

Available online at www.sciencedirect.com

Discrete Mathematics 306 (2006) 159-165

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Note

Connectivity of Cartesian product graphs $\stackrel{\scriptstyle \leftrightarrow}{\sim}$

Jun-Ming Xu*, Chao Yang

Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, China

Received 11 September 2003; received in revised form 9 November 2005; accepted 23 November 2005 Available online 4 January 2006

Abstract

Use v_i , κ_i , λ_i , δ_i to denote order, connectivity, edge-connectivity and minimum degree of a graph G_i for i = 1, 2, respectively. For the connectivity and the edge-connectivity of the Cartesian product graph, up to now, the best results are $\kappa(G_1 \times G_2) \ge \kappa_1 + \kappa_2$ and $\lambda(G_1 \times G_2) \ge \lambda_1 + \lambda_2$. This paper improves these results by proving that $\kappa(G_1 \times G_2) \ge \min\{\kappa_1 + \lambda_2, \kappa_2 + \lambda_1\}$ and $\lambda(G_1 \times G_2) \ge \max\{\kappa_1 + \lambda_2, \kappa_2 + \lambda_1\}$ $\min\{\delta_1 + \delta_2, \lambda_1 v_2, \lambda_2 v_1\} \text{ if } G_1 \text{ and } G_2 \text{ are connected undirected graphs}; \kappa(G_1 \times G_2) \ge \min\{\kappa_1 + \delta_2, \kappa_2 + \delta_1, 2\kappa_1 + \kappa_2, 2\kappa_2 + \kappa_1\}$ if G_1 and G_2 are strongly connected digraphs. These results are also generalized to the Cartesian products of $n \ (\geq 3)$ connected graphs and n strongly connected digraphs, respectively. © 2005 Elsevier B.V. All rights reserved.

Keywords: Connectivity; Edge-connectivity; Cartesian product graphs

1. Introduction

We follow [7] for graph-theoretical terminology and notation not defined here. In this paper, a graph G = (V, E)always means a connected undirected graph or strongly connected digraph with the vertex-set V and the edge-set E. For $x \in V(G)$, the symbol $N_G(x)$ denotes the set of neighbors of x if G is undirected; $N_G^+(x)$ and $N_G^-(x)$ denote the sets of out-neighbors and in-neighbors of x, respectively, if G is directed. The symbol $\delta(\tilde{G})$ denotes the minimum degree of G, where $\delta(G) = \min\{\delta^+(G), \delta^-(G)\}$ if G is directed, and $\delta^+(G)$ and $\delta^-(G)$ are the minimum out-degree and the minimum in-degree of G, respectively. The symbols $\kappa(G)$ and $\lambda(G)$ denote the connectivity and the edge-connectivity of G, respectively. The well-known Whitney's inequality states that $\kappa(G) \leq \lambda(G) \leq \delta(G)$ for any graph G (see Theorem 4.4 in [7]). The connectivity is a basic concept in graph theory, but also an important measurement for reliability and fault tolerance in a network [6]. Let G_i be a graph. For short, we will write $v_i = |V(G_i)|, \delta_i = \delta(G_i), \kappa_i = \kappa(G_i)$ and $\lambda_i = \lambda(G_i).$

The Cartesian product is an important method to construct a bigger graph, and plays an important role in design and analysis of networks [6]. For the connectivity and the edge-connectivity of the Cartesian product, up to now, the best results are $\kappa(G_1 \times G_2) \ge \kappa_1 + \kappa_2$ and $\lambda(G_1 \times G_2) \ge \lambda_1 + \lambda_2$ (see, for example, [6,5,1,2,4]). This paper improves these

 $[\]stackrel{\text{\tiny{the}}}{\to}$ The work was supported by NNSF of China (No. 10271114).

^{*} Corresponding author.

