

Available online at www.sciencedirect.com

Applied Mathematics Letters 19 (2006) 140-145

Applied Mathematics Letters

www.elsevier.com/locate/aml

Cycles in folded hypercubes[☆]

Jun-Ming Xu*, Meijie Ma

Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, China

Received 6 February 2004; received in revised form 4 February 2005; accepted 17 April 2005

Abstract

This work investigates important properties related to cycles of embedding into the folded hypercube FQ_n for $n \ge 2$. The authors observe that FQ_n is bipartite if and only if n is odd, and show that the minimum length of odd cycles is n + 1 if n is even. The authors further show that every edge of FQ_n lies on a cycle of every even length from 4 to 2^n ; if n is even, every edge of FQ_n also lies on a cycle of every odd length from n + 1 to $2^n - 1$. © 2005 Elsevier Ltd. All rights reserved.

MSC: 05C40

Keywords: Folded hypercube; Pancyclic; Edge-pancyclic; Interconnection networks

1. Introduction

As a topology for an interconnection network of a multiprocessor system, the hypercube structure is a widely used and well-known interconnection model since it possesses many attractive properties [1,2]. The *n*-dimensional hypercube Q_n is a graph with 2^n vertices, each vertex with a distinct binary string $x_1x_2 \cdots x_n$ on the set $\{0, 1\}$. Two vertices are linked by an edge if and only if their strings differ in exactly one bit. We use the symbol $d_H(x, y)$ to denote the Hamming distance between two vertices *u* and *v* in Q_n , that is, the number of different bits in the corresponding strings of both vertices. Clearly, $d_H(x, y) = d_{Q_n}(x, y)$, where $d_{Q_n}(x, y)$ denotes the distance between two vertices *x* and *y* in Q_n , i.e., the length of the shortest *xy*-path in Q_n .

 $[\]stackrel{\text{tr}}{\sim}$ This work was supported partially by NNSF of China (No. 10271114).

^{*} Corresponding author.

E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

^{0893-9659/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2005.04.002

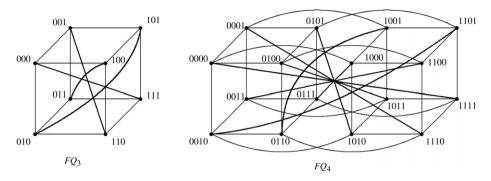


Fig. 1. FQ_3 and FQ_4 . (Thick lines represent the complementary edges.)

As a variant of the hypercube, the *n*-dimensional folded hypercube FQ_n , proposed first by El-Amawy and Latifi [3], is a graph obtained from the hypercube Q_n by adding an edge, called a complementary edge, between any two vertices $x = (x_1x_2 \cdots x_n)$ and $\bar{x} = (\bar{x}_1\bar{x}_2 \dots \bar{x}_n)$, where $\bar{x}_i = 1 - x_i$. The graphs shown in Fig. 1 are FQ_3 and FQ_4 , respectively.

It has been shown that FQ_n is (n + 1)-regular (n + 1)-connected. FQ_n is also superior to Q_n in some properties. For example, it has diameter $\lceil \frac{n}{2} \rceil$, about half the diameter of Q_n [3]. Thus, the folded hypercube FQ_n is an enhancement on the hypercube Q_n . In particular, there are n + 1 internally disjoint paths of length at most $\lceil \frac{n}{2} \rceil + 1$ between any pair of vertices in FQ_n , the deletion of less than $\lceil \frac{n}{2} \rceil - 2$ vertices or edges does not increase the diameter of FQ_n , and the deletion of up to n vertices or edges increases it by at most one [4,5]. These properties mean that interconnection networks modelled by FQ_n are extremely robust. As a result, the study of the folded hypercube has recently attracted the attention of many researchers [6–8].

In [9], Li et al. proved that every edge of Q_n $(n \ge 2)$ lies on a cycle of every even length from 4 to 2^n . In this work, we first observe that FQ_n is bipartite if and only if n is odd, and show that the minimum length of even cycles in FQ_n is 4 and that the minimum length of odd cycles is n + 1 if n is even. Then, using the Li et al. result, we further show that every edge of FQ_n lies on a cycle of every even length from 4 to 2^n ; moreover, every edge of FQ_n also lies on a cycle of odd length from n + 1 to $2^n - 1$ if n is even.

