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Abstract

The Möbius cubeMn is a variant of the hypercubeQn and has better properties thanQn with the same number of links an
processors. It has been shown by Fan [J. Fan, Hamilton-connectivity and cycle-embedding of Möbius cubes, Inform.
Lett. 82 (2002) 113–117] and Huang et al. [W.-T. Huang, W.-K. Chen, C.-H. Chen, Pancyclicity of Möbius cubes, in
9th Internat. Conf. on Parallel and Distributed Systems (ICPADS’02), 17–20 Dec. 2002, pp. 591–596], independently,Mn

contains a cycle of every length from 4 to 2n. In this paper, we improve this result by showing that every edge ofMn lies on a
cycle of every length from 4 to 2n inclusive.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The hypercube network has proved to be one of
most popular interconnection networks. The Möb
cubes, proposed first by Cull and Larson [1–3], form
class of hypercube variants. Like hypercubes, Möb
cubes are expansible, have a simple routing algorit
and have a high fault tolerance. The Möbius cu
are superior to the hypercube in having about hal
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the diameter of the hypercube, about two-thirds of
average distance of hypercube. Various propertie
Möbius cubes have been extensively investigate
the literature, see, for example, [1–5,7–9,13].

The cycle embedding problem is to find a cyc
of given length in graph, which is of practical impo
tance in interconnection networks (see Section 1
in [11]). Recently, it has been shown by several
thors that every edge ofn-dimensional crossed cub
another variants of the hypercube, lies on a cycle
every length from 4 to 2n inclusive forn � 2 (see [6,
10,12,14]).

Fan [5] and Huang et al. [9] have proved that
n-dimensional Möbius cube contains a cycle of len
.
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from 4 to 2n. In this paper, we improve this result b
showing the following theorem.

Theorem. Every edge of n-dimensional Möbius cube
lies on a cycle of every length from 4 to 2n inclusive
for n � 2.

Corollary (Fan [5], Huang et al. [9]). Every n-di-
mensional Möbius cube Mn contains a cycle of every
length from 4 to 2n inclusive for n � 2.

The proof of the theorem is in Section 3. In Se
tion 2, the definition and basic properties of then-di-
mensional Möbius cubeMn are given.

2. Möbius cubes

The architecture of an interconnection work is u
ally represented by a connected simple graphG =
(V ,E), where the vertex-setV is the set of processor
and the edge-setE is the set of communication link
in the network. The edge connecting two verticesx

andy is denoted by(x, y). We follow [11] for graph-
theoretical terminology and notation not defined he

An n-dimensional Möbius cube, denoted byMn,
has 2n vertices. Each vertex has a uniquen-component
binary vector on{0,1} for an address, also called a
n-bit string. A vertexX = x1x2 · · ·xn connects ton
neighborsY1, Y2, . . . , Yn, where eachYi satisfies one
of the following rules:

Yi = x1 · · ·xi−1x̄ixi+1 · · ·xn if xi−1 = 0, (1)

Yi = x1 · · ·xi−1x̄i x̄i+1 · · · x̄n if xi−1 = 1, (2)

wherex̄i is the complement of the bitxi in {0,1}.
More informally, a vertexX connects to a neighbo

that differs in a bitxi if xi−1 = 0, and to a neighbo
that differs in bitsxi throughxn if xi−1 = 1. The con-
nection betweenX andY is undefined wheni = 1, so
we can assumex0 is either equal to 0 or equal to 1
which gives us slightly different network topologie
If we assumex0 = 0, we call the network a “0-Möbiu
cube”, denoted byM0

n ; and if we assumex0 = 1, we
call the network a “1-Möbius cube”, denoted byM1

n .
Figs. 1 and 2 show the 0-Möbius cubeM0

4 and the
1-Möbius cubeM1.
4
Fig. 1. 0-Möbius cubeM0
4.

Fig. 2. 1-Möbius cubeM1
4.

According to the above definition, it is not diffi
cult to see thatM0

n (respectively,M1
n ) can be recur-

sively constructed fromM0
n−1 and M1

n−1 by adding
2n−1 edges. For any vertexX = x1x2 · · ·xn−1 in M0

n−1
or M1

n−1, we construct a new vertexX′ = x′
1x

′
2 · · ·x′

n,
wherex′

2 = x1, x
′
3 = x2, . . . , x

′
n = xn−1, then assign-

ing x′
1 = 0 if X is in M0

n−1, or x′
1 = 1 if X is in M1

n−1.
So M0

n can be constructed by connecting all pairs
vertices that differ only in the first bit, andM1

n can
be constructed by connecting all pairs of vertices t
differ in the first through thenth bits. For short, we de
noteMn = L ⊕ R, whereL ∼= M0

n−1 andR ∼= M1
n−1,

and call edges betweenL andR cross edges. More-
over, we write a cross edge as(uL,uR), whereuL ∈ L

anduR ∈ R. An edge inMn is called acritical edge if
its end-vertices differ in only the last bitxn.

