive for $n \ge 2$.

Corollary (Fan [5], Huang et al. [9]). Every *n*-dimensional Möbius cube M_n contains a cycle of every length from 4 to 2^n inclusive for $n \ge 2$.

The proof of the theorem is in Section 3. In Section 2, the definition and basic properties of the *n*-dimensional Möbius cube M_n are given.

2. Möbius cubes

The architecture of an interconnection work is usually represented by a connected simple graph G = (V, E), where the vertex-set V is the set of processors and the edge-set E is the set of communication links in the network. The edge connecting two vertices x and y is denoted by (x, y). We follow [11] for graphtheoretical terminology and notation not defined here.

An *n*-dimensional Möbius cube, denoted by M_n , has 2^n vertices. Each vertex has a unique *n*-component binary vector on $\{0, 1\}$ for an address, also called an *n*-bit string. A vertex $X = x_1 x_2 \cdots x_n$ connects to *n* neighbors Y_1, Y_2, \ldots, Y_n , where each Y_i satisfies one of the following rules:

$$Y_i = x_1 \cdots x_{i-1} \bar{x}_i x_{i+1} \cdots x_n \quad \text{if } x_{i-1} = 0, \tag{1}$$

$$Y_i = x_1 \cdots x_{i-1} \bar{x}_i \bar{x}_{i+1} \cdots \bar{x}_n \quad \text{if } x_{i-1} = 1, \tag{2}$$

where \bar{x}_i is the complement of the bit x_i in $\{0, 1\}$.

More informally, a vertex *X* connects to a neighbor that differs in a bit x_i if $x_{i-1} = 0$, and to a neighbor that differs in bits x_i through x_n if $x_{i-1} = 1$. The connection between *X* and *Y* is undefined when i = 1, so we can assume x_0 is either equal to 0 or equal to 1, which gives us slightly different network topologies. If we assume $x_0 = 0$, we call the network a "0-Möbius cube", denoted by M_n^0 ; and if we assume $x_0 = 1$, we call the network a "1-Möbius cube", denoted by M_n^1 . Figs. 1 and 2 show the 0-Möbius cube M_4^0 and the 1-Möbius cube M_4^1 .

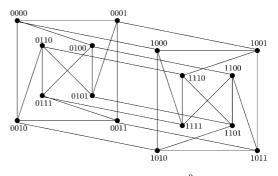


Fig. 1. 0-Möbius cube M_A^0 .

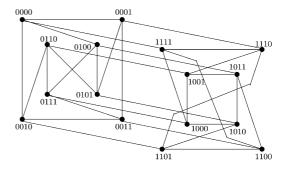


Fig. 2. 1-Möbius cube M_4^1 .

According to the above definition, it is not difficult to see that M_n^0 (respectively, M_n^1) can be recursively constructed from M_{n-1}^0 and M_{n-1}^1 by adding 2^{n-1} edges. For any vertex $X = x_1x_2 \cdots x_{n-1}$ in M_{n-1}^0 or M_{n-1}^1 , we construct a new vertex $X' = x'_1x'_2 \cdots x'_n$, where $x'_2 = x_1, x'_3 = x_2, \ldots, x'_n = x_{n-1}$, then assigning $x'_1 = 0$ if X is in M_{n-1}^0 , or $x'_1 = 1$ if X is in M_{n-1}^1 . So M_n^0 can be constructed by connecting all pairs of vertices that differ only in the first bit, and M_n^1 can be constructed by connecting all pairs of vertices that differ in the first through the *n*th bits. For short, we denote $M_n = L \oplus R$, where $L \cong M_{n-1}^0$ and $R \cong M_{n-1}^1$, and call edges between L and R cross edges. Moreover, we write a cross edge as (u_L, u_R) , where $u_L \in L$ and $u_R \in R$. An edge in M_n is called a *critical edge* if its end-vertices differ in only the last bit x_n .

Note that if $M_n = L \oplus R$ then, for any two adjacent u_L and v_L in L, two vertices u_R and v_R in R are not always adjacent in R, and vice versa. However, it is clear from the rules (1) and (2) that if (u_L, v_L) is a critical edge, then two vertices u_R and v_R in R must be adjacent in R, and vice versa. Critical edges play an important role in the proof of our theorem. A cycle

in M_n is called a 2-*critical* if it contains at least two critical edges. It is easy to see that every vertex in M_n is incident with a critical edge and every cross edge lies on a 2-critical cycle of length four.

