Edge-pancyclicity of Möbius cubes *

Min Xu ${ }^{\text {a,b }}$, Jun-Ming Xu ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China ${ }^{\mathrm{b}}$ Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China

Received 4 March 2004; received in revised form 6 July 2005; accepted 13 July 2005
Available online 25 August 2005
Communicated by F. Schneider

Abstract

The Möbius cube M_{n} is a variant of the hypercube Q_{n} and has better properties than Q_{n} with the same number of links and processors. It has been shown by Fan [J. Fan, Hamilton-connectivity and cycle-embedding of Möbius cubes, Inform. Process. Lett. 82 (2002) 113-117] and Huang et al. [W.-T. Huang, W.-K. Chen, C.-H. Chen, Pancyclicity of Möbius cubes, in: Proc. 9th Internat. Conf. on Parallel and Distributed Systems (ICPADS'02), 17-20 Dec. 2002, pp. 591-596], independently, that M_{n} contains a cycle of every length from 4 to 2^{n}. In this paper, we improve this result by showing that every edge of M_{n} lies on a cycle of every length from 4 to 2^{n} inclusive.

© 2005 Elsevier B.V. All rights reserved.
Keywords: Combinatorial problems; Cycles; Möbius cubes; Hypercubes; Pancyclicity; Edge-pancyclicity

1. Introduction

The hypercube network has proved to be one of the most popular interconnection networks. The Möbius cubes, proposed first by Cull and Larson [1-3], form a class of hypercube variants. Like hypercubes, Möbius cubes are expansible, have a simple routing algorithm, and have a high fault tolerance. The Möbius cubes are superior to the hypercube in having about half of

[^0]the diameter of the hypercube, about two-thirds of the average distance of hypercube. Various properties of Möbius cubes have been extensively investigated in the literature, see, for example, [1-5,7-9,13].

The cycle embedding problem is to find a cycle of given length in graph, which is of practical importance in interconnection networks (see Section 1.3.2 in [11]). Recently, it has been shown by several authors that every edge of n-dimensional crossed cube, another variants of the hypercube, lies on a cycle of every length from 4 to 2^{n} inclusive for $n \geqslant 2$ (see [6, $10,12,14]$).

Fan [5] and Huang et al. [9] have proved that the n-dimensional Möbius cube contains a cycle of length
from 4 to 2^{n}. In this paper, we improve this result by showing the following theorem.

Theorem. Every edge of n-dimensional Möbius cube lies on a cycle of every length from 4 to 2^{n} inclusive for $n \geqslant 2$.

Corollary (Fan [5], Huang et al. [9]). Every n-dimensional Möbius cube M_{n} contains a cycle of every length from 4 to 2^{n} inclusive for $n \geqslant 2$.

The proof of the theorem is in Section 3. In Section 2, the definition and basic properties of the n-dimensional Möbius cube M_{n} are given.

2. Möbius cubes

The architecture of an interconnection work is usually represented by a connected simple graph $G=$ (V, E), where the vertex-set V is the set of processors and the edge-set E is the set of communication links in the network. The edge connecting two vertices x and y is denoted by (x, y). We follow [11] for graphtheoretical terminology and notation not defined here.

An n-dimensional Möbius cube, denoted by M_{n}, has 2^{n} vertices. Each vertex has a unique n-component binary vector on $\{0,1\}$ for an address, also called an n-bit string. A vertex $X=x_{1} x_{2} \cdots x_{n}$ connects to n neighbors $Y_{1}, Y_{2}, \ldots, Y_{n}$, where each Y_{i} satisfies one of the following rules:
$Y_{i}=x_{1} \cdots x_{i-1} \bar{x}_{i} x_{i+1} \cdots x_{n} \quad$ if $x_{i-1}=0$,
$Y_{i}=x_{1} \cdots x_{i-1} \bar{x}_{i} \bar{x}_{i+1} \cdots \bar{x}_{n} \quad$ if $x_{i-1}=1$,
where \bar{x}_{i} is the complement of the bit x_{i} in $\{0,1\}$.
More informally, a vertex X connects to a neighbor that differs in a bit x_{i} if $x_{i-1}=0$, and to a neighbor that differs in bits x_{i} through x_{n} if $x_{i-1}=1$. The connection between X and Y is undefined when $i=1$, so we can assume x_{0} is either equal to 0 or equal to 1 , which gives us slightly different network topologies. If we assume $x_{0}=0$, we call the network a " 0 -Möbius cube", denoted by M_{n}^{0}; and if we assume $x_{0}=1$, we call the network a "1-Möbius cube", denoted by M_{n}^{1}. Figs. 1 and 2 show the 0 -Möbius cube M_{4}^{0} and the 1-Möbius cube M_{4}^{1}.

