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Abstract The h-super connectivity κh and the h-super edge-connectivity λh are more refined network relia-

bility indices than the connectivity and the edge-connectivity. This paper shows that for a connected balanced

digraph D and its line digraph L, if D is optimally super edge-connected, then κ1(L) = 2λ1(D), and that for

a connected graph G and its line graph L, if one of κ1(L) and λ2(G) exists, then κ1(L) = λ2(G). This paper

determines that κ1(B(d, n)) is equal to 4d − 8 for n = 2 and d ≥ 4, and to 4d − 4 for n ≥ 3 and d ≥ 3, and that

κ1(K(d, n)) is equal to 4d − 4 for d ≥ 2 and n ≥ 2 except K(2, 2). It then follows that B(d, n) and K(d, n) are

both super connected for any d ≥ 2 and n ≥ 1.
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1 Introduction

It is well-known that when the underlying topology of an interconnection network is modelled by
a connected graph or strongly connected digraph G = (V,E), where V is the set of processors
and E is the set of communication links in the network, the connectivity κ(G) or the edge-
connectivity λ(G) of G is an important measurement for fault-tolerance of the network. In
general, the larger κ(G) or λ(G) is, the more reliable the network is. It is well known that
κ(G) ≤ λ(G) ≤ δ(G), where δ(G) is the minimum degree of G. A graph (digraph) G is called
to be maximally connected if κ(G) = δ(G) and maximally edge-connected if λ(G) = δ(G).
One might be interested in more refined indices of reliability. As more refined indices than the
connectivity and the edge-connectivity, the super connectivity and the super edge-connectivity
were proposed in [1,2]. A graph (digraph) G is super connected if every minimum vertex-cut
isolates a vertex of G. A super edge-connected graph (digraph) is similarly defined. Since then
it has been found that many well-known graphs are super connected or super edge-connected.
In particular, Soneoka[10] showed that the de Bruijn digraph B(d, n) is super edge-connected
for any d ≥ 2 and n ≥ 1; Fábrega and Fiol[5] proved that the Kautz digraph K(d, n) is super
edge-connected for any d ≥ 3 and n ≥ 2.

A quite natural problem is that if a (strongly) connected (di)graph G is super connected or
super edge-connected, then how many vertices or edges must be removed to disconnect G such
that every (strongly) connected component of the resulting graph contains no isolated vertices.
This problem results in the concept of the super (edge-) connectivity, introduced in [6].
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For a given nonnegative integer h, a vertex-set S of G is called an h-super vertex-cut if G−S
is not (strongly) connected and every (strongly) connected component contains at least (h + 1)
vertices. In general, h-super vertex-cuts do not always exist. The h-super connectivity κh(G)
is the minimum cardinality of an h-super vertex-cut in G if h-super vertex-cuts exist, and, by
convention, is ∞ otherwise. It is clear that κ0(G) = κ(G). It is easy to see if κ1(G) > κ(G)
then G is super connected. Usually, we call a super vertex-cut and the super connectivity for
a 1-super vertex-cut and the 1-super connectivity, respectively.

We can similarly define an h-super edge-cut and the h-super edge-connectivity λh(G) for
a (strongly) connected (di)graph G. It is also clear that if λ1(G) > λ(G), then G is super
edge-connected. A (di)graph G is said to be optimally super edge-connected if λ1(G) exists and
there is a minimum super edge-cut F such that G − F has exactly two (strongly) connected
components.

For λ1, it has been extensively studied, (see, for example, [4,9,11,15]), and it is termed
the restricted edge-connectivity denoted by the notation λ′. For κh, Esfahanian[3] determined
κ1(Qn) = 2n − 2, and this was further generalized by Latifi et al.[8] to κh(Qn) = (n − h)2h for
n ≥ 3 with 0 ≤ h ≤ ⌊

n
2

⌋
, where Qn is the n-cube. Up to now, however, we have not seen any

results on κ1 for digraphs in the literature.
In this paper, we consider the relationship between the h-super edge-connectivity of a graph

and the super connectivity of its line graph. To be precise, we show that for a connected balanced
digraph D and its line digraph L, if D is optimally super edge-connected, then κ1(L) = 2λ1(D),
and that for a connected graph G and its line graph L, if one of κ1(L) and λ2(G) exists, then
κ1(L) = λ2(G). We determine that κ1(B(d, n)) is equal to 4d − 8 for n = 2 and d ≥ 4, and to
4d− 4 for n ≥ 3 and d ≥ 3, and that κ1(K(d, n)) is equal to 4d− 4 for d ≥ 2 and n ≥ 2 except
K(2, 2). As consequences, we show that B(d, n) and K(d, n) are both super connected for any
d ≥ 2 and n ≥ 1.

