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Cycles in folded hypercubes✩
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Abstract

This work investigates important properties related to cycles of embedding into the folded hypercubeFQn for
n ≥ 2. The authors observe thatFQn is bipartite if and only ifn is odd, and show that the minimum length of odd
cycles isn + 1 if n is even. The authors further show that every edge ofFQn lies on a cycle of every even length
from 4 to 2n; if n is even, every edge ofFQn also lies on a cycle of every odd length fromn + 1 to 2n − 1.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

As a topology for an interconnection network of a multiprocessor system, the hypercube structure is
a widely used and well-known interconnection model since itpossesses many attractive properties [1,2].
The n-dimensional hypercubeQn is a graph with 2n vertices, each vertex with a distinct binary string
x1x2 · · · xn on the set{0, 1}. Two vertices are linked by an edge if and only if their strings differ in
exactly one bit. Weuse the symboldH (x, y) to denote the Hamming distance between two verticesu
andv in Qn , that is, the number of different bits in the corresponding strings of both vertices. Clearly,
dH (x, y) = dQn (x, y), wheredQn (x, y) denotes the distance between two verticesx andy in Qn, i.e.,
the length of the shortestx y-path inQn.
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Fig. 1. FQ3 andFQ4. (Thick lines represent the complementary edges.)

As a variant of the hypercube, then-dimensional folded hypercubeFQn, proposed first by El-Amawy
and Latifi [3], is a graph obtained from the hypercubeQn by adding an edge, called a complementary
edge, between any two verticesx = (x1x2 · · · xn) andx̄ = (x̄1x̄2 . . . x̄n), wherex̄i = 1 − xi . Thegraphs
shown inFig. 1areFQ3 andFQ4, respectively.

It has been shown thatFQn is (n + 1)-regular(n + 1)-connected.FQn is alsosuperior toQn in
some properties. For example, it has diameter

⌈n
2

⌉
, about half the diameter ofQn [3]. Thus, the folded

hypercubeFQn is an enhancement on the hypercubeQn . In particular,there aren + 1 internally disjoint
paths of length at most

⌈n
2

⌉ + 1 between any pair of vertices inFQn, thedeletion of less than
⌈n

2

⌉ − 2
vertices or edges does not increase the diameter ofFQn, and the deletion of up ton verticesor edges
increases it by at most one [4,5]. These properties mean that interconnection networks modelled byFQn
are extremely robust. As a result, the study of the folded hypercube has recently attracted the attention
of many researchers [6–8].

In [9], Li et al. proved that every edge ofQn (n ≥ 2) lies on a cycle of every even length from 4 to 2n.
In this work, we first observe thatFQn is bipartite if and only ifn is odd, and show that the minimum
length of even cycles inFQn is 4 and that the minimumlength of odd cycles isn + 1 if n is even. Then,
using the Li et al. result, we further show that every edge ofFQn lies on a cycle of every even length
from 4 to 2n; moreover, every edge ofFQn also lies on a cycle of odd length fromn + 1 to 2n − 1 if n
is even.

The proofs of our main results are inSection 3. In the next section, we explore some new topological
properties ofFQn.

2. New properties of FQn

A vertexu in Qn is said to be odd or even if the sumof its bits is odd or even. LetX = {u : u is odd}
andY = {u : u is even}. Then{X, Y } is a bipartition ofQn , clearly. Conversely, if two vertices inQn
are in the same partof a bipartition of Qn, then they have the same parity.

Theorem 2.1. FQn is a bipartite graph if and only if n is odd.

Proof. SinceFQn is obtained fromQn by adding 2n−1 complementary edges, to prove the theorem, it
is sufficient to consider complementary edges. Let{X, Y } be a bipartition of Qn. Sinceany vertexu and
its complementū in Qn have different parity if and only ifn is odd and, hence, any complementary edge
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in FQn joins two vertices in different parts of{X, Y }, it follows thatFQn is a bipartite graph if and only
if n is odd. The theorem follows. �

Theorem 2.2. The length of any cycle in FQn that contains exactly two complementary edges is even.

