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Multiply-twisted Hypercube with Four or Less

          Dimensions is Vertex-transitive
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Abstract: P Kulasinghe and S Bettayeb showed that any multiply-twisted妙percube with

five or more dimensions is not vertex-transitive. This note shows that any multiply-twisted

hypercube with four or less dimensions is vertex-transitive, and that any multiply-twisted

hypercube with three or larger dimensions is not edge-transitive.
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芍1.                    Some Lemmas

  We follow [1] for graph-theoretical terminology and notation not defined here. A graph
G=(认E) is called to be vertex-transitive if for every pair of vertices二，，〔V, there exists

an automorphism 0 of G such that，=B(x), and called to be edge-transitive if for every pair

of edges xy, uv〔V, there exists an automorphism " of G such that 0{二，，}={。，.}.From
definition, the following lemma is true clearly.

  Lemma 1   Let X be a non-empty subset of V (U). Then for any automorphism 0 of G,

its restriction on X is an isomorphism between G[X] and G[B(X)], where B(X)={y E V(G):
，=创劝,x〔X}

  lemma 2   A graph G of order”is vertex-transitive if and only if all subgraphs of order

n一1 of G are isomorphic.
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  Proof   (==>) Suppose that G is vertex-transitive and二，y are any two vertices in G. Then,

there exists an automorphism B of G such that y=B(二).Thus,

        B(V(G一x))=a(V(G))\{A(x)} = B(V (G)) \[y=V(G)\{y}=V(G一y).

By Lemma 1, G一x -G一，.

  (G)

every t

We first show that G is regular. Let V (G)={xt,x2，一，x�} with壳(x;)=di for
=1, 2,·，。and {dl,d2,---,d�} be a degree sequence of G with dl < d2 <

For any two vertices x and y in G, since G一x -G一，，the degree sequences (d;,dz,-
of G一二and {d;,雌，. . , dn-r .-,l of G一y are the same. It is clear that

  < d�.

,dn-t}

ra- 1 介

艺d，一2dG(x)一艺di一艺d;=Edi一2dG(y)

As a result from the above equalities, we have that心(二)=dG(y). By the arbitrary choice of
x and y, G is regular.

  We now show that G is vertex-transitive. Arbitrarily choose two vertices u and v in G.

Then G一“aG一 妙our hypothesis. Let B be an isomorphism from G一。to G一 ，and let

0:G -> G,

        (a(x)

            t衫，

二E V (G一。)

x 二二 U

To prove that O is an automorphism of G, it is sufficient to show that

xy〔E(G) of ((O恤), 0(y))〔E(G),  V x, y〔V(G)

  Indeed, if xy E E(G一。)，then since B is an isomorphism from G一。to G一。，(OW, 0(y))=
(B(二), B(Y))〔E(G-u). If xy } E(G-u), i.e., x=。，Y〔V(G-u), then dG_�(y)=d-1, where
d is the regularity of G. Since G一。巴G-v, dG-u(9(y))=d-1. Thus, B(y)〔NG (v) (otherwise
心一。(OW)=司.Thus, (0(x), 0(y))=(V, 0(y))〔E(G)

  Conversely, if O(x)O(y)〔E(G), then we can similarly show that xy〔E(G). Thus, O is an
automorphism of G, and E) (u}二。.By the arbitrary choice of u and。，G is vertex-transitive.

  Lemma 3 (Theorem 14.12 in (4])   Every edge-transitive graph with no isolated vertices
is vertex-transitive or bipartite

愁2.                Main Results

  As a topological architecture of interconnection networks, the n-dimensional multiply-twisted

hypercube, also called七he crossed cube and den。七ed勿CQ}，二 first proposed by Efe [2, 3]
as a variation on the hypercube Qom. In the recent years, it has received much attention of

researchers because it has been regarded as an attractive alternative to the hypercube. The
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crossed cube and the hypercube have many same and different properties [2, 3, 6]. The following
lemma is useful to us here.

Lemma 4([2])   For all。> 2 and all values of d with 4 < d < 2", CQ� contains cycles of
length 1

However, Kulasinghe and Bettayeb [5] showed that the following result

Lemma 5   For all n>4, CQ� is not vertex-transitive.

  In this section, we consider CQ� for n < 4. CQ1 and CQ2 are isomorphic to QI and Q2,

which are a complete graph o# order two and a cycle of length four, respectively. CQ3 and CQ4

are shown in Figure 1 and Figure 2, respectively.