The proofs of our main results are in Section 3. In the next section, we explore some new topological properties of FQ_n .

2. New properties of FQ_n

A vertex u in Q_n is said to be odd or even if the sum of its bits is odd or even. Let $X = \{u : u \text{ is odd}\}$ and $Y = \{u : u \text{ is even}\}$. Then $\{X, Y\}$ is a bipartition of Q_n , clearly. Conversely, if two vertices in Q_n are in the same part of a bipartition of Q_n , then they have the same parity.

Theorem 2.1. FQ_n is a bipartite graph if and only if n is odd.

Proof. Since FQ_n is obtained from Q_n by adding 2^{n-1} complementary edges, to prove the theorem, it is sufficient to consider complementary edges. Let $\{X, Y\}$ be a bipartition of Q_n . Since any vertex u and its complement \bar{u} in Q_n have different parity if and only if n is odd and, hence, any complementary edge

in FQ_n joins two vertices in different parts of $\{X, Y\}$, it follows that FQ_n is a bipartite graph if and only if *n* is odd. The theorem follows. \Box

Theorem 2.2. The length of any cycle in FQ_n that contains exactly two complementary edges is even.

Proof. Let $C = (v, \bar{v}, v_1, \dots, v_m, \bar{u}, u, u_1, \dots, u_n, v)$ be a cycle in FQ_n that contains exactly two complementary edges $e_1 = (u, \bar{u})$ and $e_2 = (v, \bar{v})$. Clearly, $v \neq u$ and, hence, $\bar{v} \neq \bar{u}$ since $e_1 \neq e_2$.

If FQ_n is bipartite, then we are done. We now assume FQ_n is not bipartite. By Theorem 2.1, *n* is even and, hence, *u* and \bar{u} have the same parity. Let $\{X, Y\}$ be a bipartition of Q_n . Then, *u* and \bar{u} are in the same part of $\{X, Y\}$. Similarly, *v* and \bar{v} are also in the same part of $\{X, Y\}$. Since *C* contains exactly two complementary edges, all of the other edges in *C* are in Q_n . If u, \bar{u}, v, \bar{v} are in the same part, then the lengths of the sections $(\bar{v}, v_1, \ldots, v_m, \bar{u})$ and (u, u_1, \ldots, u_n, v) are even. If u, \bar{u}, v, \bar{v} are not in the same part, then the lengths of the two sections are odd. It follows that the length of *C* is even in both cases.

Theorem 2.3. The length of any cycle in FQ_n that contains exactly one complementary edge is at least n+1. Moreover, any complementary edge and any vertex lie on a common cycle of length n+1 containing the unique complementary edge in FQ_n .

Proof. Assume that $e = (u, \bar{u})$ is a complementary edge in FQ_n and that *C* is a cycle in FQ_n containing exactly one complementary edge *e*. Then P = C - e is a $u\bar{u}$ -path in Q_n . Clearly, $d_{Q_n}(u, \bar{u}) = n$ and, hence, the length of any $u\bar{u}$ -path in Q_n is at least *n*. Thus, the length of *P* is at least *n* and so the length of the cycle *C* is at least n + 1.

Let P' be a shortest $u\bar{u}$ -path in Q_n and let v be any vertex in FQ_n . If $v \in \{u, \bar{u}\}$, then P' + e is a cycle of length exactly n + 1 and contains the unique complementary edge e in FQ_n . We now assume $v \notin \{u, \bar{u}\}$. Since $d_H(u, v) + d_H(\bar{u}, v) = n$, there are a shortest vu-path R and a shortest $v\bar{u}$ -path R' in Q_n . Then the sum of their lengths is equal to n. Clearly, $R \cup R' + u\bar{u}$ is a cycle of length n + 1 and contains the vertex v and the unique complementary edge. The theorem follows. \Box

Theorem 2.4. Every shortest path between any two distinct vertices in FQ_n contains at most one complementary edge.