2 Line Digraphs

We follow[13] for graph-theoretical terminologies and notations unless otherwise stated. Let
D = (V,E) be a strongly connected digraph, in which parallel edges are not allowed. The line
digraph of D, denoted by L(D), or L for short, is a digraph with vertex set V (L) = E(D), and
a vertex (x, y) is adjacent to a vertex (w, z) in L if and only if y = w in D. Many properties of
line digraphs can be found in [12], one of which is the following lemma.

Lemma 2.1. Let D be a digraph with order at least two. Then D is strongly connected if
and only if the line digraph L(D) is strongly connected.

For a subset E′ ⊆ E(D), we use D[E′] to denote the edge-induced subgraph of D by E′.
Let L1 be a subgraph of L(D) and E1 = V (L1). Define D1 = D[E1].

Lemma 2.2. Using the above notations, we have that if L1 is a strongly connected subgraph
of L with at least two vertices, then the subgraph D1 ⊆ D is strongly connected.

Proof. Assume that x and y are any two vertices of D1. There is an edge e of D1 such
that x is incident with the edge e. Without loss of generality, we can denote the edge e by
(x, z). If z = y, then x can reach y by the edge e. If z �= y, then y is incident with an-
other edge e′. Without loss of generality, we can assume the edge e′ = (w, y). So, e = (x, z)
and e′ = (w, y) are two vertices in L1. Since L1 is strongly connected, there is a directed
path in L1 from (x, z) to (w, y): ((x, z), (z, z1), (z1, z2), · · · , (zk, w), (w, y)). The correspond-
ing edges (x, z), (z, z1), (z1, z2), · · · , (zk, w), (w, y) form a directed walk in D1 from x to y:
(x, z, z1, z2, · · · , zk, w, y). So x can reach y in D1.

On the other hand, there is also a directed path in L1 from (w, y) to (x, z): ((w, y),
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(y, y1), (y1, y2), · · · , (yl, x), (x, z)), from which we can construct a directed walk in D1 from
y to x: (y, y1, y2, · · · , yl, x). So y can reach x. Therefore, x and y are strongly connected. So,
D1 is strongly connected.

A digraph D is called balanced if the out-degree d+
D(x) is equal to the in-degree d−D(x) for

any vertex x of D. The following property of balanced digraphs is useful, and the proof of
which is simple; see Example 1.4.1 in [13].

Lemma 2.3. If D is a balanced digraph then |E(X,Y )| = |E(Y,X)| for any non-empty
proper subsets X and Y = V (D) \ X, where E(X,Y ) denotes the set of edges from X to Y in
D.

Theorem 2.4. Let D be a connected and balanced digraph and L = L(D).
(a) If κ1(L) exists, then λ1(D) ≤ 1

2 κ1(L).
(b) If D is optimally super edge-connected, then κ1(L) = 2λ1(D).

Proof. We first note that D is strongly connected by Lemma 2.3.
(a) Assume κ1(L) exists and that E0 is a super vertex-cut of L with |E0| = κ1(L). Then

L−E0 is partitioned into several strongly connected components L1, L2, · · · , Lt with |V (Li)| ≥ 2
for i = 1, 2, · · · , t. Let Di be the edge-induced subgraph of D by Ei = V (Li) and Vi = V (Di)
for i = 1, 2, · · · , t. So Vi is nonempty clearly. By Lemma 2.2, Di is strongly connected. Since
|Ei| = |V (Li)| ≥ 2 and there is at most one loop at every vertex in Di, |Vi| ≥ 2 for i = 1, 2, · · · , t.

We claim Vi ∩ Vj = ∅ for i, j ∈ {1, 2, · · · , t} and i �= j. Suppose to the contrary that
y ∈ Vi ∩ Vj for some i, j ∈ {1, 2, · · · , t} and i �= j. Since Di is strongly connected and |Vi| ≥ 2,
there are vertices x, z ∈ Vi such that (x, y), (y, z) ∈ E(Di) (maybe x = z). Then (x, y) and (y, z),
as vertices, are in Li. Similarly, there are vertices x′, z′ ∈ Vj such that (x′, y), (y, z′) ∈ E(Dj)
(maybe x′ = z′). Then (x′, y) and (y, z′), as vertices, are in Lj . By the construction of L,
there is an edge ((x, y), (y, z′)) from V (Li) to V (Lj) and an edge ((x′, y), (y, z)) from V (Lj)
to V (Li). So, Li ∪ Lj is strongly connected, a contradiction. Therefore, Vi ∩ Vj = ∅ for any
i, j ∈ {1, 2, · · · , t} and i �= j.