Note that ifMn = L⊕R then, for any two adjacen
uL andvL in L, two verticesuR andvR in R are not
always adjacent inR, and vice versa. However, it
clear from the rules (1) and (2) that if(uL, vL) is a
critical edge, then two verticesuR andvR in R must
be adjacent inR, and vice versa. Critical edges pla
an important role in the proof of our theorem. A cyc
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in Mn is called a 2-critical if it contains at least two
critical edges. It is easy to see that every vertex inMn

is incident with a critical edge and every cross ed
lies on a 2-critical cycle of length four.

Lemma. Every edge of Mn lies on a 2-critical cycle of
length 2n for n � 2.

Proof. We prove the lemma by induction onn � 2.
Clearly the result is true forn = 2 sinceM2 is a cycle
of length 4. Assume that the lemma is true for everk

with 2 � k < n. Let Mn = L ⊕ R ande be any edge
in Mn. There are two cases according ase is in M0

n or
M1

n .
Case 1. The edgee is in M0

n .
Subcase 1.1. The edgee is in L.
SinceL ∼= M0

n−1, by the induction hypothesis, the
exists a 2-critical cycleC of length 2n−1 in L that
containse. Choose a critical edge(uL, vL) in C dif-
ferent frome and letP = C − (uL, vL). Obviously,
e is in P . From the definition ofL, we can write
uL = 0B0 and vL = 0B1, whereB is an (n − 2)-
bit string. ThenuR = 1B0 andvR = 1B1 are adja-
cent in R. By the induction hypothesis, there exis
a 2-critical cycleC′ of length 2n−1 in R that con-
tains the edge(uR, vR). Let P ′ = C′ − (uR, vR). Then
P + (vL, vR) + P ′ + (uR,uL) is a 2-critical cycle of
length 2n in M0

n that contains the edgee.
Subcase 1.2. The edgee is in R. The proof is simi-

lar to Subcase 1.1. The details are here omitted.
Subcase 1.3. The edgee is a cross edge betweenL

andR.
Let e = (uL,uR), uL = 0B0 in L anduR = 1B0

in R, whereu is an(n − 2)-bit string. LetvL = 0B1
andvR = 1B1. Then〈uL, vL, vR,uR,uL〉 is a cycle of
length four inM0

n and containse.
By the induction hypothesis, there exist a 2-critic

cycle C of length 2n−1 in L that contains the edg
(uL, vL) and a 2-critical cycleC′ of length 2n−1 in R

that contains the edge(uR, vR). LetP = C − (uL, vL)

andP ′ = C′ − (uR, vR). ThenP + (vL, vR) + P ′ +
(uR,uL) is a 2-critical cycle of length 2n in M0

n that
contains the edgee.

Case 2. The edgee is in M1
n . By the same argumen

as that used in Case 1, we can prove that the lemm
true for this case, and the details are here omitted.�

3. Proof of theorem

In this section, we give the proof of theorem sta
in Introduction.

Proof. We prove the theorem by induction onn � 2.
The theorem is true forn = 2.

SinceM0
3

∼= M1
3 from Fig. 3, we only need to prov

that every edge ofM0
3 lies on a cycle of every lengt

from 4 to 8 inclusive.
The union of the following four cycles of lengt

four covers all edges ofM0
3.

〈000,001,011,010,000〉,
〈100,101,110,111,100〉,
〈000,001,101,100,000〉,
〈010,011,111,110,010〉.

The union of the following four cycles of lengt
five covers all edges ofM0.
3
Fig. 3. (a)M0
3 and (b)M1

3.
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〈000,001,011,111,100,000〉,
〈000,010,011,111,100,000〉,
〈000,100,101,110,010,000〉,
〈001,011,111,110,101,001〉.

The union of the following three cycles of leng
six covers all edges ofM0

3.

〈000,001,011,111,110,010,000〉,
〈000,010,011,001,101,100,000〉,
〈100,111,110,101,001,000,100〉.

The union of the following three cycles of leng
seven covers all edges ofM0

3.

〈000,100,101,110,111,011,010,000〉,
〈001,101,100,111,110,010,011,001〉,
〈000,100,111,110,010,011,001,000〉.

The union of the following two cycles of lengt
eight covers all edges ofM0

3.

