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Abstract: Given a graph G and a non-negative integer 4, the h-restricted connectivity #* (G) of G is the minimum

cardinality of a set of vertices of G, in which at least & neighbors of any vertex is not included, if any, whose dele-

tion disconnects G and every remaining component has the minimum degree of vertex at least A; and the h-extra

connectivity «,(G) of G is the minimum cardinality of a set of vertices of G, if any, whose deletion disconnects G
and every remaining component has order more than A. This paper shows that for the hypercube Q. and the folded
hypercube FQ., #,(Q,)=x"(Q.)=2n—2 for n=23, x,(Q.)=3n—>5 for n=24, 5, (FQ,)=«V(FQ,)=2n for n=4

and P (FQ,)=4n—4 for n=>8.
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Introduction

It is well-known that when the underlying
topology of an interconnection network is modelled
by a graph G, the classical connectivity x(G) of G,
defined as the minimum cardinality |S | of a ver-
tex-cut S, has been used as a deterministic mea-
sure of reliability and fault-tolerance of the net-
work. In this paper, we consider other two kinds
of connectivies. Given a graph G and a non-nega-
tive integer k, the h-extra connectivity x,(G) of G
is the minimum cardinality of a set of vertices of G,
if any, whose deletion disconnects G and every re-
maining component has order more than ht'); and
the h-restricted connectivity " (G) of G is the
minimum cardinality of a set of vertices of G, in
which at least h neighbors of any vertex is not in-
cluded, if any, whose deletion disconnects G and
every remaining component has the minimum de-
gree of vertex at least #1**"*). The two concepts are
generalizations of the classical connectivity and can
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provide more accurate measures for fault tolerance
of a large-scale parallel processing system.

Fabrega and Fiol!"? showed #,(G)<\(h+1)n—
2h for an n-regular graph G if &, (G) exists. Latifi
et al' determined ¥’ (Q,) = (n—h)2" for 0<Th<C

| -g—_l » where Q, is the n-dimensional hypercube.

Wu and Guo'™ generalized Latifi et al’s result to
the m-ary n-dimensional generalized hypercube.
However, for any n-regular graph G and any inte-
ger h<(n, we have not yet known whether x,(G) or

" (G) exists or not.

We are, in this paper, interested in the hyper-
cube Q. and the folded hypercube FQ,, which have
been widely used in design and analysis of inter-
connection networks!®. It is known that x#(Q,)=n

and «(FQ,)=n-}+1. We determine

k(Q)=k"Q)=2n—2 n=3
K, (Q,) =3n—5 n=>=4
x (FQ,) = kP (FQ,) = 2n n=4
P (FQ,) = 4n — 4 n=>8

The proofs of our results are given in Section 2 and
Section 3, respectively.

We follow Ref. [7] for graph-theoretical ter-
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minology and notation not defined here. For a
graph G=(V,E) and SCV (G) or SCG, let
Ne(S)Y={yEV(G—S8) :xzy€ E(G) for some zE€ S}
and Ac(S)=Nc(S)US. A vertex-cut S of G is
called an R,-cut if every component of G—S is not
a tree of order at most A. If there exists an R,-cut
in G, then x,(G)=min{|S| : S is an R,;-cut of G}.
A subset SCV(G) is called an R® -set, if at least
k neighbors of any vertex is not included in S; and
an R"-set S is called an R*-cut if G—S is discon-
nected and every remaining component has the
minimum degree of vertex at least k. If there exists
an R®-cut S in G, then «® (G)=min{|S| : S is
an R®-cut of G}.

1 Results on Hypercube

An n-dimensional hypercube Q,, also called an
n-cube, is an undirected graph with vertices 2",
each labeled with a distinct binary sequences x; x,
==« x,. Two vertices are linked by an edge if and
only if their label sequences differ in exactly one
coordinate. The hypercube @, has been widely used
in network design since it possesses many attrac-
tive properties, such as n-regular n-connected and

[8]

vertex-transitive (see a new book by Xu'® for de-

tails).

