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Abstract

This work investigates important properties related to cycles of embedding into the folded hypeggutoe
n > 2. The authors observe thaQ, is bipartite if and only ifn is odd, and show that the minimum length of odd
cyclesisn + 1 if nis even. The alnors further show that every edgefe®, lies on a cycle of every even length
from 4 to 2'; if nis even, evey edge ofFQ,, also lies on a cycle of every odd length fram- 1 to 2" — 1.
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1. Introduction

As a topology for an interconnection network of a multiprocessor system, the hypercube structure is
a widely used and wiknown interconnection model sincefibssesses many attractive propertig2][
The n-dimensional hypercub®;, is a graph with 2 vertices, each vertex with a distinct binary string
X1X2 - - - Xn on the sef0, 1}. Two vertices are linked by an edge if and only if their strings differ in
exactly one bit. Wause the symbally (x, y) to denote the Hamming distance between two vertiges
andv in Qp, that is, the number of different bits in the corresponding strings of both vertices. Clearly,
dn (X, y) = dg, (X, y), wheredg, (X, y) denotes the distance between two verticesdy in Qp, i.e.,
the length of the shortesty-path inQy,.

U This work was supported partially by NNSF of China (No. 10271114).
* Corresponding author.
E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

0893-9659/%$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2005.04.002


http://www.elsevier.com/locate/aml

J.-M. Xu, M. Ma/ Applied Mathematics Letters 19 (2006) 140-145 141

001 101 0001 010 1001 1101

000 {00 0000 0100 1000 1100
-—-—I—__-_ /
011 111 0011 0111 —
1011 111

010 110 0010 0110 1010 1110
ki FO,

Fig. 1. FQ3 andFQyg. (Thick lines repesent the complementary edges.)

As a variant of the hypercube, thedimensional folded hyperculd&,,, proposed first by EI-Amawy
and Latifi [3], is a gaph obtained from the hyperculig, by adding an edge, called a complementary
edge, between any two vertices= (X1X2 - - - Xp) andX = (X1X2...X,), whereX; = 1 — x;. Thegraphs
shown inFig. 1areFQ3 andFQy, resgectively.

It has een shown thaEQ,, is (n 4+ 1)-regular(n + 1)-connectedFQ,, is alsosuperior toQp, in
some properties. For example, it has diaméga}, about half the diameter oy, [3]. Thus, the folded
hypercubd=Q, is an enhancement on the hypercuieg In particular,there aran + 1 intemally disjoint
paths of length at mostj | + 1 between any pair of vertices iRQ,, thedeletion of less thaf5 | — 2
vertices or edges does not increase the diamet&Qpf and the életion of up ton verticesor edges
increases it by at most oné,p]. These properties ean that interconnection networks modelledH6y,
are extremely robust. As a result, the study of the folded hypercube has recently attracted the attention
of many researcher§+§.

In [9], Li et al. proved that every edge &, (n > 2) lies on a cycle of every even length from 4 ta 2
In this work, we first observe th&Q,, is bipartite if and only ifn is odd, and show that the minimum
length of even cycles ifFQj, is 4 and that the minimuriength of odd cycles is + 1 if nis even Then,
using the Li et al. result, we further show that every edge@j, lies on a gcle of every even length
from 4 to 2'; moreover, evey edge of FQ, also lies on a cycle of odd length from+ 1t0 2' — 1 if n
is even.

The proofs of our main results are 8ection 3 In the next section, we explore some new topological
properties oFQ,,.

2. New propertiesof FQ,

A vertexu in Qp is said to be odd or even if the suhits bits is odd or even. LeX = {u : uis odd}
andY = {u: uiseven. Then{X, Y} is a bipartition ofQp, clearly. Cowersely, if two vertices iQ,
are in the same paof a bipatition of Qp, then hey have the same parity.

Theorem 2.1. FQ,, isabipartite graphif and only if n is odd.

Proof. SinceFQ, is obtained fromQ,, by adding 2~! complementary edges, to prove the theorem, it
is sufficient to consider complementary edges. £€tY} be a bipatition of Q. Sinceany vertexu and
its conrplementd in Q,, have different parity if and only ifi is odd and, hence, any complementary edge
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in FQ, joins two vertices in different parts ¢X, Y}, it follows thatFQ,, is a bipartite graph if and only
if nis odd. The theorem follows. O

Theorem 2.2. The length of any cyclein FQ,, that contains exactly two complementary edgesis even.

Proof. Let C = (v, v,v1,...,vm, 0, U, U1, ..., Uy v) be a cycle inFQ,, that contains exactly two
complementary edges = (u, 0) andey; = (v, v). Clearly,v # u and, hencey # U sincee; # e.

If FQy, is bipartite, then we are done. We now assi@® is not bipartite. ByTheorem 2.1n is even
and, hencey andu have the same parity. L¢K, Y} be a bipatition of Q,. Then, u anda are in the
same part of X, Y}. Similarly, v andv are also in the same part pX, Y}. SinceC contains exactly two
complementary edges, all of the other edge€ iare inQy. If u, G, v, v are in the same part, then the
lengths of the section@, vy, ..., vm, 0) and(u, uy, ..., Un, v) are even. I, 4, v, v are not inthe same
part, then the lengths of the two sections are odd. It follows that the lengZhi®Evenin both cases.