Proof. Suppose that $P = (u, u_1, \ldots, u_i, \bar{u}_i, u_{i+1}, \ldots, u_j, \bar{u}_j, \ldots, v)$ is a shortest uv-path in FQ_n containing more than one complementary edge, where (u_i, \bar{u}_i) and (u_j, \bar{u}_j) are the two complementary edges that first occur in P in the order from u to v. Then the section (\bar{u}_i, \ldots, u_j) of P contains no complementary edge and is a shortest $\bar{u}_i u_j$ -path. Since $d_H(u_i, \bar{u}_j) = d_H(\bar{u}_i, u_j)$, the section $(u_i, \bar{u}_i, u_{i+1}, \ldots, u_j, \bar{u}_j)$ of P is not a shortest $u_i \bar{u}_j$ -path, whereby P is not the shortest path, a contradiction. The theorem follows. \Box

Theorem 2.5. Let u and v be two vertices in FQ_n $(n \ge 2)$. If $d_H(u, v) \le \lfloor \frac{n}{2} \rfloor$, then any shortest uv-path in FQ_n contains no complementary edges. If $d_H(u, v) > \lceil \frac{n}{2} \rceil$, then any shortest uv-path in FQ_n contains exactly one complementary edge.

Proof. Suppose $d_H(u, v) = h \le \lfloor \frac{n}{2} \rfloor$; then $v \ne \bar{u}$ since $d_H(u, \bar{u}) = n$. Suppose to the contrary that there is a shortest uv-path P in FQ_n containing a complementary edge. By Theorem 2.4, P contains exactly one complementary edge, say $e = (x, \bar{x})$. Let $d_H(u, x) = i$ and $d_H(\bar{x}, v) = m$. Then $d_{FQ_n}(u, x) = d_H(u, x) = i < \lfloor \frac{n}{2} \rfloor$, $d_{FQ_n}(\bar{x}, v) = d_H(\bar{x}, v) = m < \lfloor \frac{n}{2} \rfloor$ and $i + m + 1 = h \le \lfloor \frac{n}{2} \rfloor$. Since $d_H(u, x) + d_H(u, \bar{x}) = n$, we have $d_H(u, \bar{x}) = n - i$. Also since $d_H(u, v) + d_H(\bar{x}, v) \ge d_H(u, \bar{x})$,

we can deduce a contradiction as follows:

$$\left\lfloor \frac{n}{2} \right\rfloor \ge d_H(u, v) \ge d_H(u, \bar{x}) - d_H(\bar{x}, v) = n - i - m > n - h \ge \left\lceil \frac{n}{2} \right\rceil$$

Thus, P contains no complementary edges.

If $d_H(u, v) > \lceil \frac{n}{2} \rceil$, since $d_{FQ_n}(u, v) \leq \lceil \frac{n}{2} \rceil$, any shortest path between u and v must contain a complementary edge. By Theorem 2.4, the theorem follows. \Box

Remarks. If *n* is odd and $d_H(u, v) = \lceil \frac{n}{2} \rceil$, then there are a shortest *uv*-path containing no complementary edge and a shortest *uv*-path containing exactly one complementary edge in FQ_n .

Theorem 2.6. If FQ_n contains an odd cycle, then any shortest odd cycle contains exactly one complementary edge and the length is n + 1.

Proof. If FQ_n contains an odd cycle, then by Theorem 2.1 *n* is even and any odd cycle must contain a complementary edge. Moreover, any odd cycle must contain at least one edge that is not a complementary edge since any two complementary edges are not adjacent. Assume that $C = (v_0, v_1, \ldots, v_{2l}, v_0)$ is a shortest odd cycle of length 2l + 1 in FQ_n , where the edge $e_l = (v_l, v_{l+1})$ is not a complementary edge. Consider two paths in C, $P_1 = (v_0, v_1, \ldots, v_l)$ and $P_2 = (v_{l+1}, \ldots, v_{2l}, v_0)$. If P_1 is not shortest in FQ_n and P' is, then the length of any cycle C' in $P_1 \cup P'$ is less than 2l + 1, so C' is an even cycle. Thus, the lengths of P_1 and P' have the same parity. By a similar argument, we can prove that the lengths of P' and $P_2 + e_l$ have the same parity. It follows that the lengths of P_1 and $P_2 + e_l$ have the same parity, which means that C is an even cycle, a contradiction. Therefore, P_1 is a shortest path. Similarly, P_2 is also a shortest path. By Theorem 2.4, C contains at most two complementary edges. Since C is an odd cycle, C contains exactly one complementary edge by Theorem 2.2.

