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Abstract

The Möbius cubeMQn and the crossed cubeCQn are two important variants of the hypercubeQn. This paper shows that for an
two different verticesu andv in G ∈ {MQn,CQn} with n � 3, there exists auv-path of every length fromdG(u, v) + 2 to 2n − 1
except for a shortestuv-path, wheredG(u, v) is the distance betweenu andv in G. This result improves some known results.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let G = (V ,E) be a graph. For two verticesu,v ∈
V , a path joiningu andv is called auv-path, and the
distance betweenu andv is the length of a shortestuv-
path, denoted bydG(u, v). The diameterD(G) of G is
the maximal value of distances between all pairs of
tices inG. A graphG is Hamilton-connected if there
a uv-path containing all vertices for every pair of ve
ticesu andv in G.

The hypercube networkQn has been proved to b
one of the most popular interconnection networks.
Möbius cubeMQn and the crossed cubeCQn are two
important variants ofQn. Because of many attractiv
features superior to the hypercube, such as
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the Möbius cube and the crossed cube have been
tensively investigated in the literature (see, for exam
[1–21]). In particular, Fan [9] and Huang et al. [14], i
dependently, showed thatMQn is Hamilton-connected
and contains a cycle of every length from 4 to 2n, Fan
et al. [10] and Ma and Xu [18], independently, show
that every edge ofCQn lies on a cycle of every lengt
from 4 to 2n. In this paper, we improve these results
showing the following theorem.

Theorem. If n � 3 then for any two different vertices
u and v in G ∈ {MQn,CQn}, there exists a uv-path of
every length from dG(u, v) + 2 to 2n − 1.

When our manuscript was submitted to Inform
tion Processing Letters, one of the referees told
there had been one manuscript submitted to ICPP t
“Complete path embeddings in hypercubes and cro



J.-M. Xu et al. / Information Processing Letters 97 (2006) 94–97 95
Fig. 1. (a)MQ0
3, (b) MQ1

3, (c) a symmetric drawing ofMQ0
3.
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cubes” by Fan et al., in which the result onCQn has
been obtained. However, we have not read the m
script yet so far. In despite of the different structures
MQn andCQn, we find that the ways used in the proo
of our results on them are similar. Therefore, we g
here the proof of the theorem onMQn in detail.

2. Möbius cubes

Then-dimensional Möbius cubeMQn, proposed firs
by Cull and Larson [3–5], has 2n vertices. Each vertex i
ann-string on{0,1}. A vertexX = x1x2 . . . xn connects
to a vertexYi (i = 1,2, . . . , n) by an edge ifYi satisfies
one of the following rules:

Yi =
{

x1 . . . xi−1x̄ixi+1 . . . xn if xi−1 = 0,

x1 . . . xi−1x̄i x̄i+1 . . . x̄n if xi−1 = 1,

wherex̄i is the complement ofxi in {0,1}.
More informally, a vertexX connects to a neighbo

that differs inxi if xi−1 = 0, and to a neighbor tha
differs inxi throughxn if xi−1 = 1. The connection be
tweenX and Yi is undefined wheni = 1, so we can
assumex0 is either equal to 0 or equal to 1, which giv
us slightly different network topologies. Ifx0 = 0, the
network is denoted byMQ0

n; and if x0 = 1, the network
is denoted byMQ1

n. Fig. 1 showsMQ0
3 andMQ1

3, where
(c) is a symmetric drawing ofMQ0

3.
According to the above definition, it is not diffi

cult to see thatMQ0
n (resp.MQ1

n) can be recursively
constructed fromMQ0

n−1 and MQ1
n−1 by adding 2n−1

edges. For any vertexX = x1x2 . . . xn−1 in MQ0
n−1 or

MQ1
n−1, we construct a new vertexX′ = x′

1x
′
2 . . . x′

n,
wherex′

i+1 = xi for i = 1,2, . . . , n − 1, then assigning
x′

1 = 0 if X is in MQ0
n−1, or x′

1 = 1 if X is in MQ1
n−1.

So MQ0
n can be constructed by connecting all pairs

vertices that differ only in the first bit, andMQ1
n can be

constructed by connecting all pairs of vertices that
fer in the first through thenth bits. For short, we denot
MQn = L ⊕ R, whereL ∼= MQ0 andR ∼= MQ1 .
n−1 n−1
Similarly, it has been shown by Efe [7] that th
crossed cubeCQn can also expressCQn = L ⊕ R,
whereL ∼= CQ0

n−1 andR ∼= CQ1
n−1.

