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Abstract

The Mobius cub&1Q,, and the crossed cul@),, are two important variants of the hypercu@g. This paper shows that for any
two different vertices: andv in G € {MQ,,, CQ,,} with n > 3, there exists av-path of every length frordg (#,v) +2t0 2" — 1
except for a shortestv-path, wherei; (u, v) is the distance betweenandv in G. This result improves some known results.
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1. Introduction and

n+1

Let G = (V, E) be a graph. For two vertices v € D(CQ,) = [ : —‘
V, a path joiningu andv is called auv-path, and the )
distance betweem andv is the length of a shortest- ~ the M6bius cube and the crossed cube have been ex-
path, denoted by (4, v). The diameteD(G) of G is tensively mvest.lgated in the literature (see, for example,
the maximal value of distances between all pairs of ver- [1-21]). In particular, Fan [9] and Huang et al. [14], in-
tices inG. A graphG is Hamilton-connected if there is ~ dependently, showed thaQ, is Hamilton-connected
auv-path containing all vertices for every pair of ver- and contains a cycle of every length from 4 tg £an
ticesu andv in G. et al. [10] and Ma and Xu [18], independently, showed

The hypercube networl0, has been proved to be  that every edge o€Q, lies on a cycle of every length
one of the most popular interconnection networks. The from 4 to 2'. In this paper, we improve these results by
Mobius cubeMQ, and the crossed cul@Q, are two showing the following theorem.
important variants ofQ,,. Because of many attractive

features superior to the hypercube, such as Theorem. If n > 3 then for any two different vertices
1 ) uand v in G € {MQ,, CQ,}, there exists a uv-path of
n—+ 0 n—+ no__
D(M ”)z[ 5 —‘ D(MQ”)z( > —‘ every length fromdg (u, v) +2t02" — 1.
When our manuscript was submitted to Informa-

"7 The work was supported by NNSF of China (No. 10271114). tion Processing Letters, one of the_ referees toId_ us
* Corresponding author. there had been one manuscript submitted to ICPP titled
E-mail address: xujun@ustc.edu.cn (J.-M. Xu). “Complete path embeddings in hypercubes and crossed

0020-0190/$ — see front mattér 2005 Elsevier B.V. All rights reserved.
doi:10.1016/}.ipl.2005.09.015



J.-M. Xu et al. / Information Processing Letters 97 (2006) 94-97

000 001 000

95

001 000

100 101 111

110, 111 101,

100 010
110

111 110

100

011 101

010 011 010

(a) (b)

001

()

Fig. 1. (@)MQ3, (b) MQY, (c) a symmetric drawing d¥1QJ.

cubes” by Fan et al., in which the result @Q, has

been obtained. However, we have not read the manu-

script yet so far. In despite of the different structures of
MQ, andCQ,, we find that the ways used in the proofs
of our results on them are similar. Therefore, we give
here the proof of the theorem &AQ,, in detail.

2. Mobiuscubes

Then-dimensional Mdbius cubelQ,,, proposed first
by Cull and Larson [3-5], hag' Zertices. Each vertex is
ann-string on{0, 1}. A vertexX = x1x2...x, connects
toavertexy; (i =1,2,...,n) by an edge ifY; satisfies
one of the following rules:

:

wherex; is the complement of; in {0, 1}.

More informally, a vertexX connects to a neighbor
that differs inx; if x;_1 = 0, and to a neighbor that
differs inx; throughux,, if x;_1 = 1. The connection be-
tween X andY; is undefined whern = 1, so we can
assumexy is either equal to 0 or equal to 1, which gives
us slightly different network topologies. My = 0, the
network is denoted bMQS; and if xg = 1, the network
is denoted bMQL. Fig. 1 showsMQ3 andMQ3, where
(c) is a symmetric drawing dﬂQg.

According to the above definition, it is not diffi-
cult to see thaMQ® (resp.MQ!) can be recursively
constructed fromMQ®_; andMQ?_, by adding 21
edges. For any verteX = x1x2...x,-1 in MQS_1 or
MQ!_,, we construct a new verteX’ = xx5...x;,
Wherexl.’Jrl =x; fori =12 ...,n—1, then assigning
x;=0if XisinMQ%_;, orx; =1if X isinMQL_,.
So MQS can be constructed by connecting all pairs of
vertices that differ only in the first bit, aftdQ? can be
constructed by connecting all pairs of vertices that dif-
fer in the first through theth bits. For short, we denote
MQ, =L ® R, whereL =MQ?_, andR =MQ}_,.

if xi_1=0,
if Xi—1= 1,

X1 Xi—1XiXi41 ... Xn
X1 Xi—1XiXi41...Xn

Similarly, it has been shown by Efe [7] that the
crossed cubeCQ, can also expres€Q, = L @ R,
whereL =CQ°% , andR =CQ}_,.

Lemma. Let u and v betwo verticesin G € {MQ,,, CQ,,}
with n > 3. Then dg (u, v) = di (u, v) if both u and v
arein L, and dg (1, v) = dg(u, v) if both u and v are
inR.