By Theorem 2.3, the length of *C* is at least n + 1. Also by Theorem 2.3, any complementary edge lies on a cycle of length n + 1 in FQ_n . This shows that the minimum length of any odd cycle is exactly n + 1.

3. Embedding cycles into FQ_n

For convenience, we use Q_{n-1}^0 and Q_{n-1}^1 to denote the two (n-1)-subcubes of Q_n induced by the vertices with the leftmost bit 0 and 1, respectively. Then, all of 2^{n-1} complementary edges of FQ_n join 0u and $1\bar{u}$ between Q_{n-1}^0 and Q_{n-1}^1 for any $u \in V(Q_{n-1})$.

Lemma 3.1 (*Li et al.* [9]). If $n \ge 2$, then

- (a) for any two different vertices x and y in Q_n there exists an xy-path of length l with $d_{Q_n}(x, y) \le l \le 2^n 1$, where l and $d_{Q_n}(x, y)$ have the same parity;
- (b) every edge of Q_n lies on a cycle of every even length from 4 to 2^n .

Theorem 3.2. Every complementary edge in FQ_n lies on a cycle of every even length from 4 to 2^n for $n \ge 2$.

Proof. Let *e* be a complementary edge in FQ_n . Without loss of generality, we may assume that $e = (0u, 1\bar{u})$ with $0u \in V(Q_{n-1}^0)$ and $1\bar{u} \in V(Q_{n-1}^1)$. Choose an edge (0u, 0v) in Q_{n-1}^0 and a corresponding edge $(1\bar{u}, 1\bar{v})$ in Q_{n-1}^1 . We want to prove that the edge $e = (0u, 1\bar{u})$ lies on a cycle of length *l* in FQ_n with $4 \le l \le 2^n$ and *l* is even.

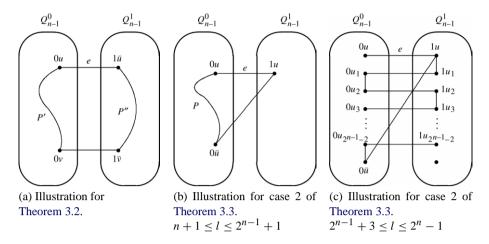


Fig. 2. Illustrations for the proofs in Section 3.

We can express l = l' + l'' + 2 where $1 \le l' \le 2^{n-1} - 1$, $1 \le l'' \le 2^{n-1} - 1$ and both l' and l'' are odd integers. By Lemma 3.1(a), there exist a path P' of length l' in Q_{n-1}^0 joining 0u and 0v and a path P'' of length l'' in Q_{n-1}^1 joining $1\bar{u}$ and $1\bar{v}$. Then $P' + (0v, 1\bar{v}) + P'' + (1\bar{u}, 0u)$ is a cycle containing the edge e in FQ_n , whose length is equal to l (see Fig. 2(a)). The theorem follows. \Box

Theorem 3.3. If *n* is odd, then every edge of FQ_n lies on a cycle of every even length from 4 to 2^n for $n \ge 3$. If *n* is even, then every edge of FQ_n lies on a cycle of every even length from 4 to 2^n and every odd length from n + 1 to $2^n - 1$.

Proof. If *n* is odd, then FQ_n is a bipartite graph by Theorem 2.1. By Lemma 3.1(b) and Theorem 3.2, the first assertion follows. We now prove the second assertion.

If *n* is even, then FQ_n is not a bipartite graph by Theorem 2.1. By Lemma 3.1(b) and Theorem 3.2, every edge lies on a cycle of every even length from 4 to 2^n inclusive.

We now show that every edge of FQ_n lies on a cycle of any odd length l with $n + 1 \le l \le 2^n - 1$ when n is even. Let e be any edge in FQ_n . There are two cases.

Case 1. The edge $e = (u, \bar{u})$ is a complementary edge. In this case, u and \bar{u} belong to the same part of a bipartition of Q_n , $d_{Q_n}(u, \bar{u}) = n$ and $\frac{1}{2}((l-1)-n) = \frac{1}{2}((l-1) - d_{Q_n}(u, \bar{u}))$ is an integer. By Lemma 3.1(a), there is a path of length l-1 joining u and \bar{u} with $n \le (l-1) \le 2^n - 2$. Choose P to be such a path of even length (l-1) with $n \le (l-1) \le 2^n - 2$ in Q_n . Thus, P + e is an odd cycle of length l in FQ_n with $n + 1 \le l \le 2^n - 1$.