Following Esfahanian'?, we express Q, as Q,
=L®R, where L and R are the two (n—1)-sub-
cubes of @, induced by the vertices with the left-
We call

edges between L and R cross edges, and use #; and

most coordinate 0 and 1, respectively.

u, to denote two vertices in L and R, respectively,
linked by the cross edge u,u, in Q,, where u,=0 u,

us s u,and w,=1 w, uz** u,.
K, QD)= (Q,)=2n—2,n>3.

Proof Let uv be an arbitrary edge in Q,and S
=Ng (uv). Then |S|=2n—2 since Q, contains no

Theorem 1

triangle, and Q,—S is disconnected since
V@, —Ag SN | =2"—2n>2forn>3

Since every vertex in S is adjacent with z or v and
any two distinct vertices have common neighbors
at most two, S is an R*V-cut of @, and so
K (Q)) kPRI IS|=2n—2forn=3
In order to complete the proof of the theorem,
we need to prove x, (Q,)=|S|=2n—2. To the

end, we only need to show that for any FCV(Q,)
with |F|<<2n—3, if Q,—F has no isolated vertex,

then Q,—F is connected.

Let Q.=L®R, F,=FNL, and F.=FNR.
Obviously, F,(NF,= . Thus, either |F,|<<n—2
or |F.|<n—2. We can, without loss of generali-
ty, suppose that |F,|<{n—2. Then R—F, is con-
nected since k(R)=«(Q,_;)=n—1. We show that
any vertex u;in L—F, can be connected to the con-
nected graph R—F,. Let wu, be the cross edge in
Q.=LOR. If u, €F,, then we are done. So we as-
sume that u, € F,. Since there is no isolated vertex
in Q,—F, there exist a vertex v, adjacent to % in
L—F,. Let vw, be the cross edge in Q,=L®R. If
v, €F,, then we are done. So we suppose that v, &
F,, and let X=N;(uw,) and F'=F — {u,, v, }.
Then |X|=2n—4 and |F' |<2rn—5. Thus, there
is a vertex x;€ X, such that x; and x, are not in F.
This implies that u;in L —F, can be connected to R

—F, via a path passing through {w,, v, z:» z,}.
O

Let x be an arbi-

The theorem follows.

(Esfahaniant?)

trary vertex in Q,. Then Q,— Ay (x) is connected.

Lemma 1

Lemma 2 Any path P of length two in @, has
exactly 3n—5 neighbors in Q,— P, which form an
R,-cut of Q, for n=>=41.

Proof Let P=(x, v, z) be a path of length
two, and, without loss of generality, suppose that
T=I), Ty T3*** Tpy Y=I, T T3*** T, and 2=z, 7, T,
s» z,, where ;= {0, 1}\{x.}.

no triangle and x and 2z have exactly two neighbors

Since Q, contains

y and u=ux, x, x;3*** x,in common, the number of

neighbors of {z, y, z} in Q,— P is equal to 3rn—5.

Let S=Aq (P) and H=Q,—S. Then
[V(IH)| =2"— (3n—2)>2forn_>14

To prove the latter assertion, it is sufficient to
prove that H is connected. In fact, let Q,.=L®R,
and suppose, without loss of generality, that R
contains one vertex x in {x,y,z}. Then by Lemma
1, R— Az(x) is connected. Since Az(x)CS and
every vertex in L)V (H) can be connected to R[)
V(H), H is connected. U

Latifi ez a/™! have determined
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k3 (Q,) = 4n — 8forn =4
The following theorem determines #,(Q,).
L7 (Qn)=3ﬂ_ 5 yﬂ;‘l'
Proof Clearly, #,(Q,)<<3#n—5 by Lemma 2.
We need to prove that «,(Q,)=>=>3n—5. We can eas-
ily verify that «,(Q,)=27. Suppose n==5 below. It
is sufficient to show that for any FCV (Q,) with
|F| <37 —6, if Q, — F contains neither isolated

vertex nor isolated edge, then Q,— F is connected.