E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2005.11.010

results by proving that

- (i) $\kappa(G_1 \times G_2) \ge \min\{\kappa_1 + \delta_2, \kappa_2 + \delta_1\}$ and $\lambda(G_1 \times G_2) = \min\{\delta_1 + \delta_2, \lambda_1 v_2, \lambda_2 v_1\}$ if G_1 and G_2 are connected undirected graphs;
- (ii) $\kappa(G_1 \times G_2) \ge \min\{\kappa_1 + \delta_2, \kappa_2 + \delta_1, 2\kappa_1 + \kappa_2, 2\kappa_2 + \kappa_1\}$ if G_1 and G_2 are strongly connected digraphs.

These results are also generalized to the Cartesian products of $n \ge 3$ connected graphs and *n* strongly connected digraphs, respectively.

The proofs of these results are in Sections 3 and 4. In the next section, some notations and lemmas will be recalled.

2. Some lemmas and notations

Let x and y be two distinct vertices in a graph G = (V, E). The symbols $\zeta(G; x, y)$ and $\eta(G; x, y)$ denote the maximum numbers of internally-disjoint and, respectively, edge-disjoint (x, y)-paths in G; the symbols $\kappa(G; x, y)$ and $\lambda(G; x, y)$ denote the minimum numbers of vertices and, respectively, edges, whose deletion disconnects x and y in the remaining graph. The following two results are well-known (see Theorems 4.2, 4.3 and 4.5 in [7]).

Lemma 1 (*Menger's Theorem*). Let G be a connected undirected graph or a strongly connected digraph. Then, for any $x, y \in V(G)$,

(i) $\kappa(G; x, y) = \zeta(G; x, y) \text{ if } (x, y) \notin E(G);$ (ii) $\lambda(G; x, y) = \eta(G; x, y).$

Lemma 2 (*Menger–Whitney's Theorem*). Let G be a connected undirected graph or a strongly connected digraph. Then

(i) κ(G)≥k if and only if ζ(G; x, y)≥k for every x, y ∈ V(G);
(ii) λ(G)≥k if and only if η(G; x, y)≥k for every x, y ∈ V(G).

For $x \in V(G)$ and $W = \{w_1, w_2, \dots, w_k\} \subset V(G - x)$, if there exist $k(x, w_i)$ -paths W_1, W_2, \dots, W_k , any two of which have only the vertex x in common, then the set of paths $F_k(x, W) = \{W_1, W_2, \dots, W_k\}$ is called an (x, W)-fan in G. Equally, if there exist $k(w_i, x)$ -paths U_1, U_2, \dots, U_k , any two of which have only the vertex x in common, then the set of paths $F_k(W, x) = \{U_1, U_2, \dots, U_k\}$ is called a (W, x)-fan in G. The following lemma insures the existence of these fans if $\kappa(G) \ge k$, found first by Dirac [3].

Lemma 3. Let G be a connected undirected graph or a strongly connected digraph. If $\kappa(G) \ge k$, then for any vertex x of G and a set $W = \{w_1, w_2, \dots, w_k\}$ of any k distinct vertices of G - x, there are an (x, W)-fan $F_k(x, W)$ and a (W, x)-fan $F_k(W, x)$ of G.

Let $G_i = (V_i, E_i)$ be a digraph for each i = 1, 2. The Cartesian product $G_1 \times G_2$ of G_1 and G_2 is a digraph with $V(G_1 \times G_2) = V_1 \times V_2$. There is a directed edge from a vertex x_1x_2 to another y_1y_2 in $G_1 \times G_2$, $x_1, y_1 \in V_1$ and $x_2, y_2 \in V_2$, if and only if either $x_1 = y_1$ and $(x_2, y_2) \in E_2$, or $x_2 = y_2$ and $(x_1, y_1) \in E_1$. The Cartesian product of two undirected graphs can be defined similarly. From definition, the following fact can be verified easily.

Lemma 4. $G_1 \times G_2 \cong G_2 \times G_1$ and $\delta(G_1 \times G_2) = \delta_1 + \delta_2$ for any graphs G_1 and G_2 .