〈000,001,101,110,010,011,111,100,000〉,
〈000,100,101,001,011,111,110,010,000〉.

Thus the theorem is true forn = 3.
Assume now that the theorem is true for all 3� k <

n. Let e be any edge ofMn and let� be any integer
with 4 � � � 2n, wheren � 4. To complete the proo
of the theorem, we need to show thate is contained in
a cycle of length� by considering two cases accordi
ase is in M0

n or in M1
n .

Case 1. The edgee is in M0
n . Let M0

n = L ⊕ R.
Subcase 1.1. The edgee is in L. SinceL ∼= M0

n−1,
we can expressL = L0 ⊕ R0, whereL0 ∼= M0

n−2 and
R0 ∼= M1

n−2.
If 4 � � � 2n−1, by the induction hypothesis, the

exists a cycle of length� in L ⊂ M0
n that containse.

Suppose that 2n−1 + 1 � � � 2n−1 + 3. By the in-
duction hypothesis, there exists a cycleC of length
� − 3 in L containinge. For n � 4, we have� − 3 �
2n−1 − 2 > 2n−2, and soC contains at least two cros
edges betweenL0 andR0. Thus, we can choose a cro
edge(uL, vL) in C different from e. Let (uL, vL) =
(00B,01B), whereB is an (n − 2)-bit string. Then
uR = 10B, wR = 11B̄, vR = 11B are in R with
(uR,wR), (wR,vR) ∈ E(R) by the rule (2) in the defi
nition ofMn, i.e.,P ′ = 〈vR,wR,uR〉 is a path between
vR anduR in R. Let P = C − (uL, vL). ThenP con-
tainse andP + (vL, vR) + P ′ + (uR,uL) is a cycle of
length� in M0

n containinge.
Suppose that 2n−1 + 4 � � � 2n. Let �′ = � −

2n−1. Then 4� �′ � 2n−1. By lemma, there exist
a 2-critical cycleC of length 2n−1 in L contain-
ing e. We can choose a critical edge(uL, vL) differ-
ent frome. Without loss of generality, letuL = 0B0
andvL = 0B1, whereB is an(n − 2)-bit string. Then
uR = 1B0 andvR = 1B1 are adjacent inR. Let P =
C − (uL, vL). Obviouslye lies onP . By the induction
hypothesis there exists a cycleC′ of length �′ in R

that contains(uR, vR). Let P ′ = C′ − (vR,uL). Then
P + (vL, vR) + P ′ + (uR,uL) is a cycle of length� in
M0

n and containse.
Subcase 1.2. The edgee is in R. SinceR ∼= M1

n−1,
we can expressR = L1 ⊕ R1, whereL1 ∼= M0

n−2 and
R1 ∼= M1

n−2. The proof is similar to Subcase 1.1. T
details are here omitted.

Subcase 1.3. The edgee is a cross edge betweenL
andR.

Let e = (uL,uR) = (0x2x3 · · ·xn,1x2x3 · · ·xn). Let
vL = 0x2x3 · · ·xn−1x̄n and vR = 1x2x3 · · ·xn−1x̄n.
Obviously, 〈uL, vL, vR,uR,uL〉 is a cycle of length
four in M0

n containinge. And

〈0x2x3 · · ·xn,1x2x3 · · ·xn,1x̄2x̄3 · · · x̄n,

0x̄2x̄3 · · · x̄n,0x̄2x3x4 · · ·xn,0x2x3 · · ·xn〉
is a cycle of length five inM0

n containinge for x2 = 0;

〈0x2x3 · · ·xn, 1x2x3 · · ·xn,1x̄2x̄3 · · · x̄n,

0x̄2x̄3 · · · x̄n,0x2x̄3x̄4 · · · x̄n,0x2x3 · · ·xn〉
is a cycle of length five inM0

n containinge for x2 = 1.
For � � 6, we can write� = �1 + �2 where�1 = 2,

4 � �2 � 2n−1 or 4� �1 � 2n−1,4 � �2 � 2n−1. Con-
sider the cycle〈uL, vL, vR,uR,uL〉 of length four in
M0

n containinge. By the induction hypothesis, the
exists a cycleC of length�1 in L containing(uL, vL)

if �1 � 4 and exists a cycleC′ of length �2 in R

containing(uR, vR). Let P = (uL, vL) if �1 = 2 or
P = C − (uL, vL) if �1 � 4; P ′ = C′ − (vR,uR). Then
P + (vL, vR) + P ′ + (uR,uL) is a cycle of length� in
M0

n and containse.
Case 2. The edgee is in M1

n . By the same argumen
as that used in Case 1, we can prove that the theore
true for this case, and the details are here omitted.�
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