Let Q. =L®R, F;=FNV (L) and F, =
FNV(R). Without loss of generality, we may as-

Theorem 2

sume that |F,|<<|F,|. Then, |F,I<%(3n—6)<

2n—5 for n=25, We prove that Q,— F is connected

by considering two cases respectively.
Case 1 L—F, contains no isolated vertex.

By Theorem 1, we have
(L) = #,(Q,)) =2(n— 1) — 2=
2n— 4>2n—5
Thus, L—F,is connected. Let %, be any vertex in
R—F,. In order to prove that Q,—F is connected,
we only need to prove that %, can be connected to L

—F.

Since Q, — F contains neither isolated vertex
nor isolated edge, there exists a path P of length
two containing #,. If V(P)NV(L)# &, then u,
can be connected to L—F,via P. Suppose P is in R
below and let N=Ngy (P). Since IN|=3n—5>3n

— 6, there exists at least one vertex v, in N such
that the cross edge vw, avoids F. Thus, u, can be
connected to L —F, via P and vsv,.

Case 2 L —F,contains an isolated vertex.

Suppose that u, is an isolated vertex in L—F,.
We first show that L— (F,lJ {2,}) is connected. In
fact, since any pair of two nonadjacent vertices in
L can share at most two common neighbors and
|F,|<{2n—5, thus, u is the only isolated vertex in
L, that is, L—F, U {&) contains no isolated ver-
tex, which implies that if L — F,|J {s,} is discon-
nected, then F,UJ {u;} is an R,-cut of L. By Theo-
rem 1, we can obtain a contradiction as follows

2n — 4 = x,(Q,_,) =
o, (L) << |Ft U {u1}| < 2n— 5

Now, in the same argument as Case 1, we can
prove that any vertex x, in R— F, can be connected
to L‘_‘F[.

Combining Case 1 with Case 2, we prove that
| F|>=3n—5 for any R,-cut F of Q,, which implies
#,(Q,) = 3n — 5 forn =4

2 Results on Folded Hypercube

The folded n-cube FQ,, proposed by El-
Amawy and Latifil®, is the graph obtained from
the hypercube Q, by adding an edge between any
two complementary vertices r=(x,,x,,*»x,) and
x=C(xyy xzy***» x.) (such edges called complemen-

tary edges).

Like Q., the folded hypercube FQ, can be ex-
pressed as FQ,=L®R, where L and R are the two
(n — 1)-subcubes of Q,, induced by the vertices
with the leftmost coordinate is 0 and 1, respective-
ly. Between L and R, apart from the cross edges,
there exists a complementary edge joining u; and z,
€ R for any w, € L.

Lemma 3 FQ, contains no triangle for n=23,
and any two nonadjacent vertices in F@Q, have com-

mon neighbors at most two for n=>24.

Proof Suppose that (x, y, z) is a triangle in
FQ,. If x=x, x;*** z,, then y=uxz;** zi_| T, 2041
Zsand 2=z X, T; Tj41** T with i5f or y=ux,

* Tie) L Tie1* Tn @D =T Thog Th Tnt1™t Tne
If ¥ and z are defined by the former, then since yz
€ E(FQ,) and i¥j, we have n=2 and yz is a com-
plementary edge; if y and z are defined by the lat-
ter, then since xz € E(FQ,), we also have n=2

and and zz is a cross edge, a contradiction.

Suppose that two nonadjacent vertices r and y
in FQ, have a common neighbor z. Then the dis-
tance between x and y is two. Suppose x=ux, x>+
Zse Then y=z,** 2,1 2, Ziv1*** T, T, Tj41*** T, 0T
Y=, Th_1 Xn The1*** I, For n=>4, the former
allows that r and y have exactly two common
neighbors z =12, x| x; zig,*** x.and u =1,
Ty—1 X, Tye1°* Ty the latter allows that z and y

have only one common neighbor v=x, z,*** x,. [
Theorem 3 «,(FQ,)=«"V(FQ.,)=2n, n=4.