The following observations and notations are very useful for the proofs of some results on the Cartesian product. If $H_1 \subseteq G_1$ and $H_2 \subseteq G_2$, then for any $a \in V_1$ and $b \in V_2$, $H_1 \times \{b\}$ and $\{a\} \times H_2$ are subgraphs of $G_1 \times G_2$, denoted by H_1b and aH_2 , respectively. In particular, if $P = (x_1, v_1, v_2, \dots, v_m, y_1)$ is an (x_1, y_1) -path in G_1 , then for any $b \in V_2$, $Pb = (x_1b, v_1b, v_2b, \dots, v_mb, y_1b)$ is an (x_1b, y_1b) -path from the vertex x_1b to the vertex y_1b in $G_1 \times G_2$. Similarly, if $W = (x_2, u_1, u_2, \dots, u_l, y_2)$ is an (x_2, y_2) -path in G_2 , then for any $a \in V_1$, $aW = (ax_2, au_1, au_2, \dots, au_l, ay_2)$ is

an (ax_2, ay_2) -path from the vertex ax_2 to the vertex ay_2 in $G_1 \times G_2$. If $x = x_1x_2$ and $y = y_1y_2$ are two vertices in $G_1 \times G_2$, then $Q = Px_2 \cup y_1W$ is an (x, y)-path from x to y in $G_1 \times G_2$. Such a path will be expressed as

$$Q: x = x_1 x_2 \xrightarrow{P_{x_2}} y_1 x_2 \xrightarrow{y_1 W} y_1 y_2 = y.$$

3. Connectivity of Cartesian products

Lemma 5. Let $G_i = (V_i, E_i)$ be a strongly connected digraph or a connected undirected graph for each i = 1, 2. Then $\kappa(G_1 \times G_2) \ge w$ if and only if

- (i) $\zeta(G_1 \times G_2; xa, xb) \ge w$ for any $x \in V_1, a, b \in V_2$, and
- (ii) $\zeta(G_1 \times G_2; xa, ya) \ge w$ for any $x, y \in V_1, a \in V_2$.

Proof. We only need to show that the sufficiency holds for digraphs. By Lemma 2, it is sufficient to show that $\zeta(G_1 \times G_2; xa, yb) \ge w$ for any $xa, yb \in V(G_1 \times G_2)$, where $x, y \in V_1, a, b \in V_2$.

If x = y or a = b, then $\zeta(G_1 \times G_2; xa, yb) \ge w$ holds clearly by our hypothesis. Suppose that $x \ne y$ and $a \ne b$. Then $(xa, yb) \notin E(G_1 \times G_2)$ below. It is sufficient to prove that there is an (xa, yb)-path in $G_1 \times G_2 - S$ for any $S \subset V(G_1 \times G_2) \setminus \{xa, yb\}$ with |S| < w.

Choose $x_1, x_2, \ldots, x_{\delta_1} \in N_{G_1}^+(x)$ and $a_1, a_2, \ldots, a_{\delta_2} \in N_{G_2}^+(a)$. Without loss of generality, suppose $x_i \neq y, i = 1, 2, \ldots, \delta_1, a_j \neq b, j = 1, 2, \ldots, \delta_2$ (if, for example, $x_1 = y$, we replace $\{x_1a, x_1b\}$ with singleton $\{x_1a\}$ in (1)). Then $(\delta_1 + \delta_2)$ pairs of vertices

$$\{x_{1a}, x_{1b}\}, \{x_{2a}, x_{2b}\}, \dots, \{x_{\delta_{1}a}, x_{\delta_{1}b}\}, \{x_{a1}, y_{a1}\}, \{x_{a2}, y_{a2}\}, \dots, \{x_{a\delta_{2}}, y_{a\delta_{2}}\}$$
(1)

are disjoint. By our hypotheses, Lemmas 1 and 4, we have that

$$|S| < w \leq \min_{x,a,b} \zeta(G_1 \times G_2; xa, xb)$$

= $\min_{x,a,b} \kappa(G_1 \times G_2; xa, xb)$
 $\leq \delta(G_1 \times G_2)$
= $\delta_1 + \delta_2$,

which implies that there exists at least one pair in (1) that is not in *S*. Without loss of generality, suppose that $\{xa_1, ya_1\}$ is not in *S*. Because of our hypothesis that $\zeta(G_1 \times G_2; xa_1, ya_1) \ge w$ and $\zeta(G_1 \times G_2; ya_1, yb) \ge w$, there exist an (xa_1, ya_1) -path P_1 and a (ya_1, yb) -path P_2 in $G_1 \times G_2 - S$. Thus, $G_1 \times G_2 - S$ contains an (xa, yb)-walk $W = xa \rightarrow xa_1 \xrightarrow{P_1} ya_1 \xrightarrow{P_2} yb$, which contains an (xa, yb)-path. \Box