Lemma. Every edge of M_n lies on a 2-critical cycle of length 2^n for $n \ge 2$.

Proof. We prove the lemma by induction on $n \ge 2$. Clearly the result is true for n = 2 since M_2 is a cycle of length 4. Assume that the lemma is true for every kwith $2 \le k < n$. Let $M_n = L \oplus R$ and e be any edge in M_n . There are two cases according as e is in M_n^0 or M_n^1 .

Case 1. The edge e is in M_n^0 .

Subcase 1.1. The edge e is in L.

Since $L \cong M_{n-1}^0$, by the induction hypothesis, there exists a 2-critical cycle *C* of length 2^{n-1} in *L* that contains *e*. Choose a critical edge (u_L, v_L) in *C* different from *e* and let $P = C - (u_L, v_L)$. Obviously, *e* is in *P*. From the definition of *L*, we can write $u_L = 0B0$ and $v_L = 0B1$, where *B* is an (n - 2)bit string. Then $u_R = 1B0$ and $v_R = 1B1$ are adjacent in *R*. By the induction hypothesis, there exists a 2-critical cycle *C'* of length 2^{n-1} in *R* that contains the edge (u_R, v_R) . Let $P' = C' - (u_R, v_R)$. Then $P + (v_L, v_R) + P' + (u_R, u_L)$ is a 2-critical cycle of length 2^n in M_n^0 that contains the edge *e*.

Subcase 1.2. The edge e is in R. The proof is similar to Subcase 1.1. The details are here omitted.

Subcase 1.3. The edge e is a cross edge between L and R.

Let $e = (u_L, u_R)$, $u_L = 0B0$ in L and $u_R = 1B0$ in R, where u is an (n - 2)-bit string. Let $v_L = 0B1$ and $v_R = 1B1$. Then $\langle u_L, v_L, v_R, u_R, u_L \rangle$ is a cycle of length four in M_n^0 and contains *e*.

By the induction hypothesis, there exist a 2-critical cycle *C* of length 2^{n-1} in *L* that contains the edge (u_L, v_L) and a 2-critical cycle *C'* of length 2^{n-1} in *R* that contains the edge (u_R, v_R) . Let $P = C - (u_L, v_L)$ and $P' = C' - (u_R, v_R)$. Then $P + (v_L, v_R) + P' + (u_R, u_L)$ is a 2-critical cycle of length 2^n in M_n^0 that contains the edge *e*.

Case 2. The edge *e* is in M_n^1 . By the same argument as that used in Case 1, we can prove that the lemma is true for this case, and the details are here omitted. \Box

3. Proof of theorem

In this section, we give the proof of theorem stated in Introduction.

Proof. We prove the theorem by induction on $n \ge 2$. The theorem is true for n = 2.

Since $M_3^0 \cong M_3^1$ from Fig. 3, we only need to prove that every edge of M_3^0 lies on a cycle of every length from 4 to 8 inclusive.

The union of the following four cycles of length four covers all edges of M_3^0 .

 $\langle 000, 001, 011, 010, 000 \rangle$,

 $\langle 100, 101, 110, 111, 100 \rangle$,

 $\langle 000, 001, 101, 100, 000 \rangle$,

 $\langle 010, 011, 111, 110, 010 \rangle$.

The union of the following four cycles of length five covers all edges of M_3^0 .

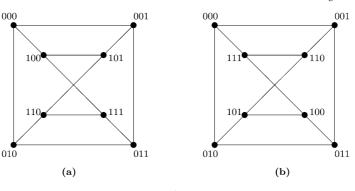


Fig. 3. (a) M_3^0 and (b) M_3^1 .

 $\langle 000, 001, 011, 111, 100, 000 \rangle$,

 $\langle 000, 010, 011, 111, 100, 000 \rangle$,

 $\langle 000, 100, 101, 110, 010, 000 \rangle$,

(001, 011, 111, 110, 101, 001).

The union of the following three cycles of length six covers all edges of M_3^0 .

(000, 001, 011, 111, 110, 010, 000),

(000, 010, 011, 001, 101, 100, 000),

 $\langle 100, 111, 110, 101, 001, 000, 100 \rangle$.

The union of the following three cycles of length seven covers all edges of M_3^0 .