Proof Arbitrarily choose an edge uv in FQ,,
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and let S=Nyq (uv). Clearly, FQ,—S is discon-

nected and contains no isolated vertex for n=4 by
Lemma 3. Thus, # (FQ,)<«V(FQ,)<|S|=2n.

To prove the theorem, it is sufficient to show
£, (FQ,)=2n. To the end, we prove that for any F
CV(FQ,) with |F|<2rn—1, if FQ,— F contains
no isolated vertex, then FQ,—F is connected.

Let FQ,=LXR, and let F;=FNL, and F,=
FR. It is obvious that either |F,|<{n—1or |F.|
<<n—1, without loss of generality we can assume
that |F,|<<\n—1. We consider two cases.

Case 1
that any vertex »;in L— F, can be connected to R —
F.,.

since FQ,— F contains no isolated vertex, then u,

R — F, is connected. We can show
In fact, if u, is an isolated vertex in L — F,,

has at least one neighbor u, or % in R—F,, the re-
sult follows. If not, there exists a neighbor v, of «,
in L—F,. If one of {u,,u;,v,,7,} is not in F,, then
we are done. Otherwise, n =2 5 and let N =
N, (uw;). Then | N|=2n—4 and by Lemma 3
there must be a vertex w, € N such that w, or @, is
not in F,, that is, u,; can be connected to the con-

nected graph R—F, via w,.

Case 2 R—F, is disconnected. In this case,
|F,| =n—1 since «(R)=x(Q,_,)=n—1. Then by
Theorem 1, R—F, contains a unique isolated ver-
tex v,. By Lemma 1, R— (F.U{v.}) is connected.
In the same argument as Case 1, we can prove FQ,

O

—F 1is connected.
kP (FQ,)=4n—4 for n>8.

Proof Let Gy, Go s Gy and Gy, be the four
subgraphs of FQ, induced by the vertices with the
leftmost two coordinates 00, 01, 10 and 11, re-
spectively. Then, it is clear that Gy, G,;, G, and

Theorem 4

G, all are isomorphic to Q,_;, and the union of any
two distinct subgraphs is isomorphic to Q,_;.

We first show that «? (FQ,)<<4(n—1). Let
S={xo» Zorsxi0sx11}» where z;,= Gjusu, > u,) €
V(G,) for 7, ;€ {0,1}. Clearly, the subgraph in-
duced by S is a cycle of length four. Let F =
Nrq, (S) and Arq (S)=SUF. Consider a neighbor
Yoo Of Zoo in Goo. Since FQ, contains no triangle for

n==23 by Lemma 3, y, is not a neighbor of neither

Xo, NOT Xy, Since two nonadjacent vertices in FQ,
have at most two common neighbors for n=4 by
Lemma 3, yy is not a neighbor of x,;. These facts
imply that F does not contain the neighbor-set of
any vertex in FQ, and |F|=4(n—1). Hence FQ,
—F is disconnected since FQ,— Arq (S) has ver-

tices 2"—4n>2 for n=7.

To prove that F is an R‘?-set of FQ,, we only
need to show that every vertex of H = FQ, —

Arq (§) has degree at least two. Arbitrarily

choose a vertex x in H. Because of the symmetry,
without loss of generality, suppose that x is in
Goo.

Go» Gy and G, respectively, and x and x, have

Note that exactly three neighbors of x are in

common neighbors at most two. In other words,
neighbors of z are in F at most five. Thus

INp() | Z(n+1)—5=22forn>=6
And so, F is an R”-cut of FQ,.

We now show that ¥ (FQ,)=4n—4. To the
end, it is sufficient to prove that |F|=4n—4 for
any minimum vertex-cut F of FQ, with minimum
degree §(FQ,— F)=22 since |S|=|F| for any R®-
cut S of FQ,. Let F;;=V (G,,)NF fori,j€ {0, 1},
and let H be a component of FQ,— F. Because of
the minimality of F, Nro (H)=F and INFQH(H)|
=|F]|.