Theorem 1. Let $G_i = (V_i, E_i)$ be a connected undirected graph for each i = 1, 2. Then

$$\kappa(G_1 \times G_2) \ge \min{\{\kappa_1 + \delta_2, \kappa_2 + \delta_1\}}$$

Proof. By symmetry, we only need to show that

 $\zeta(G_1 \times G_2; xa, ya) \ge \min\{\kappa_1 + \delta_2, \kappa_2 + \delta_1\}$ for any $x, y \in V_1$ and $a \in V_2$.

Since $\kappa(G_1) = \kappa_1$, by Lemma 2, there exist κ_1 internally-disjoint (x, y)-paths $P_1, P_2, \ldots, P_{\kappa_1}$ in G_1 . Choose $u_1, u_2, \ldots, u_{\delta_2} \in N_{G_2}(a)$. We can construct $(\kappa_1 + \delta_2)$ internally-disjoint (xa, ya)-paths $R_1, R_2, \ldots, R_{\kappa_1 + \delta_2}$ in $G_1 \times G_2$ as follows.

$$R_i = xa \xrightarrow{P_i a} ya, \quad i = 1, 2, \dots, \kappa_1;$$

$$R_{\kappa_1 + j} = xa \to xu_j \xrightarrow{P_1 u_j} yu_j \to ya, \quad j = 1, 2, \dots, \delta_2.$$

It follows that $\zeta(G_1 \times G_2; xa, ya) \ge \kappa_1 + \delta_2 \ge \min\{\kappa_1 + \delta_2, \kappa_2 + \delta_1\}$. \Box

By induction we can obtain the following corollary immediately.

Corollary 1. Let G_1, G_2, \ldots, G_n be connected undirected graphs. Then,

$$\kappa(G_1 \times G_2 \times \cdots \times G_n) \ge \sum_{i=1}^n \delta_i - \max_{1 \le i \le n} \{\delta_i - \kappa_i\}.$$

Proof. We proceed by induction on $n \ge 2$. Clearly, the assertion holds if n = 2 since it is a version of Theorem 1. Assume the induction hypothesis for n - 1 with n > 2. Let

 $H = G_1 \times G_2 \times \cdots \times G_{n-1}, \quad \delta_H = \delta(H), \quad \kappa_H = \kappa(H), \quad v_H = v(H).$

By the induction hypothesis, we have that

$$\delta_H - \kappa_H \leqslant \max_{1 \leqslant i \leqslant n-1} \{\delta_i - \kappa_i\}.$$

It follows that

$$\kappa(G_1 \times G_2 \times \dots \times G_n) \ge \delta_H + \delta_n - \max\{\delta_H - \kappa_H, \delta_n - \kappa_n\}$$
$$\ge \delta_H + \delta_n - \max\left\{\max_{1 \le i \le n-1} \{\delta_i - \kappa_i\}, \delta_n - \kappa_n\right\}$$
$$= \sum_{i=1}^n \delta_i - \max_{1 \le i \le n} \{\delta_i - \kappa_i\}$$

as desired. \Box

Theorem 2. Let $G_i = (V_i, E_i)$ be a strongly connected digraph for each i = 1, 2. Then $\kappa(G_1 \times G_2) \ge \min\{\kappa_1 + \delta_2, \kappa_2 + \delta_1, 2\kappa_1 + \kappa_2, 2\kappa_2 + \kappa_1\}$.

Proof. Let $d = \min\{\delta_1 - \kappa_1, \delta_2 - \kappa_2, \kappa_1, \kappa_2\}$. It is sufficient to prove that

 $\zeta(G_1 \times G_2; xa, ya) \ge \kappa_1 + \kappa_2 + d$ for any $x, y \in V_1$ and $a \in V_2$.