Proof. Let C = (v, v̄, v1, . . . , vm, ū, u, u1, . . . , un, v) be a cycle inFQn that contains exactly two
complementary edgese1 = (u, ū) ande2 = (v, v̄). Clearly,v �= u and, hence,̄v �= ū sincee1 �= e2.

If FQn is bipartite, then we are done. We now assumeFQn is not bipartite. ByTheorem 2.1, n is even
and, hence,u and ū have the same parity. Let{X, Y } be a bipartition of Qn . Then, u and ū are in the
same part of{X, Y }. Similarly, v andv̄ are also in the same part of{X, Y }. SinceC contains exactly two
complementary edges, all of the other edges inC are in Qn . If u, ū, v, v̄ are in the same part, then the
lengths of the sections(v̄, v1, . . . , vm , ū) and(u, u1, . . . , un, v) are even. Ifu, ū, v, v̄ are not inthe same
part, then the lengths of the two sections are odd. It follows that the length ofC is evenin both cases.

�

Theorem 2.3. The length of any cycle in FQn that contains exactly one complementary edge is at least
n+1. Moreover, any complementary edge and any vertex lie on a common cycle of length n+1 containing
the unique complementary edge in FQn.

Proof. Assume thate = (u, ū) is a complementary edge inFQn and thatC is a cycle inFQn containing
exactly onecomplementary edgee. ThenP = C − e is auū-path in Qn . Clearly,dQn(u, ū) = n and,
hence, the length of anyuū-path inQn is at leastn. Thus, the length ofP is at leastn and so the length
of the cycleC is at leastn + 1.

Let P ′ be a shortestuū-path in Qn and letv be any vertex inFQn. If v ∈ {u, ū}, then P ′ + e is a
cycle of length exactlyn + 1 and contains the unique complementary edgee in FQn. We nowassume
v �∈ {u, ū}. SincedH (u, v) + dH (ū, v) = n, there are ashortestvu-path R and a shortestvū-path R′
in Qn . Then the sum of their lengths is equal ton. Clearly, R ∪ R′ + uū is a cycleof lengthn + 1 and
contains the vertexv and the unique complementary edge. The theorem follows.�

Theorem 2.4. Every shortest path between any two distinct vertices in FQn contains at most one
complementary edge.

Proof. Suppose thatP = (u, u1, . . . , ui , ūi , ui+1, . . . , u j , ū j , . . . , v) is a shortestuv-path in FQn
containing more than one complementary edge, where(ui , ūi) and(u j , ū j ) are the two complementary
edges that first occur inP in the order fromu to v. Then the section(ūi , . . . , u j ) of P contains
no complementary edge and is a shortestūiu j -path. Since dH (ui , ū j ) = dH (ūi , u j ), the section
(ui , ūi , ui+1, . . . , u j , ū j ) of P is not a shortestui ū j -path, whereby P is not the shortest path, a
contradiction. The theorem follows. �

Theorem 2.5. Let u and v be two vertices in FQn (n ≥ 2). If dH (u, v) ≤ � n
2	, then any shortest uv-path

in FQn contains no complementary edges. If dH (u, v) > 
 n
2�, then any shortest uv-path in FQn contains

exactly one complementary edge.

Proof. SupposedH (u, v) = h ≤ � n
2	; thenv �= ū sincedH (u, ū) = n. Suppose to the contrary that

there is a shortestuv-path P in FQn containing a complementary edge. ByTheorem 2.4, P contains
exactly onecomplementary edge, saye = (x, x̄). Let dH (u, x) = i and dH (x̄, v) = m. Then
dFQn (u, x) = dH (u, x) = i < � n

2	, dFQn (x̄, v) = dH (x̄, v) = m < � n
2	 andi + m + 1 = h ≤ � n

2	.
SincedH (u, x)+dH (u, x̄) = n, we havedH (u, x̄) = n − i . Also sincedH (u, v)+dH (x̄ , v) ≥ dH (u, x̄),
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we can deduce a contradiction as follows:⌊n

2

⌋
≥ dH (u, v) ≥ dH (u, x̄) − dH (x̄, v) = n − i − m > n − h ≥

⌈n

2

⌉
.