Fig. 1. 0-Möbius cube M_{4}^{0}.

Fig. 2. 1-Möbius cube M_{4}^{1}.

According to the above definition, it is not difficult to see that M_{n}^{0} (respectively, M_{n}^{1}) can be recursively constructed from M_{n-1}^{0} and M_{n-1}^{1} by adding 2^{n-1} edges. For any vertex $X=x_{1} x_{2} \cdots x_{n-1}$ in M_{n-1}^{0} or M_{n-1}^{1}, we construct a new vertex $X^{\prime}=x_{1}^{\prime} x_{2}^{\prime} \cdots x_{n}^{\prime}$, where $x_{2}^{\prime}=x_{1}, x_{3}^{\prime}=x_{2}, \ldots, x_{n}^{\prime}=x_{n-1}$, then assigning $x_{1}^{\prime}=0$ if X is in M_{n-1}^{0}, or $x_{1}^{\prime}=1$ if X is in M_{n-1}^{1}. So M_{n}^{0} can be constructed by connecting all pairs of vertices that differ only in the first bit, and M_{n}^{1} can be constructed by connecting all pairs of vertices that differ in the first through the nth bits. For short, we denote $M_{n}=L \oplus R$, where $L \cong M_{n-1}^{0}$ and $R \cong M_{n-1}^{1}$, and call edges between L and R cross edges. Moreover, we write a cross edge as $\left(u_{L}, u_{R}\right)$, where $u_{L} \in L$ and $u_{R} \in R$. An edge in M_{n} is called a critical edge if its end-vertices differ in only the last bit x_{n}.

Note that if $M_{n}=L \oplus R$ then, for any two adjacent u_{L} and v_{L} in L, two vertices u_{R} and v_{R} in R are not always adjacent in R, and vice versa. However, it is clear from the rules (1) and (2) that if $\left(u_{L}, v_{L}\right)$ is a critical edge, then two vertices u_{R} and v_{R} in R must be adjacent in R, and vice versa. Critical edges play an important role in the proof of our theorem. A cycle
in M_{n} is called a 2-critical if it contains at least two critical edges. It is easy to see that every vertex in M_{n} is incident with a critical edge and every cross edge lies on a 2-critical cycle of length four.

Lemma. Every edge of M_{n} lies on a 2 -critical cycle of length 2^{n} for $n \geqslant 2$.

Proof. We prove the lemma by induction on $n \geqslant 2$. Clearly the result is true for $n=2$ since M_{2} is a cycle of length 4 . Assume that the lemma is true for every k with $2 \leqslant k<n$. Let $M_{n}=L \oplus R$ and e be any edge in M_{n}. There are two cases according as e is in M_{n}^{0} or M_{n}^{1}.

Case 1. The edge e is in M_{n}^{0}.
Subcase 1.1. The edge e is in L.
Since $L \cong M_{n-1}^{0}$, by the induction hypothesis, there exists a 2 -critical cycle C of length 2^{n-1} in L that contains e. Choose a critical edge (u_{L}, v_{L}) in C different from e and let $P=C-\left(u_{L}, v_{L}\right)$. Obviously, e is in P. From the definition of L, we can write $u_{L}=0 B 0$ and $v_{L}=0 B 1$, where B is an $(n-2)-$ bit string. Then $u_{R}=1 B 0$ and $v_{R}=1 B 1$ are adjacent in R. By the induction hypothesis, there exists a 2 -critical cycle C^{\prime} of length 2^{n-1} in R that contains the edge $\left(u_{R}, v_{R}\right)$. Let $P^{\prime}=C^{\prime}-\left(u_{R}, v_{R}\right)$. Then $P+\left(v_{L}, v_{R}\right)+P^{\prime}+\left(u_{R}, u_{L}\right)$ is a 2 -critical cycle of length 2^{n} in M_{n}^{0} that contains the edge e.

Subcase 1.2. The edge e is in R. The proof is similar to Subcase 1.1. The details are here omitted.