Let $P_1, \ldots, P_{\kappa_1}$ be κ_1 internally-disjoint (x, y)-paths in G_1 . Then, $|N_{G_1}^-(y) \setminus \bigcup_{i=1}^{\kappa_1} V(P_i)| \ge \delta_1 - \kappa_1 \ge d$. Choose $W = \{w_1, w_2, \ldots, w_d\} \subseteq N_{G_1}^-(y) \setminus \bigcup_{i=1}^{\kappa_1} V(P_i)$ and an (x, W)-fan $F_d(x, W) = \{W_1, W_2, \ldots, W_d\}$ in G_1 (such a fan exists for $d \le \kappa_1$ by Lemma 3).

Choose $U = \{u_1, u_2, \ldots, u_{\kappa_2}\} \subseteq N_{G_2}^+(a)$ and a (U, a)-fan $F_{\kappa_2}(U, a) = \{U_1, U_2, \ldots, U_{\kappa_2}\}$ in G_2 . Note that $|N_{G_2}^+(a) \setminus U| \ge \delta_2 - \kappa_2 \ge d$. Choose $T = \{v_1, v_2, \ldots, v_d\} \subseteq N_{G_2}^+(a) \setminus U$ and a (T, a)-fan $F_d(T, a) = \{T_1, T_2, \ldots, T_d\}$ in G_2 (such a fan exists for $d \le \kappa_2$ by Lemma 3). We now construct $(\kappa_1 + \kappa_2 + d)$ internally-disjoint (xa, ya) as follows:

$$R_{i} = xa \xrightarrow{P_{i}a} ya, \quad i = 1, 2, \dots, \kappa_{1};$$

$$R_{\kappa_{1}+j} = xa \rightarrow xu_{j} \xrightarrow{P_{1}u_{j}} yu_{j} \xrightarrow{yU_{j}} ya, \quad j = 1, 2, \dots, \kappa_{2};$$

$$R_{\kappa_{1}+\kappa_{2}+l} = xa \rightarrow xv_{l} \xrightarrow{W_{l}v_{l}} w_{l}v_{l} \xrightarrow{w_{l}T_{l}} w_{l}a \rightarrow ya, \quad l = 1, 2, \dots, d.$$

It follows that $\zeta(G_1 \times G_2; xa, ya) \ge \kappa_1 + \kappa_2 + d$. \Box

Corollary 2. Let G_1, G_2, \ldots, G_n be strongly connected digraphs. Then

(i) $\kappa(G_1 \times G_2 \times \cdots \times G_n) \ge \sum_{i=1}^n \kappa_i + \min_{1 \le i \le n} \{\delta_i - \kappa_i, \kappa_i\};$ (ii) $\kappa(G_1 \times G_2 \times \cdots \times G_n) \ge \sum_{i=1}^n \delta_i - \max_{1 \le i \le n} \{\delta_i - \kappa_i\} \text{ if } \delta_i \le 2\kappa_i.$

4. Edge-connectivity of Cartesian products

Lemma 6. Let $G_i = (V_i, E_i)$ be a strongly connected digraph or a connected undirected graph for each i = 1, 2. Then $\lambda(G_1 \times G_2) \ge w$ if and only if

(i) $\eta(G_1 \times G_2; xa, ya) \ge w$ for any $x, y \in V_1, a \in V_2$, and (ii) $\eta(G_1 \times G_2; xa, xb) \ge w$ for any $x \in V_1, a, b \in V_2$.

Proof. We only need to prove the sufficiency. Furthermore, it is sufficient to prove that $\eta(G_1 \times G_2; xa, yb) \ge w$ for any $x, y \in V_1$ and $a, b \in V_2$. In fact, if x = y or a = b, the sufficiency holds by our hypothesis. Suppose $x \neq y$ and $a \neq b$ below. By Lemma 2, it is sufficient to prove $\lambda(G_1 \times G_2; xa, yb) \ge w$. Indeed, let $B \subseteq E(G_1 \times G_2)$ such that $\lambda(G_1 \times G_2; xa, yb) = |B|$ and $G_1 \times G_2 - B$ contains no (xa, yb)-path. If |B| < w, then by our hypothesis, $G_1 \times G_2 - B$ contain a (xa, ya)-path P_1 and a (ya, yb)-path P_2 . Thus,

 $xa \xrightarrow{P_1} ya \xrightarrow{P_2} yb$

is an (xa, yb)-walk in $G_1 \times G_2 - B$, which contains an (xa, yb)-path, a contradiction. \Box

The next lemma is simple but useful in the proof of Theorem 3.