Lemma. Let u and v be two vertices in G ∈ {MQn,CQn}
with n � 3. Then dG(u, v) = dL(u, v) if both u and v

are in L, and dG(u, v) = dR(u, v) if both u and v are
in R.

Proof. Notice that the first bits of the vertices inL (or
R) are 0 (or 1). An exact minimal routing algorith
given in [5] onMQn and [7] onCQn can determine a
shortest path betweenu andv, in which the first bits of
all vertices are 0 (resp. 1) ifu andv are inL (resp.R).
The lemma follows. �
3. Proof of theorem

We prove the theorem by induction onn � 3.
For n = 3, since each graphG in {MQ0

3,MQ1
3,CQ3}

is isomorphic to the vertex symmetric graph in Fig.
we only need to prove that for the vertexu = 000 and
v ∈ {100,111,011,001} in G, there exists auv-path of
length� with dG(u, v) + 2 � � � 7. All uv-paths of re-
quired length are constructed as follows.

The paths of different lengths between 000 and
with distance one are listed as follows:

P3 = 〈000,001,101,100〉,
P4 = 〈000,001,011,111,100〉,
P5 = 〈000,001,101,110,111,100〉,
P6 = 〈000,010,011,111,110,101,100〉,
P7 = 〈000,010,110,101,001,011,111,100〉.

The paths of different lengths between 000 and
with distance one are listed as follows:

P3 = 〈000,010,011,001〉,
P4 = 〈000,010,110,101,001〉,



96 J.-M. Xu et al. / Information Processing Letters 97 (2006) 94–97
Fig. 2. Illustrations for the proof of theorem.
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P5 = 〈000,010,110,111,011,001〉,
P6 = 〈000,010,011,111,100,101,001〉,
P7 = 〈000,010,110,101,100,111,011,001〉.

The paths of different lengths between 000 and
with distance two are listed as follows:

P4 = 〈000,100,101,110,111〉,
P5 = 〈000,100,101,001,011,111〉,
P6 = 〈000,010,110,101,001,011,111〉,
P7 = 〈000,100,101,001,011,010,110,111〉.

The paths of different lengths between 000 and
with distance two are listed as follows:

P4 = 〈000,010,110,111,011〉,
P5 = 〈000,010,110,101,001,011〉,
P6 = 〈000,010,110,101,100,111,011〉,
P7 = 〈000,010,110,111,100,101,001,011〉.

Assume that the conclusion holds for anyk with
3 � k < n. Let u andv be any two distinct vertices i
G = L ⊕ R. We complete the proof by the followin
two cases.

Case 1. Bothu andv are inL or R. Without loss of
generality, we may assumeu andv are inL. By lemma,
we havedG(u, v) = dL(u, v).

For dL(u, v) + 2 � � � 2n−1 − 1, by the induction
hypothesis, there exists auv-path of length� in L ⊂ G.

Suppose that 2n−1 � � � 2n − 1. We can write� =
�1 + �2 + 2 where 1� �1 � 2n−1 − 2 and 2n−1 − 3 �
�2 � 2n−1 −1. LetP0 = 〈u,u1, u2, . . . , u2n−1−2, v〉 be a
uv-path of length 2n−1 − 1 in L. Let u′

i be the neigh-
bor of ui in R and v′ be the neighbor ofv in R.
Since 2n−1 − 3 > D(R) + 2, by the induction hypoth
esis, there is au′

l1
v′-pathPR of length l2 in R. Hence

P = 〈u,u1, u2, . . . , ul1, u
′
l1
,PR, v′, v〉 is a uv-path of

length� in G (see Fig. 2(a)).
Case 2. u ∈ L andv ∈ R.
We first assumedG(u, v) � 2. There is auv-pathP0

of lengthdG(u, v) in G. Then there is an edgeu′v′ in
P0 with u′ ∈ L andv′ ∈ R. Let P(u,u′) be the segmen
of P0 betweenu and u′. Let P(v′, v) be the segmen
of P0 betweenv′ and v. It is clear thatP(u,u′) is a
shortest path betweenu andu′, andP(v′, v) is a short-
est path betweenv′ andv. By lemma, we may assum
P(u,u′) ⊂ L andP(v′, v) ⊂ R. We use�′ and�′′ to de-
note the lengths ofP(u,u′) andP(v′, v), respectively.
Noting thatdG(u, v) = �′ + �′′ + 1 anddG(u, v) � 2,
we have�′ � 1 or �′′ � 1. We may assume�′ � 1.