Case 1 H is contained in exactly one of
{G,—F, +i,j€{0,1}}, say G;;,—F,,. From defi-
nition of FQ,, every vertex u in G, has exactly

three neighbors ue € V (Gso)s uey € V (Goy) and
uloeV(Glo).

If G,;,—F,; contains an isolated vertex u, then
F'=(F\Ng, (u)) U {uows uors uso) is a vertex-cut
of FQ, with 8(FQ,—F')>=2, but

|F'| = |[F| — |Ng ()| +3< |F|
since
INg (w)| =n—2>3forn>=6
which contradicts the minimality of F.

If G, — F,, contains a vertex u of degree one,

let v be a neighbor of « in G,;, then
F' = (F\Nc“(u)) U {vy %oosteorste10}

is a vertex-cut of FQ, with 6 (FQ,—F')>=2, but
|F'| = |F| — |Ng ()| + 4 < |F|
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since

INg (w)| =n—3>4forn>38

which contradicts the minimality of F.

Thus, F,;is an R‘*®-cut of G; and
|F11 | = K(Z)(Qn-z) =
4(n — 2) — 8=4n — 16
Note that |V(H)|[=4 and Ngq (H) of H should
be deleted to separate H from FQ,. Thus
|F| = |[Npq (H)| 2 |Fy| +4X 3240 — 4

Case 2
{Gj—Fi; :i,7€ {0, 1}}. Without loss of generali-
ty, suppose that H is contained in

GOO U G].O - (FOO U FlO)

Using the minimality of F and in the same argu-

H is contained in exactly two of

ment as Case 1, we can show that Fo, UFy, 1s an
R®-cut of Goo UG, and so

|Foo ) FlOI ZK(Z)(QH-Q =

4(n— 1) — 8= 4n— 12

We claim that H has at least 8 neighbors in
Go UGy. If neighbors of any two distinct vertices
of H are different, then we are done since |V (H) |
=4. If two vertices in i have common neighbors
in Go UG o then the two vertices must be the form
(00u) in Gy and (10%) in Gy, the distance between
which in H is n— 1. This fact implies | H | =n.
Thus, H has at least n>>8 neighbors in Go; UGy,
for n==6. To separate H from FQ,, N (H) of H
should be deleted. It follows that

F| > |Neo ()| =
|[Foo U Fiol +8=4n — 4

Case 3 H is contained in exactly three of {G,;
—F,;:4d,5€ {0, 1}}. Without loss of generality,
we suppose that H is contained in Gy UGy UG-
If each of HN Gy HNGyoand H Gy, contains no
isolated vertex, then Fy, Fipand F,; are R'-cuts of
HNGyw, HNGwand HNGy,, respectively. Thus,

|F| = 3« (Q,-2) = 3(2n — 6) =
6n —18=4n —d4forn>=>=7
Without loss of generality, suppose that H [ Goo
contains an isolated vertex. Then G, UG, —F.o U
F, contains no isolated vertex, that is, F;,UF,; is

an R'-cut of G,oUGy. Thus
|Fool + |Fyo U Ful = «(@Q,-2) + kP (Q.-) =
n—2)+@n—4)=3n—6
Since H contains complementary edges, |V (H) |
=n+2, and H has at least n+2 neighbors in Gy,.
It follows that
|F| = |Fool + |Flo UFul + (n+2)=4n—4

Case 4 H is contained in all four of {G;,—F,,
:7,5€ {0, 1}}. If there is one of {HNG,;: {,jE€
{0, 1}}, say H(G,,, is of order at least 2, then it
has at least two neighbors in G, and at least two
neighbors in G,;, which implies that both H G,
and H N G, are of order at least 2, respectively.
So, |F|=23+2(rn—2—1)=6n—18=4n—4 for n=>
7, the result follows. Thus, each of {HNG, i,
€ {0,1}} is an isolated vertex, that is H=C, by
Lemma 3, so |F|>Ngo (H)=4n—4. ]
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