]

Theorem 2.3. The length of any cycle in FQ,, that contains exactly one complementary edge is at least
n-+1. Moreover, any complementary edge and any vertex lie on a common cycle of length n+1 containing
the unique complementary edge in FQ,,.

Proof. Assume thae = (u, 0) is a conplementary edge ifQ,, and thaiC is a cycle inFQ,, containing
exactly onecomplementary edge ThenP = C — eis aud-path inQp. Clearly,dg,(u, G) = n and,
hence, the length of anyd-path inQy, is at lkeastin. Thus, the length oP is at leash and so the length
of the cycleC is at leastn + 1.

Let P’ be a shortestid-path in Q, and letv be any vertex irFQ,. If v € {u, G}, thenP’ + eis a
cycle of length exactlyn + 1 and ontains the unique complementary edgie FQ,,. We nowassume
v € {u, G}. Sincedy (u, v) + dy (G, v) = n, there are ahortestu-path R and a shortesti-path R’
in Qn. Then he sum of their lengths is equal to Clearly, RU R’ + ud is a cycleof lengthn + 1 and
contains the vertex and the unique complementary edge. The theorem follows]

Theorem 2.4. Every shortest path between any two distinct vertices in FQ, contains at most one
complementary edge.

Proof. Suppose thaP = (u,uy, ..., Ui, Ui, Uit+1, ..., Uj, Uj,...,v) is a shortesuv-path in FQ,
containing more than one complementary edge, whardli) and(uj, Uj) are the two complementary
edges that first occur i? in the order fromu to v. Then he section(li, ..., uj) of P contains
no complementary edge and is a short&stj-path. Since dy (ui, Uj) = dn (Ui, uj), the dion
(Ui, Ui, Uiy1,...,uj,aj) of P is not a shortesu;tj-path, wtereby P is not the Bortest path, a
contradiction. The theorem follows. O

Theorem 2.5. Let u and v betwo verticesin FQ,, (n > 2). If dy(u, v) < L%J , then any shortest uv-path
in FQ, contains no complementary edges. If dy (u, v) > [57, then any shortest uv-pathin FQ, contains
exactly one complementary edge.

Proof. Supposay (u,v) = h < L%J; thenv # 0 sincedy (u, U) = n. Suppose to the contrary that
there is a shortestv-path P in FQ,, containing a complementary edge. Biteorem 2.4 P contains
exactly onecomplementary edge, sa& = (X,X). Letdyq(u,x) = i anddy(X,v) = m. Then
drQ, (U, X) = dy(u,x) =i < |§],drq,(X,v) = dy(X,v) =m < [5]andi + m+1=h < []].
Sincedy (u, X) +dy (u, X) = n, we havedy (U, X) = n—i. Also sincedy (u, v) +dy (X, v) > dy (U, X),
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we can deduce a contradiction as follows:
EJ > dy(U,v) > dy (U, X) —dy (R, v) =n—i—m>n—h> (;W

Thus, P contains ho complementary edges.
If dq(u,v) > rg], sincedrq, (U, v) < rg], any $ortest path between and v must contain a
complementary edge. Bjheorem 2.4the theoren follows. [

Remarks. If n is odd anddy(u,v) = F%L then here are a shortestv-path @ntaining no
complementary edge and a shortestpath @ntaining exactly one complementary edgé&@,,.

Theorem 2.6. If FQ,, contains an odd cycle, then any shortest odd cycle contains exactly one
complementary edge and the lengthisn + 1.

Proof. If FQ, contains an odd cycle, then Byheorem 2.1n is evenand any odd cycle must contain a
complementary edge. Moreover, any odd cycle must contain at least one edge that is not a complementary
edge since any two complementary edges are not adjacent. Assun@ thdtg, v1, ..., vy, vg) IS a
shortest odd cycle of length 2- 1 in FQ,,, wherethe elgeg = (v, v+1) iS not a complementary edge.
Consicer two pathsirC, Py = (vg, v1, ..., v) andPy = (vj11, ..., va, vg). If PyisnotshortestiirQ,
and P’ is, then he length of any cycl€’ in P, U P’ is less than P+ 1, soC’ is an even cgle. Thus,
the lengths of P, and P’ have the same parity. By a similar argument, we can prove that the lengths of
P’ and P, + g have the same pigy. It follows that the lengths oP; and P, + g have the sam parity,
which means tha€ is an een cycle, a contradiction. Therefor; is a shortest path. Similarlyy, is
also a shortest path. Bsheorem 2.4C contains at most two complementary edges. Stbdg anodd
cycle, C contains exactly one complementary edg&bgorem 2.2

By Theorem 2.3the length of C is at leastn + 1. Also byTheorem 2.3any compementay edge lies
on a cycle of lengtim + 1 in FQp,. This shows that the minimum length of any odd cycle is exantly 1.