 $\langle 000, 100, 101, 110, 111, 011, 010, 000 \rangle$,

 $\langle 001, 101, 100, 111, 110, 010, 011, 001 \rangle$,

 $\langle 000, 100, 111, 110, 010, 011, 001, 000 \rangle$.

The union of the following two cycles of length eight covers all edges of M_3^0 .

(000, 001, 101, 110, 010, 011, 111, 100, 000),

(000, 100, 101, 001, 011, 111, 110, 010, 000).

Thus the theorem is true for n = 3.

Assume now that the theorem is true for all $3 \le k < n$. Let *e* be any edge of M_n and let ℓ be any integer with $4 \le \ell \le 2^n$, where $n \ge 4$. To complete the proof of the theorem, we need to show that *e* is contained in a cycle of length ℓ by considering two cases according as *e* is in M_n^0 or in M_n^1 .

Case 1. The edge e is in M_n^0 . Let $M_n^0 = L \oplus R$.

Subcase 1.1. The edge *e* is in *L*. Since $L \cong M_{n-1}^0$, we can express $L = L_0 \oplus R_0$, where $L_0 \cong M_{n-2}^0$ and $R_0 \cong M_{n-2}^1$.

If $4 \le \ell \le 2^{n-1}$, by the induction hypothesis, there exists a cycle of length ℓ in $L \subset M_n^0$ that contains *e*.

Suppose that $2^{n-1} + 1 \le \ell \le 2^{n-1} + 3$. By the induction hypothesis, there exists a cycle *C* of length $\ell - 3$ in *L* containing *e*. For $n \ge 4$, we have $\ell - 3 \ge 2^{n-1} - 2 > 2^{n-2}$, and so *C* contains at least two cross edges between L_0 and R_0 . Thus, we can choose a cross edge (u_L, v_L) in *C* different from *e*. Let $(u_L, v_L) = (00B, 01B)$, where *B* is an (n - 2)-bit string. Then $u_R = 10B$, $w_R = 11\overline{B}$, $v_R = 11B$ are in *R* with $(u_R, w_R), (w_R, v_R) \in E(R)$ by the rule (2) in the definition of M_n , i.e., $P' = \langle v_R, w_R, u_R \rangle$ is a path between

 v_R and u_R in R. Let $P = C - (u_L, v_L)$. Then P contains e and $P + (v_L, v_R) + P' + (u_R, u_L)$ is a cycle of length ℓ in M_n^0 containing e.

Suppose that $2^{n-1} + 4 \le \ell \le 2^n$. Let $\ell' = \ell - 2^{n-1}$. Then $4 \le \ell' \le 2^{n-1}$. By lemma, there exists a 2-critical cycle *C* of length 2^{n-1} in *L* containing *e*. We can choose a critical edge (u_L, v_L) different from *e*. Without loss of generality, let $u_L = 0B0$ and $v_L = 0B1$, where *B* is an (n - 2)-bit string. Then $u_R = 1B0$ and $v_R = 1B1$ are adjacent in *R*. Let P = $C - (u_L, v_L)$. Obviously *e* lies on *P*. By the induction hypothesis there exists a cycle *C'* of length ℓ' in *R* that contains (u_R, v_R) . Let $P' = C' - (v_R, u_L)$. Then $P + (v_L, v_R) + P' + (u_R, u_L)$ is a cycle of length ℓ in M_n^0 and contains *e*.

Subcase 1.2. The edge *e* is in *R*. Since $R \cong M_{n-1}^1$, we can express $R = L_1 \oplus R_1$, where $L_1 \cong M_{n-2}^0$ and $R_1 \cong M_{n-2}^1$. The proof is similar to Subcase 1.1. The details are here omitted.

Subcase 1.3. The edge *e* is a cross edge between *L* and *R*.

Let $e = (u_L, u_R) = (0x_2x_3 \cdots x_n, 1x_2x_3 \cdots x_n)$. Let $v_L = 0x_2x_3 \cdots x_{n-1}\bar{x}_n$ and $v_R = 1x_2x_3 \cdots x_{n-1}\bar{x}_n$. Obviously, $\langle u_L, v_L, v_R, u_R, u_L \rangle$ is a cycle of length four in M_n^0 containing *e*. And

$$\langle 0x_2x_3\cdots x_n, 1x_2x_3\cdots x_n, 1\bar{x}_2\bar{x}_3\cdots \bar{x}_n, \\ 0\bar{x}_2\bar{x}_3\cdots \bar{x}_n, 0\bar{x}_2x_3x_4\cdots x_n, 0x_2x_3\cdots x_n \rangle$$