Lemma 7. Let *G* be a λ -edge-connected undirected graph and let $X = \{x_1, x_2, ..., x_s\}$ and $Y = \{y_1, y_2, ..., y_s\}$ ($s \leq \lambda$) be two disjoint sets of vertices of *G*. Two disjoint fans $F_s(x, X)$ and $F_s(y, Y)$ has common vertices with *G* in exactly $X \cup Y$. Let $G' = G \cup F_s(x, X) \cup F_s(y, Y)$, then there are λ edge-disjoint (x, y)-paths in G'.

Proof. Let *B* be an edge subset of *G'* such that $|B| < \lambda$. Then at least one of the (x, x_i) -paths $(1 \le i \le \lambda)$ in $F_s(x, X)$, say (x, x_1) -path P_1 , remains intact after the removal of *B*. And assume (y, y_1) -path P_2 is intact in $F_s(y, Y) - B$. Because *G* is λ -edge-connected, G - B is still connected, and there is an (x_1, y_1) -path in G - B. This path, together with P_1 and P_2 , forms an (x, y)-path in G' - B. Thus $\eta(G'; x, y) = \lambda(G'; x, y) \ge \lambda$. \Box

Theorem 3. Let $G_i = (V_i, E_i) \neq K_1$ be a connected undirected graph for each i = 1, 2. Then

$$\lambda(G_1 \times G_2) = \min\{\delta_1 + \delta_2, \lambda_1 v_2, \lambda_2 v_1\}.$$

Proof. Clearly, $\lambda(G_1 \times G_2) \leq \min\{\delta_1 + \delta_2, \lambda_1 v_2, \lambda_2 v_1\}$. We only need to prove $\lambda(G_1 \times G_2) \geq \min\{\delta_1 + \delta_2, \lambda_1 v_2, \lambda_2 v_1\}$. Note that if $\delta_1 = \lambda_1$ and $\delta_2 = \lambda_2$ then the conclusion holds clearly by the known result. Without loss of generality, suppose that $\delta_1 > \lambda_1$. By Lemmas 2 and 6, it is sufficient to prove that

$$\eta(G_1 \times G_2; xa, ya) \ge \min\{\delta_1 + \delta_2, \lambda_1 v_2, \lambda_2 v_1\}, \quad \forall x, y \in V_1, \ a \in V_2.$$

$$\tag{2}$$

The main idea of the proof is to find edge-disjoint subgraphs containing xa and ya of $G_1 \times G_2$, each of which has several edge-disjoint (xa, ya)-paths. By summing the number of paths over those subgraphs, we obtain the desired result.

The first subgraph H_0 of $G_1 \times G_2$ is obtained as follows. Select λ_1 edge-disjoint (x, y)-paths $P_1, P_2, \ldots, P_{\lambda_1}$ (if xy is an edge in G_1 , then choose $P_1 = xy$) in G_1 . Let $H'_0 = \bigcup_{i=1}^{\lambda_1} P_i$, then $H_0 = H'_0 a$ is a subgraph of $G_1 \times G_2$. By the construction of H_0 , it has λ_1 edge-disjoint (xa, ya)-paths.

Let *X* and *Y* be the sets of $\delta_1 - \lambda_1$ neighbors of *x* and *y* in $G_1 - E(H'_0)$, respectively. We may assume $X \cap Y = \emptyset$, otherwise, let $z \in X \cap Y$, then *xzy* is yet another (x, y)-path besides $P_i(1 \le i \le \lambda_1)$, and may add this path to H'_0 in the previous step. Let $B = \{b_1, b_2, \dots, b_{\delta_2}\}$ be the set of δ_2 neighbors of a vertex *a* in G_2 , and let $C = V_2 - \{a\} - B = \{c_1, c_2, \dots, c_{v_2 - \delta_2 - 1}\}$.