Case 2. The edge e = (u, v) is not a complementary edge. In this case, u and v belong to different parts of a bipartition of Q_n . Without loss of generality, we may assume e = (0u, 1u); then $(1u, 0\bar{u})$ is a complementary edge in FQ_n and $d_H(0u, 0\bar{u}) = n - 1$.

Since *l* and (n-1) are odd, $\frac{1}{2}((l-2) - (n-1)) = \frac{1}{2}((l-2) - d_{Q_n}(0u, 0\bar{u}))$ is an integer. By Lemma 3.1(a), there is a path *P* of odd length (l-2) joining 0u and $0\bar{u}$ in Q_{n-1}^0 with $n-1 \le (l-2) \le 2^{n-1} - 1$. In particular, we use P_0 to denote such a path of length $2^{n-1} - 1$ joining 0u and $0\bar{u}$ in Q_{n-1}^0 .

If $n + 1 \le l \le 2^{n-1} + 1$, then $P + (0u, 1u, 0\overline{u})$ is an odd cycle of length l containing the edge e in FQ_n with $n + 1 \le l \le 2^{n-1} + 1$ (see Fig. 2(b)).

If $2^{n-1} + 3 \le l \le 2^n - 1$, let $l' = l - 2^{n-1} - 1$; then $2 \le l' \le 2^{n-1} - 2$. We may assume $P_0 = (0u, 0u_1, 0u_2, \dots, 0u_{2^{n-1}-2}, 0\bar{u})$. For every edge $(0u_i, 0u_{i+1})$ in Q_{n-1}^0 , there is a corresponding

edge $(1u_i, 1u_{i+1})$ in Q_{n-1}^1 . Thus $C = (0u, 0u_1, 1u_1, 1u_2, 0u_2, 0u_3, 1u_3, \dots, 0u_{l'-1}, 1u_{l'-1}, 1u_{l'}, 0u_{l'}, 0u_{l'+1}, 0u_{l'+2}, \dots, 0u_{2^{n-1}-2}, 0\bar{u}, 1u, 0u)$ is a cycle containing the edge e in FQ_n whose length is equal to $2^{n-1} + 1 + l' = l$ (see Fig. 2(c)).

The theorem follows. \Box

4. Conclusion

In this work, we obtain some new properties of FQ_n . We show that every edge of FQ_n lies on a cycle of every even length from 4 to 2^n for $n \ge 2$; furthermore, every edge of FQ_n also lies on a cycle of every odd length from n + 1 to $2^n - 1$ if n is even. The result that an odd cycle can be embedded into FQ_n when n is even shows that FQ_n is superior to Q_n in view of the cycle embedding capability.

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments and suggestions which considerably improved the present version of the work.

References

- [1] Y. Saad, M.H. Schultz, Topological properties of hypercubes, IEEE Trans. Comput. 37 (7) (1988) 867–872.
- [2] J. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001.
- [3] A. El-Amawy, S. Latifi, Properties and performance of folded hypercubes, IEEE Trans. Parallel Distrib. Syst. 2 (1991) 31–42.
- [4] S.C. Liaw, G.J. Chang, Generalized diameters and Rabin numbers of networks, J. Comb. Optim. 2 (1998) 371–384.
- [5] E. Simó, J.L.A. Yebra, The vulnerability of the diameter of folded *n*-cubes, Discrete Math. 174 (1997) 317–322.
- [6] D.R. Duh, G.H. Chen, J.F. Fang, Algorithms and properties of a new two-level network with folded hypercubes as basic modules, IEEE Trans. Parallel Distrib. Syst. 6 (7) (1995) 714–723.
- [7] C.N. Lai, G.H. Chen, D.R. Duh, Constructing one-to-many disjoint paths in folded hypercubes, IEEE Trans. Comput. 51 (1) (2002) 33–45.
- [8] D. Wang, Embedding Hamiltonian cycles into folded hypercubes with faulty links, J. Parallel Distrib. Comput. 61 (2001) 545–564.
- [9] L.K. Li, C.H. Tsai, J.M. Tan, L.H. Hsu, Bipanconnectivity and edge-fault-tolerant biancyclicity of hypercubes, Inform. Process. Lett. 87 (2003) 107–110.