Proof. Notice that the first bits of the vertices in (or
R) are 0 (or 1). An exact minimal routing algorithm
given in [5] onMQ, and [7] onCQ, can determine a
shortest path betweenandv, in which the first bits of
all vertices are O (resp. 1) if andv are inL (resp.R).
The lemma follows. O

3. Proof of theorem

We prove the theorem by induction ary> 3.

Forn = 3, since each grap in {(MQ3, MQ3, CQs}
is isomorphic to the vertex symmetric graph in Fig. 1,
we only need to prove that for the vertex= 000 and
v €{100 111 011 001} in G, there exists av-path of
length¢ with dg (1, v) + 2 < £ < 7. All uv-paths of re-
quired length are constructed as follows.

The paths of different lengths between 000 and 100
with distance one are listed as follows:

P3 = (000 001, 101, 100,
P4=1(000 001011111 100,
Ps=(000 001, 101,110 111, 100,
Ps = (
P7={

000,010 011,111 110,101, 100,
= (000,010,110, 101,001, 011,111 100.

The paths of different lengths between 000 and 001
with distance one are listed as follows:

P3 = (000,010 011, 001),
P4= (000,010, 110, 101, 001),
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Fig. 2. lllustrations for the proof of theorem.

Ps=(000 010110 111,011,001,
Ps = (000,010,011, 111,100 101, 001y,
P7=(000 010110 101,100,111, 011, 001).

The paths of different lengths between 000 and 111

with distance two are listed as follows:

(000,100, 101, 110, 111),
(000, 100, 101, 001, 011, 111),
(000,010, 110, 101, 001, 011, 111),

— (000, 100, 101, 001, 011, 010, 110, 111).

4
Ps=
Ps

The paths of different lengths between 000 and 011

with distance two are listed as follows:

(000,010,110, 111,011),

(000,010, 110, 101, 001, 011),
(000,010,110, 101, 100, 111, 011),
(000,010,110 111, 100, 101, 001, 011).

Assume that the conclusion holds for akywith
3 <k <n. Letu andv be any two distinct vertices in
G = L & R. We complete the proof by the following
two cases.

Case 1. Bothu andv are inL or R. Without loss of
generality, we may assumeandv are inL. By lemma,
we havedg (1, v) =dr (u, v).

For dy (u,v) + 2 < ¢ < 2"1 — 1, by the induction
hypothesis, there existsa-path of length? in L C G.

Suppose that21 < ¢ < 2" — 1. We can writel =
€1+ €2+ 2 where 1< £ <21 —2and 271 -3¢
lo< 21 1. LetPy= (u,u1,uo, ..., um-1_,,v) bea
uv-path of length 2= — 1 in L. Let u/ be the neigh-
bor of u; in R and v/ be the neighbor ofv in R.

Py=
Ps
Ps
P;

Since 271 — 3> D(R) + 2, by the induction hypoth-
esis, there is aglv/—path Py of lengthl, in R. Hence

P = (u,u1,uz,...,uy, u}l, Pg,v’,v) is a uv-path of

length? in G (see Fig. 2(a)).

Case2.u € L andv € R.

We first assumég (u, v) > 2. There is arv-path Py
of lengthdg (u, v) in G. Then there is an edg€v’ in
Po with u’ € L andv’ € R. Let P(u, u") be the segment
of Py betweenu andu’. Let P(v', v) be the segment
of Py betweenv’ andwv. It is clear thatP(u,u’) is a
shortest path betweenandu’, and P(v/, v) is a short-
est path between’ andv. By lemma, we may assume
P(u,u’)yc LandP(',v) C R. We uset’ and¢” to de-
note the lengths oP (u, u") and P (v’, v), respectively.
Noting thatdg (u, v) = ¢ + ¢’ + 1 anddg (u,v) > 2
we have?’ >1or¢” > 1. We may assum€ > 1

For dg(u,v) + 2 < ¢ < 2" 1, we can writet =
01+ ¢" + 1 wheredg (u,u') +2< €, <2"1—1. By
the induction hypothesis, there exista@-path P; of
lengthéqin L. ThenP (u, Pp,u’,v', P}, v) is auv-path
of length? in G (see Fig. 2(b)).

For 214+ 1<¢<2" -1, we can writel = ¢1 +
lr+1whereD(L)+2<6,<2"1—1,D(R)+2<
0> <2"1 — 1. Choose; € L such that1 # u and the
neighborvy of u1 in R is different fromv. By the in-
duction hypothesis, there exist:a-path Py, of length
¢1 in L and avjv-path Pg of length ¢ in R. Then
P{u, Pr,u1,v1, Pg,v) is auv-path of length? in G
(see Fig. 2(c)).

We now assumei;(u,v) = 1 and, without loss
of generality, assume = Oususz...u, € L andv =
lvovz...v, € R. Only in this case, we constructia-
path of length¥ depending oG = MQ, or G = CQ,.
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