Next, we will construct a series of subgraphs of $G_1 \times G_2$ by the following way, which will be call *Method A* for convenience. Take $x_1, x_2, \ldots, x_s \in X$, $y_1, y_2, \ldots, y_s \in Y$ and $b \in B$, where $0 \le s \le \lambda_1 - 1$. The subgraph *H* is composed by the union of G_1b and 2(s + 1) paths: $xa \to xb$, $xa \to x_ia \to x_ib(1 \le i \le s)$, $ya \to yb$ and $ya \to y_ia \to y_ib(1 \le i \le s)$, as illustrated in Fig. 1. By Lemma 7, *H* has s + 1 edge disjoint (*xa*, *ya*)-paths.

If $\delta_1 - \lambda_1 = |X| = |Y| \leq \delta_2(\lambda_1 - 1)$, namely $\delta_1 + \delta_2 \leq (\delta_2 + 1)\lambda_1$, we can partition X and Y into δ_2 disjoint set $X_1, X_2, \dots, X_{\delta_2}$ and $Y_1, Y_2, \dots, Y_{\delta_2}$, respectively, such that $0 \leq |X_i| = |Y_i| \leq \lambda_1 - 1$. By applying Method A to X_i, Y_i

Fig. 1. An illustration for Method A.

Fig. 2. An illustration for Method B.

and b_i , we construct δ_2 subgraphs $H_i(1 \le i \le \delta_2)$, each of which has $|X_i| + 1$ edge-disjoint (*xa*, *ya*)-paths. It is easy to see that the subgraphs $H_0, H_1, \ldots, H_{\delta_2}$ are mutually edge-disjoint. Thus in all there are at least

$$\lambda_{1} + \sum_{i=1}^{\delta_{2}} (|X_{i}| + 1) = \lambda_{1} + \sum_{i=1}^{\delta_{2}} |X_{i}| + \delta_{2}$$
$$= \lambda_{1} + (\delta_{1} - \lambda_{1}) + \delta_{2}$$
$$= \delta_{1} + \delta_{2}$$

edge-disjoint (xa, ya)-paths.

If $|X| = |Y| > \delta_2(\lambda_1 - 1)$, the construction of the first $\delta_2 + 1$ subgraphs is the same as before, with slight difference that we always choose $|X_i| = |Y_i| = \lambda_1 - 1$ when we apply Method A. Let

$$X' = X \bigvee_{i=1}^{\delta_2} X_i$$
 and $Y' = Y \bigvee_{i=1}^{\delta_2} Y_i$.

Clearly, $X' \neq \emptyset$ and $Y' \neq \emptyset$. With X', Y' and C, we introduce *Method B* to find more subgraphs of $G_1 \times G_2$. Take $x_1, x_2, \ldots, x_s \in X'$, $y_1, y_2, \ldots, y_s \in Y'$ and $c \in C$, where $0 \leq s \leq \lambda_1$. Let P_{ac} be an *ac*-path in G_2 . As illustrated in Fig. 2, the subgraph *H* is the union of G_1c and 2s paths: $xa \to x_ia \xrightarrow{x_iP_{ac}} x_ic(1 \leq i \leq s)$ and $ya \to y_ia \xrightarrow{y_iP_{ac}} y_ic(1 \leq i \leq s)$. By Lemma 7, *H* has *s* edge-disjoint (*xa*, *ya*)-paths.