Let V 1 = V (D) \V1. Then the edge-sets E(V1, V 1) and E(V 1, V1) are both super edge-cuts
in D and hence λ1(D) exists.

To prove 2λ1(D) ≤ κ1(L), we first show E(V1, V 1) ∪ E(V 1, V1) ⊆ E0. Suppose to the
contrary that there is an edge (x, y) ∈ E(V1, V 1) ∪ E(V 1, V1) but (x, y) /∈ E0. Without loss
of generality, we suppose (x, y) ∈ E(V1, V 1). So as a vertex of L, (x, y) ∈ E − E0. But E0 is
a minimum super vertex-cut of L, so the vertex (x, y) is in and only in one of the t strongly
connected components of L − E0. Without loss of generality, assume that (x, y) is in L1,
then by the definition of D1, the edge (x, y) is in D1, contradicting to our assumption that
(x, y) ∈ E(V1, V 1). So E(V1, V 1) ∪ E(V 1, V1) ⊆ E0.

Since D is balanced, |E(V1, V 1)| = |E(V 1, V1)| by Lemma 2.3. So we have

2λ1(D) ≤ 2|E(V1, V 1)| = |E(V1, V 1) ∪ E(V 1, V1)| ≤ |E0| = κ1(L). (1)

(b) Assume that D is optimally super edge-connected. Then λ1(D) exists and there is a
super edge-cut F of D with |F | = λ1(D) such that G − F has exactly two strongly connected
components, say D1 and D2. Let X = V (D1) and Y = V (D2). Then |X| ≥ 2 and |Y | ≥ 2.
Without loss of generality, assume F = E(X,Y ). Since D is a connected balanced digraph,
E(Y,X) is also a super edge-cut and |E(Y,X)| = |F | = |E(X,Y )| by Lemma 2.3. By Lemma
2.1, L(D1) and L(D2) are strongly connected and disjoint. Since D1 and D2 are strongly
connected with at least two vertices, D1 and D2 both have at least two edges, which implies
that L(D1) and L(D2) both contain at least two vertices. So E(X,Y ) ∪ E(Y,X) is a super
vertex-cut of L. It follows that κ1(L) exists and

κ1(L) ≤ |E(X,Y ) ∪ E(Y,X)| = 2|E(X,Y )| = 2λ1(D). (2)
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Combining (1) and (2) yields κ1(L) = 2λ1(D). The theorem then follows.

3 de Bruijn and Kautz Digraphs

For an integer n, the n-th iterated line digraph of D is recursively defined as Ln(D) =
L(Ln−1(D)) with L0(D) = D. In the design of communication networks, line digraphs of
some special digraphs are often used as the topology, for they meet many requirements such as
small delays and high reliability [12]. The well-known de Bruijn networks and Kautz networks
are two of such examples.

For any integers d ≥ 2 and n ≥ 1, the de Bruijn digraph B(d, n) can be defined by the (n−1)-
th iterated line digraph of K+

d , where K+
d is a complete digraph of order d plus a loop at every

vertex, that is, B(d, 1) = K+
d and B(d, n) = Ln−1(K+

d ) = L(B(d, n − 1)); the Kautz digraph
K(d, n) can be defined by the (n−1)-th iterated line digraph of Kd+1, where Kd+1 is a complete
digraph of order d + 1, that is, K(d, 1) = Kd+1 and K(d, n) = Ln−1(Kd+1) = L(K(d, n − 1)).
In this section, we will determine the super connectivity κ1 of B(d, n) and K(d, n).

Lemma 3.1[14]. The removal of the efhes incident with the two end-vertices of a pair of
symmetric edges of B(d, n) or K(d, n) results in exactly two strongly connected components.

Lemma 3.2[14]. For any de Bruijn digraph B(d, n) with n ≥ 1 and d ≥ 2,

λ1(B(d, n)) =

⎧
⎪⎨

⎪⎩

∞, for n = 1 and 2 ≤ d ≤ 3, or n = d = 2;
2d − 4, for n = 1 and d ≥ 4;
2d − 2, otherwise.

Theorem 3.3. For the de Bruijn digraph B(d, n) with n ≥ 1 and d ≥ 2,

κ1(B(d, n)) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∞, for n = 1, or
n = 2 and 2 ≤ d ≤ 3, or
n = 3 and d = 2;

4d − 8, for n = 2 and d ≥ 4;
4d − 4, otherwise.