Figure 1  CQ3 Figure 2  CQ4

Theorem 1           CQ*, is vertex-transitive for n < 4

    Proof  It is a simple observation that both CQi and CQ2 are vertex-transitive. It is also

easily to be verified that all subgraphs with order 7 of CQ3 are isomorphic. By Lemma 2, CQ3
is vertex-transitive

  To prove that CQ4 is vertex-transitive, by Lemma 2, it is sufficient to show that the subgraph

CQ4一k is isomorphic to CQ‘一1 for every k=2, 3,‘·,16. To this aim, we express the vertex

labels of CQ4 as the following matrix.

    r”3‘、
                1 5 6 了 6 I

A =(aij)= I _I

      }，1u“121
            \13141516/

  It is easy to be observed from Figure 2 that each of the subgraphs CQ、一4, CQ;一13 and

CQ4一16 is isomorphic to CQ;一1. In fact, for every k=4,13,16, let ok be a permutation on
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the vertex-set CQ4 such that ok(1)=k whose images are specified by the following matrices

respectively,

  子‘3 2‘、 r13141516         1161514131
        I 8 7 6 5 I         I 9 101112 1          1111110 9 I

A4= 1 1，A13= 1 1，Alb= 1 1

  }12“10 9 I }““7“1 I“7““!
      }16151413/ \1  2 3 4/ \4 3 2 1/

in which ak(aij)=ak，，where Ak=(ak;,). It is not difficult to be verified that the restriction
of。*to the vertex-set of CQ4一1 is an isomorphism from CQ;一1 to CQ4一k for every

k=4,13,16.

    Similarly, we can also easily see that each of the subgraphs CQ、一3, CQ‘一14 and CQ、一15

is isomorphic to CQ;一2, each of CQ;一8, CQ‘一9 and CQ4一12 is isomorphic to CQ;一5,

and each of CQ、一7, CQ;一10 and CQ;一11 is isomorphic to CQ4一6.

    We now show that each of CQ‘一2, CQ‘一5 and CQ4一6 is isomorphic to CQ;一1. In

fact, to do this, for every k=2, 5, 6, we choose the permutation ok such that its images are

specified by the following matrices, respectively,

  r2“3、 [56“‘。、 了65‘。“、
A2一1“”“7 I,，。一1121314 I'AB一1211413 I
  }10”12“I }341516】 }431615}
    \14131615/ \                                             7211112/ \             871211/

    It is also not difficult七o be verified that the restriction of uk to the vertex-set of CQ4一1

is an isomorphism from CQ;一1 to CQ4一k for every k=2, 5, 6.

    The proof of the theorem is complete.

  Theorem 2   For all”> 3, CQ� is not edge-transitive.

    Proof   It is clear that both CQl and CQ2 are edge-transitive

  We now show that CQ3 is not edge-transitive. Suppose to the contrary that CQ3 is edge-

transitive. Then for given two edges a=12 and b=13 in CQ3, there exists an automorphism

0 of CQ3 such that O{1,3}={1,2}. We can deduce a contradiction.

  10 If "(1)=1,0(3)=2, then 0(4)=4,0(2)=3 since the four vertices 1, 3, 4, 2 form a
cycle of length four, Thus the vertices 0(1), 0(3), 0(4), 0(2) must also form a cycle of length

four. Since 4=0(4),3=0(2), 6, 5 form a cycle of length four, then 4, 2, 0-'(6), 0-1(5) form a
cycle of length four. As a result, 0-' (6)=3,0-1(5)=1, that is, 0(3)=6, "(1)=5, which
contradicts the hypothesis that功is an automorphism.

  20 If价(1)=2,功(3)=1, then, similarly, we have that 0(4)=3,"(2)=4 and obtain a

contradiction: 0-1(5)=110-1(6)=3.

  We now prove that CQ4 is not edge-transitive. In fact, let a二12 and b=15 be two edges in
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CQ4. Suppose to the contrary that CQ4 is edge-transitive. Then there exists an automorphism

" of CQ4 such that 0(1,5}={1, 2}. We can deduce a contradiction.

  10 If 0(1)=1,功(2)=5, then功(6)=6, 0(5)=2. Thus, the vertices 5, 6, 9, 10 form a
cycle of length four, and so the vertices "(5)二2,0(6)=6, "(9), 0(10) also form a cycle of

length four, from which we deduce a contradiction: 0(9)=5,功(10)=1.

  20 If 0(1)=5,0(2)=1, then, similarly, we can deduce a contradiction: 0(9)=1,0(10)=5.

  For”> 5, if CQ� is edge-transitive, then妙Lemma 3 CQu is vertex-transitive or bipartite,
which contradicts T,-mma 4 or Lemma 5
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