]

3. Embedding cyclesinto FQ,

For convaiience, we us®?_, andQ}_, to denote the two i§ — 1)-subcubes o, induced by the

vertices with the leftmost bit Oral 1, respectively. Then, all of'2! complementary edges &Q,, join
Ou and Xi betweenQ? , andQ} , for anyu € V(Qn_1).

Lemma3.1 (Lietal.[9]). If n > 2, then

(a) for any two different verticesx and y in Qp, there exists an xy-path of length | withdg,(x,y) <I| <
2" — 1, wherel and dg, (X, y) have the same parity;
(b) every edge of Q,, lies on a cycle of every even length from 4 to 2".

Theorem 3.2. Every complementary edge in FQ,, lies on a cycle of every even length from 4 to 2" for
n> 2.

Proof. Let e be a complementary edge BQ,. Without loss of generality, we may assume that
e = (Ou, 10) with Ou € V(Q2 ,) and T € V(Q} ,). Choose an edgédu, Ov) in Q2 , and a
corresponding edgé€ld, 1v) in Q%_l. We want to pove that the edge = (Ou, 10) lies ona cycle

of lengthl in FQ, with 4 < | < 2" andl is even.
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Fig. 2. lllustratbns for the proofs irBection 3

We can expresb= " +1” +2where 1< " < 21— 1, 1< |” < 2"~1 _ 1 andbothl’ andl” are
odd integers. By.emma 3.1a), there exist a patR’ of lengthl’ in Qg_l joining Ou and @ and a path
P” of lengthl” in er1—1 joining 10 and . ThenP’ + (Ov, 1v) + P” 4 (14, Ou) is a cycle ontaining
the elgee in FQ,,, whose length is equal lo(seeFig. 2a)). The theorem follows. O

Theorem 3.3. If n is odd, then every edge of FQ,, lies on a cycle of every even length from 4 to 2" for
n > 3. If nis even, then every edge of FQ,, lies on a cycle of every even length from 4 to 2" and every
odd length fromn + 1to 2" — 1.

Proof. If nis odd, thenFQ, is a bipartite graph byheorem 2.1By Lemma 3.{b) andTheorem 3.2
the first assertion follows. We now prove the second assertion.

If nis even, therFQ, is not a bipartite graph byheorem 2.1By Lemma 3.1b) andTheorem 3.2
every @lge lies on a cycle of every even length from 4 farlusve.

We now $ow that every edge dFQ, lies on a gcle of any odd lengthwithn+1 <1 < 2" -1
whenn is even Lete be any edge ifQ,. There arewo cases.

Case 1. The edgee = (u, 0) is a conplementary edge. In this caseandl belong to the same part
of a bipatition of Qp, do,(u, 0) = nand3 (( — 1) —n) = 3 (1 — 1) — dg,(u, @) is an integer. By
Lemma 3.1a), there is aath of length — 1 joiningu andd withn < (I — 1) < 2" — 2. ChooseP to
be such a path of even length— 1) withn < (I — 1) < 2" — 2in Qp. Thus,P + eis anodd cycle of
lengthl in FQ, withn+1<| <2"—-1.

Case 2. The edgee = (u, v) is not a complementary edge. In this cagendv belong to different
pats of a bipartition ofQ,. Without loss of generality, we may assume- (Ou, 1u); then(1u, 00) is a
complementary edge iRQ,, anddy (Ou, 00) = n — 1.

Sincel and(n — 1) are odd,3 (I —2) — (n— 1)) = 3 ((I — 2) — dg,(0u, 0)) is an integer. By
Lemma 3.18), there is a patR of odd length(l — 2) joining Ou and @i in Qg_l withn—-1<(-2) <
2"-1 _ 1. In particular, we us®, to denote such a path of lengtfi2! — 1 joining Qu and @ in ngl.

fn+l<I| <2141 thenP + (Ou, 1u, 00) is anodd cycle of length containing the edgein
FQ,withn+1 <1 <21 41 (seeFig. 2b)).

f2"1 43 <l <2"—1,letl’ =1 -2t _1;then2< I’ < 21 — 2. We may assume
Po = (Ou, Ouq, Oup, ..., Ousn-1_,, 00). For ewery edge(Ou;, Ouj41) in Qg_l, there is a corresponding
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edge(1u;, 1uj 1) in Q%fl. ThusC = (Qu, Ouq, 1uq, 1up, Oup, Ous, 1us, ..., Ouy_1, 1uy_q, 1uy, Ouy/,
Ouy’41, Oup 4o, ..., Ousm-1_5, 00, 1u, Ou) is a cyclecontaining the edge in FQ,, whose length is equal
to 21+ 141’ =1 (seeFig. Zc)).

The theorem follows. O

4. Conclusion

In this work, we obtaineme new properties diQ,. We show hat every edge dfQ,, lies ona cycle
of every even length from 4 td'Zor n > 2; furthermore, every edge &Q, also lies on a cycle of every
odd length froon + 1 to 2" — 1 if n is even. The resuthatan odd cycle can be embedded iRQ,
whenn is even shows thatQ,, is superior toQ, in view of the cycle embedding capability.
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