Thus,P contains no complementary edges.
If dH (u, v) > 
 n

2�, sincedFQn (u, v) ≤ 
 n
2�, any shortest path betweenu and v must contain a

complementary edge. ByTheorem 2.4, the theorem follows. �

Remarks. If n is odd and dH (u, v) = 
 n
2�, then there are a shortestuv-path containing no

complementary edge and a shortestuv-path containing exactly one complementary edge inFQn.

Theorem 2.6. If FQn contains an odd cycle, then any shortest odd cycle contains exactly one
complementary edge and the length is n + 1.

Proof. If FQn contains an odd cycle, then byTheorem 2.1n is evenand any odd cycle must contain a
complementary edge. Moreover, any odd cycle must contain at least one edge that is not a complementary
edge since any two complementary edges are not adjacent. Assume thatC = (v0, v1, . . . , v2l, v0) is a
shortest odd cycle of length 2l + 1 in FQn, wherethe edgeel = (vl , vl+1) is not a complementary edge.
Consider two paths inC, P1 = (v0, v1, . . . , vl) andP2 = (vl+1, . . . , v2l, v0). If P1 is not shortest inFQn
and P ′ is, then the length of any cycleC ′ in P1 ∪ P ′ is less than 2l + 1, soC ′ is an even cycle. Thus,
the lengths ofP1 and P ′ have the same parity. By a similar argument, we can prove that the lengths of
P ′ andP2 + el have the same parity. It follows that the lengths ofP1 andP2 + el have the same parity,
which means thatC is an even cycle, a contradiction. Therefore,P1 is a shortest path. Similarly,P2 is
also a shortest path. ByTheorem 2.4, C contains at most two complementary edges. SinceC is anodd
cycle,C contains exactly one complementary edge byTheorem 2.2.

By Theorem 2.3, the length ofC is at leastn + 1. Also byTheorem 2.3, any complementary edge lies
on a cycle of lengthn +1 in FQn. This shows that the minimum length of any odd cycle is exactlyn +1.

�

3. Embedding cycles into FQn

For convenience, we useQ0
n−1 andQ1

n−1 to denote the two (n − 1)-subcubes ofQn induced by the
vertices with the leftmost bit 0 and 1, respectively. Then, all of 2n−1 complementary edges ofFQn join
0u and 1̄u betweenQ0

n−1 andQ1
n−1 for anyu ∈ V (Qn−1).

Lemma 3.1 (Li et al. [9]). If n ≥ 2, then

(a) for any two different vertices x and y in Qn there exists an x y-path of length l with dQn(x, y) ≤ l ≤
2n − 1, where l and dQn(x, y) have the same parity;

(b) every edge of Qn lies on a cycle of every even length from 4 to 2n.

Theorem 3.2. Every complementary edge in FQn lies on a cycle of every even length from 4 to 2n for
n ≥ 2.

Proof. Let e be a complementary edge inFQn. Without loss of generality, we may assume that
e = (0u, 1ū) with 0u ∈ V (Q0

n−1) and 1̄u ∈ V (Q1
n−1). Choose an edge(0u, 0v) in Q0

n−1 and a
corresponding edge(1ū, 1v̄) in Q1

n−1. We want to prove that the edgee = (0u, 1ū) lies on a cycle
of lengthl in FQn with 4 ≤ l ≤ 2n andl is even.
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(a) Illustration for
Theorem 3.2.

(b) Illustration for case 2 of
Theorem 3.3.
n + 1 ≤ l ≤ 2n−1 + 1

(c) Illustration for case 2 of
Theorem 3.3.
2n−1 + 3 ≤ l ≤ 2n − 1

Fig. 2. Illustrations for the proofs inSection 3.