is a cycle of length five in M_n^0 containing *e* for $x_2 = 0$;

$$\begin{array}{l} \langle 0x_2x_3\cdots x_n, \ 1x_2x_3\cdots x_n, \ 1\bar{x}_2\bar{x}_3\cdots \bar{x}_n, \\ 0\bar{x}_2\bar{x}_3\cdots \bar{x}_n, \ 0x_2\bar{x}_3\bar{x}_4\cdots \bar{x}_n, \ 0x_2x_3\cdots x_n \rangle \end{array}$$

is a cycle of length five in M_n^0 containing *e* for $x_2 = 1$.

For $\ell \ge 6$, we can write $\ell = \ell_1 + \ell_2$ where $\ell_1 = 2$, $4 \le \ell_2 \le 2^{n-1}$ or $4 \le \ell_1 \le 2^{n-1}$, $4 \le \ell_2 \le 2^{n-1}$. Consider the cycle $\langle u_L, v_L, v_R, u_R, u_L \rangle$ of length four in M_n^0 containing *e*. By the induction hypothesis, there exists a cycle *C* of length ℓ_1 in *L* containing (u_L, v_L) if $\ell_1 \ge 4$ and exists a cycle *C'* of length ℓ_2 in *R* containing (u_R, v_R) . Let $P = (u_L, v_L)$ if $\ell_1 = 2$ or $P = C - (u_L, v_L)$ if $\ell_1 \ge 4$; $P' = C' - (v_R, u_R)$. Then $P + (v_L, v_R) + P' + (u_R, u_L)$ is a cycle of length ℓ in M_n^0 and contains *e*.

Case 2. The edge *e* is in M_n^1 . By the same argument as that used in Case 1, we can prove that the theorem is true for this case, and the details are here omitted. \Box

References

- P. Cull, S. Larson, The Möbius cubes cull, in: The Sixth Distributed Memory Computing Conference Proceedings, 28 April–1 May, 1991, pp. 699–702.
- [2] P. Cull, S. Larson, The Möbius cubes: improved cubelike networks for parallel computation, in: Proceedings of the Sixth International Parallel Processing Symposium, 23–26 March 1992, pp. 610–613.
- [3] P. Cull, S.M. Larson, The Möbius cubes, IEEE Trans. Comput. 44 (5) (1995) 647–659.
- [4] J. Fan, Diagnosability of Möbius cubes, IEEE Trans. Parallel Distrib. Syst. 9 (9) (1998) 923–928.
- [5] J. Fan, Hamilton-connectivity and cycle-embedding of Möbius cubes, Inform. Process. Lett. 82 (2002) 113–117.
- [6] J. Fan, X. Lin, X. Jia, Node-pancyclicity and edge-pancyclicity of crossed cubes, Inform. Process. Lett. 93 (2005) 133–138.
- [7] S.Y. Hsieh, C.H. Chen, Pancyclicity on Möbius cubes with maximal edge faults, Parallel Comput. 30 (3) (2004) 407–421.

- [8] W.-T. Huang, Y. Chuang, J.J.M. Tan, L. Hsu, Fault-free Hamiltonian cycle in faulty Möbius cubes, Comput. Syst. 4 (2) (2000) 106–114.
- [9] W.-T. Huang, W.-K. Chen, C.-H. Chen, Pancyclicity of Möbius cubes, in: Proc. 9th Internat. Conf. on Parallel and Distributed Systems (ICPADS'02), 17–20 Dec. 2002, pp. 591–596.
- [10] M. Ma, J.-M. Xu, Edge-pancyclicity of crossed cubes, J. China Univ. Sci. Tech. 35 (3) (2005) 392–398.
- [11] J.-M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht, 2001.
- [12] X. Yang, D.J. Evans, G.M. Megson, Y. Tang, On the pathconnectivity vertex-cyclicity and edge-pancyclicity of crossed cubes, Neural Parallel Sci. Comput. 13 (1) (2005) 107–118.
- [13] X. Yang, G.M. Megson, Fault tolerance of Möbus cubes under two forbidden fault set models, Internat. J. Comput. Math. 81 (8) (2004) 909–916.
- [14] X. Yang, G.M. Megson, On the double-vertex-cycle-connectivity of crossed cubes, Parallel Algorithms Appl. 19 (1) (2004) 1–9.