Subcase 1.3. The edge e is a cross edge between L and R.

Let $e=\left(u_{L}, u_{R}\right), u_{L}=0 B 0$ in L and $u_{R}=1 B 0$ in R, where u is an $(n-2)$-bit string. Let $v_{L}=0 B 1$

(a)
and $v_{R}=1 B 1$. Then $\left\langle u_{L}, v_{L}, v_{R}, u_{R}, u_{L}\right\rangle$ is a cycle of length four in M_{n}^{0} and contains e.

By the induction hypothesis, there exist a 2 -critical cycle C of length 2^{n-1} in L that contains the edge (u_{L}, v_{L}) and a 2 -critical cycle C^{\prime} of length 2^{n-1} in R that contains the edge $\left(u_{R}, v_{R}\right)$. Let $P=C-\left(u_{L}, v_{L}\right)$ and $P^{\prime}=C^{\prime}-\left(u_{R}, v_{R}\right)$. Then $P+\left(v_{L}, v_{R}\right)+P^{\prime}+$ (u_{R}, u_{L}) is a 2 -critical cycle of length 2^{n} in M_{n}^{0} that contains the edge e.

Case 2. The edge e is in M_{n}^{1}. By the same argument as that used in Case 1, we can prove that the lemma is true for this case, and the details are here omitted.

3. Proof of theorem

In this section, we give the proof of theorem stated in Introduction.

Proof. We prove the theorem by induction on $n \geqslant 2$. The theorem is true for $n=2$.

Since $M_{3}^{0} \cong M_{3}^{1}$ from Fig. 3, we only need to prove that every edge of M_{3}^{0} lies on a cycle of every length from 4 to 8 inclusive.

The union of the following four cycles of length four covers all edges of M_{3}^{0}.
$\langle 000,001,011,010,000\rangle$,
$\langle 100,101,110,111,100\rangle$,
$\langle 000,001,101,100,000\rangle$,
$\langle 010,011,111,110,010\rangle$.
The union of the following four cycles of length five covers all edges of M_{3}^{0}.

(b)

Fig. 3. (a) M_{3}^{0} and (b) M_{3}^{1}.
$\langle 000,001,011,111,100,000\rangle$,
$\langle 000,010,011,111,100,000\rangle$,
$\langle 000,100,101,110,010,000\rangle$,
$\langle 001,011,111,110,101,001\rangle$.
The union of the following three cycles of length six covers all edges of M_{3}^{0}.
$\langle 000,001,011,111,110,010,000\rangle$,
$\langle 000,010,011,001,101,100,000\rangle$,
$\langle 100,111,110,101,001,000,100\rangle$.
The union of the following three cycles of length seven covers all edges of M_{3}^{0}.
$\langle 000,100,101,110,111,011,010,000\rangle$,
$\langle 001,101,100,111,110,010,011,001\rangle$,
$\langle 000,100,111,110,010,011,001,000\rangle$.
The union of the following two cycles of length eight covers all edges of M_{3}^{0}.
$\langle 000,001,101,110,010,011,111,100,000\rangle$,
$\langle 000,100,101,001,011,111,110,010,000\rangle$.
Thus the theorem is true for $n=3$.
Assume now that the theorem is true for all $3 \leqslant k<$ n. Let e be any edge of M_{n} and let ℓ be any integer with $4 \leqslant \ell \leqslant 2^{n}$, where $n \geqslant 4$. To complete the proof of the theorem, we need to show that e is contained in a cycle of length ℓ by considering two cases according as e is in M_{n}^{0} or in M_{n}^{1}.

Case 1. The edge e is in M_{n}^{0}. Let $M_{n}^{0}=L \oplus R$.
Subcase 1.1. The edge e is in L. Since $L \cong M_{n-1}^{0}$, we can express $L=L_{0} \oplus R_{0}$, where $L_{0} \cong M_{n-2}^{0}$ and $R_{0} \cong M_{n-2}^{1}$.

If $4 \leqslant \ell \leqslant 2^{n-1}$, by the induction hypothesis, there exists a cycle of length ℓ in $L \subset M_{n}^{0}$ that contains e.