We can expressl = l ′ + l ′′ + 2 where 1≤ l ′ ≤ 2n−1 − 1, 1 ≤ l ′′ ≤ 2n−1 − 1 andbothl ′ andl ′′ are
odd integers. ByLemma 3.1(a), there exist a pathP ′ of lengthl ′ in Q0

n−1 joining 0u and 0v and a path
P ′′ of lengthl ′′ in Q1

n−1 joining 1ū and 1̄v. ThenP ′ + (0v, 1v̄) + P ′′ + (1ū, 0u) is a cycle containing
the edgee in FQn, whose length is equal tol (seeFig. 2(a)). The theorem follows. �
Theorem 3.3. If n is odd, then every edge of FQn lies on a cycle of every even length from 4 to 2n for
n ≥ 3. If n is even, then every edge of FQn lies on a cycle of every even length from 4 to 2n and every
odd length from n + 1 to 2n − 1.

Proof. If n is odd, thenFQn is a bipartite graph byTheorem 2.1. By Lemma 3.1(b) andTheorem 3.2,
the first assertion follows. We now prove the second assertion.

If n is even, thenFQn is not a bipartite graph byTheorem 2.1. By Lemma 3.1(b) andTheorem 3.2,
every edge lies on a cycle of every even length from 4 to 2n inclusive.

We now show that every edge ofFQn lies on a cycle of any odd lengthl with n + 1 ≤ l ≤ 2n − 1
whenn is even. Let e be any edge inFQn. There are two cases.

Case 1. The edgee = (u, ū) is a complementary edge. In this case,u andū belong to the same part
of a bipartition of Qn, dQn (u, ū) = n and 1

2 ((l − 1) − n) = 1
2 ((l − 1) − dQn(u, ū)) is an integer. By

Lemma 3.1(a), there is apath of lengthl − 1 joining u andū with n ≤ (l − 1) ≤ 2n − 2. ChooseP to
be such a path of even length(l − 1) with n ≤ (l − 1) ≤ 2n − 2 in Qn . Thus,P + e is anodd cycle of
lengthl in FQn with n + 1 ≤ l ≤ 2n − 1.

Case 2. The edgee = (u, v) is not a complementary edge. In this case,u andv belong to different
parts of a bipartition ofQn. Without loss of generality, we may assumee = (0u, 1u); then(1u, 0ū) is a
complementary edge inFQn anddH (0u, 0ū) = n − 1.

Sincel and(n − 1) are odd,12 ((l − 2) − (n − 1)) = 1
2 ((l − 2) − dQn (0u, 0ū)) is an integer. By

Lemma 3.1(a), there is a pathP of odd length(l − 2) joining 0u and 0̄u in Q0
n−1 with n − 1 ≤ (l − 2) ≤

2n−1 − 1. In particular, we useP0 to denote such a path of length 2n−1 − 1 joining 0u and 0̄u in Q0
n−1.

If n + 1 ≤ l ≤ 2n−1 + 1, thenP + (0u, 1u, 0ū) is anodd cycle of lengthl containing the edgee in
FQn with n + 1 ≤ l ≤ 2n−1 + 1 (seeFig. 2(b)).

If 2n−1 + 3 ≤ l ≤ 2n − 1, let l ′ = l − 2n−1 − 1; then 2 ≤ l ′ ≤ 2n−1 − 2. We may assume
P0 = (0u, 0u1, 0u2, . . . , 0u2n−1−2, 0ū). For every edge(0ui , 0ui+1) in Q0

n−1, there is a corresponding
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edge(1ui , 1ui+1) in Q1
n−1. ThusC = (0u, 0u1, 1u1, 1u2, 0u2, 0u3, 1u3, . . . , 0ul′−1, 1ul′−1, 1ul′ , 0ul′ ,

0ul′+1, 0ul′+2, . . . , 0u2n−1−2, 0ū, 1u, 0u) is a cyclecontaining the edgee in FQn whose length is equal
to 2n−1 + 1 + l ′ = l (seeFig. 2(c)).

The theorem follows. �

4. Conclusion

In this work, we obtain some new properties ofFQn. We show that every edge ofFQn lies ona cycle
of every even length from 4 to 2n for n ≥ 2; furthermore, every edge ofFQn also lies on a cycle of every
odd length fromn + 1 to 2n − 1 if n is even. The resultthatan odd cycle can be embedded intoFQn
whenn is even shows thatFQn is superior toQn in view of the cycle embedding capability.
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