Now, we can continue finding subgraphs. Each time, take λ_1 (or less if there are not so many) unused vertices from X' and Y', respectively, take one vertex from C and apply Method B to construct a subgraph of $G_1 \times G_2$. First assume $\delta_2(\lambda_1 - 1) < |X| = |Y| \le \delta_2(\lambda_1 - 1) + (v_2 - \delta_2 - 1)\lambda_1$, namely $(\delta_2 + 1)\lambda_1 < \delta_1 + \delta_2 \le v_2\lambda_1$. The process will end when we use up the vertices of X' and Y'. So the total number of edge-disjoint (*xa*, *ya*)-paths in all subgraphs is at least

$$\begin{split} \lambda_1 + \sum_{i=1}^{\delta_2} \left(|X_i| + 1 \right) + |X'| &= \lambda_1 + \sum_{i=1}^{\delta_2} |X_i| + |X'| + \delta_2 \\ &= \lambda_1 + (\delta_1 - \lambda_1) + \delta_2 \\ &= \delta_1 + \delta_2. \end{split}$$

If $|X| = |Y| > \delta_2(\lambda_1 - 1) + (v_2 - \delta_2 - 1)\lambda_1$, namely $\delta_1 + \delta_2 > v_2\lambda_1$, the process will terminate when the vertices in *C* are exhausted. In this situation, the number of edge-disjoint (*xa*, *ya*)-paths is at least

$$\lambda_1 + \sum_{i=1}^{\delta_2} (|X_i| + 1) + (v_2 - \delta_2 - 1)\lambda_1 = \lambda_1 + \delta_2 \lambda_1 + (v_2 - \delta_2 - 1)\lambda_1$$
$$= v_2 \lambda_1.$$

Summing the above discussion, the inequality (2) holds, and so theorem follows. \Box

Corollary 3. Let G_1, G_2, \ldots, G_n be connected undirected graphs. Then

$$\lambda(G_1 \times G_2 \times \cdots \times G_n) = \min \left\{ \sum_{i=1}^n \delta_i, \min_{1 \le i \le n} \{v_1 \cdots v_{i-1} \lambda_i v_{i+1} \cdots v_n\} \right\}.$$

Proof. We proceed by induction on $n \ge 2$. The assertion is true for n = 2 by Theorem 3. Suppose that $n \ge 3$ and the assertion holds for n - 1. It is clear that

$$(\delta_1 + \delta_2 + \dots + \delta_{n-1})v_n \ge (\delta_1 + \delta_2 + \dots + \delta_{n-1}) \cdot (1 + \delta_n)$$

> $\delta_1 + \delta_2 + \dots + \delta_{n-1} + \delta_n.$

It follows that

$$\begin{split} \lambda(G_1 \times G_2 \times \dots \times G_n) \\ &= \min\{\delta(G_1 \times \dots \times G_{n-1}) + \delta_n, \lambda(G_1 \times \dots \times G_{n-1})v_n, v(G_1 \times \dots \times G_{n-1})\lambda_n\} \\ &= \min\left\{\sum_{i=1}^n \delta_i, \min\left\{\sum_{i=1}^{n-1} \delta_i, \min_{1 \leqslant i \leqslant n-1} \{v_1 \cdots v_{i-1}\lambda_i v_{i+1} \cdots v_{n-1}\}\right\} v_n, v_1 \cdots v_{n-1}\lambda_n\right\} \\ &= \min\left\{\sum_{i=1}^n \delta_i, \min_{1 \leqslant i \leqslant n} \{v_1 \cdots v_{i-1}\lambda_i v_{i+1} \cdots v_n\}\right\}. \end{split}$$

References

- [1] W.-S. Chiue, B.-S. Shieh, On connectivity of the Cartesian product of two graphs, Applied Math. and Computation 102 (1999) 129–137.
- [2] K. Day, A.-E. Al-Ayyoub, The cross product of interconnection networks, IEEE Trans. Parallel and Distributed Systems 8 (2) (1997) 109–118.
 [3] G.A. Dirac, Généralisations du théorém de Menger, C. R. Acad. Sci. Pairs 250 (1960) 4252–4253.
- [4] G. Sabidussi, Graphs with given group and given graph-theoretical properties, Canad. J. Math. 9 (1957) 515–525.
- [5] J.-M. Xu, Connectivity of Cartesian Product Digraphs and Fault-Tolerant Routings of Generalized Hypercubes, Applied Math. J. Chinese Univ. 13B (2) (1998) 179–187.
- [6] J.-M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht/ Boston/London, 2001.
- [7] J.-M. Xu, Theory and Application of Graphs, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.