Proof. Note that B(d, n) = L(B(d, n − 1)). It is easy to check that κ1(B(d, n)) does not
exist when d and n take some small values. Combining Theorem 2.4 and Lemma 3.2, we can
immediately obtain the theorem if we can prove that B(d, n) is optimally super edge-connected.
To this end, by Lemma 3.2, we only need to show that there is a minimum super edge-cut F such
that B(d, n)−F contains exactly two strongly connected components when λ1(B(d, n)) exists.
Choose a pair of symmetric edges with end-vertices {x, y}. Let X = {x, y}, X = V (B(d, n))\X
and F = E(X,X). Then B(d, n) − X contains exactly two strongly connected components by
Lemma 3.1. Thus, we only need to check that |F | = λ1(B(d, n)).

When n = 1, B(d, 1) = K+
d . Thus, when d ≥ 4, |F | = |E(X,X)| = 2d − 4 = λ1(B(d, 1))

since there are loops at x and y respectively.
When n ≥ 2 and d ≥ 3, since there are no loops at x and y, |F | = |E(X,X)| = 2d − 2 =

λ1(B(d, n)).

Corollary 3.4. The de Bruijn digraph B(d, n) is super connected for any d ≥ 2 and n ≥ 1.

Proof. Since B(d, 1) is a complete digraph of order d with a loop at every vertex, it is clear
that B(d, 1) is super connected for any d ≥ 2. It is easy to see that B(2, 2), B(3, 2) and B(2, 3)
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are super connected. By Theorem 3.3, for d ≥ 4 and n = 2, κ1(B(d, 2)) = 4d − 8 > d − 1 =
κ(B(d, n)), which means that B(d, 2) is super connected for d ≥ 4. Similarly, for d ≥ 2 and
n ≥ 3 except B(2, 3), κ1(B(d, n)) = 4d − 4 > d − 1 = κ(B(d, n)), which means that B(d, n) is
super connected for d ≥ 2 and n ≥ 3.

Lemma 3.5[14]. For any Kautz digraph K(d, n) with d ≥ 2 and n ≥ 1, λ1(K(d, n)) = 2d− 2
except K(2, 1).

Note that K(d, n) = L(K(d, n− 1)). Combining Theorem 2.4, Lemma 3.1 and Lemma 3.5,
we immediately obtain a similar result for K(d, n).

Theorem 3.6. κ1(K(d, n)) = 4d − 4 for d ≥ 2, n ≥ 2 except K(2, 2).

Corollary 3.7. The Kautz digraph K(d, n) is super connected for any d ≥ 2 and n ≥ 1.

4 Line Graphs

Let G = (V,E) be a simple undirected graph. The line graph of G, denoted by L(G), or L for
short, is an undirected graph, in which V (L(G)) = E(G) and two distinct vertices are linked
by an edge if and only if they are adjacent as edges of G.

It is not always true that for a strongly connected digraph G, if λh(G) exists, then there
is a minimum super edge-cut F of G such that G− F contains exactly two strongly connected
components, but it is not hard to see that for an undirected graph, the following result holds.

Lemma 4.1. For a connected graph G, if λh(G) exists, then for any minimum h-super edge-
cut of G, G − F contains exactly two connected components, whereby, it is optimally h-super
edge-connected.

Clearly, Lemma 2.1 and Lemma 2.2 are valid for an undirected graph. By Lemma 4.1, if
λ2(G) exists and F is a minimum 2-super edge-cut of G, then the two connected components of
G − F both contain at least three vertices, which implies each connected component contains
at least two edges. So their line graphs are connected and both contain at least two vertices.
Therefore, L(F ) corresponds to a super vertex-cut of L(G). If L1 is a subgraph of L(G) and
connected, then the edge-induced subgraph G[E1] of G is connected too, where E1 = V (L1).
In the same manner as the proof of the digraph case, the following theorem can be obtained,
and the detailed proof is omitted here.

Theorem 4.2. If G is a connected undirected graph without parallel edges or loops, then
κ1(L) exists if and only if λ2(G) exists. Moreover, if one of λ2(G) and κ1(L) exists, then
κ1(L) = λ2(G).
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[5] Fábrega, J., Fiol, M.A. Maximally connected digraphs. J. Graph Theory, 13: 657–668 (1989)
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48 M.Lü, J.M. Xu

[9] Meng, J.X., Ji, Y.H. On a kind of restricted edge connectivity of graphs. Discrete Applied Math., 117:
183–193 (2002)

[10] Soneoka, T. Super edge-connectivity of dense digraphs and graphs. Discrete Applied. Math., 37/38:
511–523 (1992)

[11] Wang, M., Li, Q. Conditional edge connectivity properties, reliability comparisons and transitivity of
graphs. Discrete Math., 258: 205–214 (2002)

[12] Xu, J.M. Topological structure and analysis of interconnection networks. Kluwer Academic Publishers,
Dordrecht, Boston, London, 2001

[13] Xu, J.M. Theory and application of graphs. Kluwer Academic Publishers, Dordrecht, Boston, London,
2003
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