Suppose that $2^{n-1}+1 \leqslant \ell \leqslant 2^{n-1}+3$. By the induction hypothesis, there exists a cycle C of length $\ell-3$ in L containing e. For $n \geqslant 4$, we have $\ell-3 \geqslant$ $2^{n-1}-2>2^{n-2}$, and so C contains at least two cross edges between L_{0} and R_{0}. Thus, we can choose a cross edge $\left(u_{L}, v_{L}\right)$ in C different from e. Let $\left(u_{L}, v_{L}\right)=$ $(00 B, 01 B)$, where B is an $(n-2)$-bit string. Then $u_{R}=10 B, w_{R}=11 \bar{B}, \quad v_{R}=11 B$ are in R with $\left(u_{R}, w_{R}\right),\left(w_{R}, v_{R}\right) \in E(R)$ by the rule (2) in the definition of M_{n}, i.e., $P^{\prime}=\left\langle v_{R}, w_{R}, u_{R}\right\rangle$ is a path between
v_{R} and u_{R} in R. Let $P=C-\left(u_{L}, v_{L}\right)$. Then P contains e and $P+\left(v_{L}, v_{R}\right)+P^{\prime}+\left(u_{R}, u_{L}\right)$ is a cycle of length ℓ in M_{n}^{0} containing e.

Suppose that $2^{n-1}+4 \leqslant \ell \leqslant 2^{n}$. Let $\ell^{\prime}=\ell-$ 2^{n-1}. Then $4 \leqslant \ell^{\prime} \leqslant 2^{n-1}$. By lemma, there exists a 2 -critical cycle C of length 2^{n-1} in L containing e. We can choose a critical edge $\left(u_{L}, v_{L}\right)$ different from e. Without loss of generality, let $u_{L}=0 B 0$ and $v_{L}=0 B 1$, where B is an $(n-2)$-bit string. Then $u_{R}=1 B 0$ and $v_{R}=1 B 1$ are adjacent in R. Let $P=$ $C-\left(u_{L}, v_{L}\right)$. Obviously e lies on P. By the induction hypothesis there exists a cycle C^{\prime} of length ℓ^{\prime} in R that contains $\left(u_{R}, v_{R}\right)$. Let $P^{\prime}=C^{\prime}-\left(v_{R}, u_{L}\right)$. Then $P+\left(v_{L}, v_{R}\right)+P^{\prime}+\left(u_{R}, u_{L}\right)$ is a cycle of length ℓ in M_{n}^{0} and contains e.

Subcase 1.2. The edge e is in R. Since $R \cong M_{n-1}^{1}$, we can express $R=L_{1} \oplus R_{1}$, where $L_{1} \cong M_{n-2}^{0}$ and $R_{1} \cong M_{n-2}^{1}$. The proof is similar to Subcase 1.1. The details are here omitted.

Subcase 1.3. The edge e is a cross edge between L and R.

Let $e=\left(u_{L}, u_{R}\right)=\left(0 x_{2} x_{3} \cdots x_{n}, 1 x_{2} x_{3} \cdots x_{n}\right)$. Let $v_{L}=0 x_{2} x_{3} \cdots x_{n-1} \bar{x}_{n}$ and $v_{R}=1 x_{2} x_{3} \cdots x_{n-1} \bar{x}_{n}$. Obviously, $\left\langle u_{L}, v_{L}, v_{R}, u_{R}, u_{L}\right\rangle$ is a cycle of length four in M_{n}^{0} containing e. And

$$
\begin{aligned}
& \left\langle 0 x_{2} x_{3} \cdots x_{n}, 1 x_{2} x_{3} \cdots x_{n}, 1 \bar{x}_{2} \bar{x}_{3} \cdots \bar{x}_{n}\right. \\
& \left.\quad 0 \bar{x}_{2} \bar{x}_{3} \cdots \bar{x}_{n}, 0 \bar{x}_{2} x_{3} x_{4} \cdots x_{n}, 0 x_{2} x_{3} \cdots x_{n}\right\rangle
\end{aligned}
$$

is a cycle of length five in M_{n}^{0} containing e for $x_{2}=0$;

$$
\begin{aligned}
& \left\langle 0 x_{2} x_{3} \cdots x_{n}, 1 x_{2} x_{3} \cdots x_{n}, 1 \bar{x}_{2} \bar{x}_{3} \cdots \bar{x}_{n}\right. \\
& \left.\quad 0 \bar{x}_{2} \bar{x}_{3} \cdots \bar{x}_{n}, 0 x_{2} \bar{x}_{3} \bar{x}_{4} \cdots \bar{x}_{n}, 0 x_{2} x_{3} \cdots x_{n}\right\rangle
\end{aligned}
$$