For dG(u, v) + 2 � � � 2n−1, we can write� =
�1 + �′′ + 1 wheredG(u,u′) + 2 � �1 � 2n−1 − 1. By
the induction hypothesis, there exists auu′-pathPL of
length�1 in L. ThenP 〈u,PL,u′, v′,P ′

R, v〉 is auv-path
of length� in G (see Fig. 2(b)).

For 2n−1 + 1 � � � 2n − 1, we can write� = �1 +
�2 + 1 whereD(L) + 2 � �1 � 2n−1 − 1, D(R) + 2 �
�2 � 2n−1 − 1. Chooseu1 ∈ L such thatu1 	= u and the
neighborv1 of u1 in R is different fromv. By the in-
duction hypothesis, there exist auu1-pathPL of length
�1 in L and av1v-path PR of length �2 in R. Then
P 〈u,PL,u1, v1,PR, v〉 is a uv-path of length� in G

(see Fig. 2(c)).
We now assumedG(u, v) = 1 and, without loss

of generality, assumeu = 0u2u3 . . . un ∈ L and v =
1v2v3 . . . vn ∈ R. Only in this case, we construct auv-
path of length� depending onG = MQn or G = CQn.
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AssumeG = MQn. For 5� � � 2n − 1, we can
write � = �1 + �2 + 1 where 3� �1 � 2n−1 − 1 and
�2 = 1 or 3� �1 � 2n−1 − 1 and 3� �2 � 2n−1 − 1.
Let un = 0u2 . . . un−1ūn be a neighbor ofu in L and
vn = 1v2 . . . vn−1v̄n be a neighbor ofv in R. It is clear
thatunvn ∈ E(MQn) becauseuv ∈ E(MQn). By the in-
duction hypothesis, there exist auun-pathPL of length
�1 in L and avnv-path PR of length �2 in R. Then
P = 〈u,PL,un, vn,PR, v〉 is a uv-path of length� in
MQn (see Fig. 2(d)).

For � = 3,4, notingv = 1u2u3 . . . un if G = MQ0
n

andv = 1ū2ū3 . . . ūn if G = MQ1
n, then

P = 〈
u = 0u2u3 . . . un,0u2u3 . . . un−1ūn,

1u2u3 . . . un−1ūn,1u2u3 . . . un = v
〉

and

P = 〈
u = 0u2u3 . . . un,0u2u3 . . . un−1ūn,

1ū2ū3 . . . ūn−1un,1ū2ū3 . . . ūn = v
〉

areuv-paths of length 3 inMQ0
n andMQ1

n, respectively.

P =




〈u = 00u3 . . . un,01u3 . . . un,01ū3 . . . ūn,

11ū3 . . . ūn,10u3 . . . un = v〉
if u2 = 0,

〈u = 01u3 . . . un,01ū3 . . . ūn,00ū3 . . . ūn,

10ū3 . . . ūn,11u3 . . . un = v〉
if u2 = 1

and

P =




〈u = 00u3 . . . un,01u3 . . . un,10ū3 . . . ūn,

11u3 . . . un,11ū3 . . . ūn = v〉
if u2 = 0,

〈u = 01u3 . . . un,00u3 . . . un,11ū3 . . . ūn,

10u3 . . . un,11ū3 . . . ūn = v〉
if u2 = 1

are uv-paths of length 4 inMQ0
n and MQ1

n, respec-
tively.

If G = CQn, a uv-path of length� in CQn can be
constructed by the similar argument, and omitted h
for details.

Remark. Our result is optimal in the sense that the
is no uv-path of lengthdMQ0

4
(u, v) + 1 betweenu =

0001 andv = 1000 in MQ0
4, which means that theo

rem does not always hold for any integersn � 3 and
� = dMQ0

4
(u, v) + 1 and any two verticesu and v in

MQ0
4.
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