is a cycle of length five in M_{n}^{0} containing e for $x_{2}=1$.
For $\ell \geqslant 6$, we can write $\ell=\ell_{1}+\ell_{2}$ where $\ell_{1}=2$, $4 \leqslant \ell_{2} \leqslant 2^{n-1}$ or $4 \leqslant \ell_{1} \leqslant 2^{n-1}, 4 \leqslant \ell_{2} \leqslant 2^{n-1}$. Consider the cycle $\left\langle u_{L}, v_{L}, v_{R}, u_{R}, u_{L}\right\rangle$ of length four in M_{n}^{0} containing e. By the induction hypothesis, there exists a cycle C of length ℓ_{1} in L containing (u_{L}, v_{L}) if $\ell_{1} \geqslant 4$ and exists a cycle C^{\prime} of length ℓ_{2} in R containing $\left(u_{R}, v_{R}\right)$. Let $P=\left(u_{L}, v_{L}\right)$ if $\ell_{1}=2$ or $P=C-\left(u_{L}, v_{L}\right)$ if $\ell_{1} \geqslant 4 ; P^{\prime}=C^{\prime}-\left(v_{R}, u_{R}\right)$. Then $P+\left(v_{L}, v_{R}\right)+P^{\prime}+\left(u_{R}, u_{L}\right)$ is a cycle of length ℓ in M_{n}^{0} and contains e.

Case 2. The edge e is in M_{n}^{1}. By the same argument as that used in Case 1, we can prove that the theorem is true for this case, and the details are here omitted.

References

[1] P. Cull, S. Larson, The Möbius cubes cull, in: The Sixth Distributed Memory Computing Conference Proceedings, 28 Ap-ril-1 May, 1991, pp. 699-702.
[2] P. Cull, S. Larson, The Möbius cubes: improved cubelike networks for parallel computation, in: Proceedings of the Sixth International Parallel Processing Symposium, 23-26 March 1992, pp. 610-613..
[3] P. Cull, S.M. Larson, The Möbius cubes, IEEE Trans. Comput. 44 (5) (1995) 647-659.
[4] J. Fan, Diagnosability of Möbius cubes, IEEE Trans. Parallel Distrib. Syst. 9 (9) (1998) 923-928.
[5] J. Fan, Hamilton-connectivity and cycle-embedding of Möbius cubes, Inform. Process. Lett. 82 (2002) 113-117.
[6] J. Fan, X. Lin, X. Jia, Node-pancyclicity and edge-pancyclicity of crossed cubes, Inform. Process. Lett. 93 (2005) 133-138.
[7] S.Y. Hsieh, C.H. Chen, Pancyclicity on Möbius cubes with maximal edge faults, Parallel Comput. 30 (3) (2004) 407-421.
[8] W.-T. Huang, Y. Chuang, J.J.M. Tan, L. Hsu, Fault-free Hamiltonian cycle in faulty Möbius cubes, Comput. Syst. 4 (2) (2000) 106-114.
[9] W.-T. Huang, W.-K. Chen, C.-H. Chen, Pancyclicity of Möbius cubes, in: Proc. 9th Internat. Conf. on Parallel and Distributed Systems (ICPADS'02), 17-20 Dec. 2002, pp. 591-596.
[10] M. Ma, J.-M. Xu, Edge-pancyclicity of crossed cubes, J. China Univ. Sci. Tech. 35 (3) (2005) 392-398.
[11] J.-M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht, 2001.
[12] X. Yang, D.J. Evans, G.M. Megson, Y. Tang, On the pathconnectivity vertex-cyclicity and edge-pancyclicity of crossed cubes, Neural Parallel Sci. Comput. 13 (1) (2005) 107-118.
[13] X. Yang, G.M. Megson, Fault tolerance of Möbus cubes under two forbidden fault set models, Internat. J. Comput. Math. 81 (8) (2004) 909-916.
[14] X. Yang, G.M. Megson, On the double-vertex-cycle-connectivity of crossed cubes, Parallel Algorithms Appl. 19 (1) (2004) $1-9$.

[^0]: * The work was supported by NNSF of China (Nos. 10271114, 10301031, 70221001 and 60373012).
 * Corresponding author.

 E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

