
Discrete Mathematics 306 (2006) 159–165
www.elsevier.com/locate/disc

Note

Connectivity of Cartesian product graphs�

Jun-Ming Xu∗, Chao Yang
Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, China

Received 11 September 2003; received in revised form 9 November 2005; accepted 23 November 2005
Available online 4 January 2006

Abstract

Use vi , �i , �i , �i to denote order, connectivity, edge-connectivity and minimum degree of a graph Gi for i=1, 2, respectively. For
the connectivity and the edge-connectivity of the Cartesian product graph, up to now, the best results are �(G1 ×G2)��1 +�2 and
�(G1 ×G2)��1 + �2. This paper improves these results by proving that �(G1 ×G2)� min{�1 + �2, �2 + �1} and �(G1 ×G2)=
min{�1 +�2, �1v2, �2v1} if G1 and G2 are connected undirected graphs; �(G1 ×G2)� min{�1 +�2, �2 +�1, 2�1 +�2, 2�2 +�1}
if G1 and G2 are strongly connected digraphs. These results are also generalized to the Cartesian products of n (�3) connected
graphs and n strongly connected digraphs, respectively.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

We follow [7] for graph-theoretical terminology and notation not defined here. In this paper, a graph G = (V , E)

always means a connected undirected graph or strongly connected digraph with the vertex-set V and the edge-set E. For
x ∈ V (G), the symbol NG(x) denotes the set of neighbors of x if G is undirected; N+

G(x) and N−
G(x) denote the sets

of out-neighbors and in-neighbors of x, respectively, if G is directed. The symbol �(G) denotes the minimum degree
of G, where �(G) = min{�+(G), �−(G)} if G is directed, and �+(G) and �−(G) are the minimum out-degree and the
minimum in-degree of G, respectively. The symbols �(G) and �(G) denote the connectivity and the edge-connectivity
of G, respectively. The well-known Whitney’s inequality states that �(G)��(G)��(G) for any graph G (see Theorem
4.4 in [7]). The connectivity is a basic concept in graph theory, but also an important measurement for reliability and
fault tolerance in a network [6]. Let Gi be a graph. For short, we will write vi = |V (Gi)|, �i = �(Gi), �i = �(Gi) and
�i = �(Gi).

The Cartesian product is an important method to construct a bigger graph, and plays an important role in design and
analysis of networks [6]. For the connectivity and the edge-connectivity of the Cartesian product, up to now, the best
results are �(G1 × G2)��1 + �2 and �(G1 × G2)��1 + �2 (see, for example, [6,5,1,2,4]). This paper improves these
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results by proving that

(i) �(G1 × G2)� min{�1 + �2, �2 + �1} and �(G1 × G2) = min{�1 + �2, �1v2, �2v1} if G1 and G2 are connected
undirected graphs;

(ii) �(G1 × G2)� min{�1 + �2, �2 + �1, 2�1 + �2, 2�2 + �1} if G1 and G2 are strongly connected digraphs.

These results are also generalized to the Cartesian products of n(�3) connected graphs and n strongly connected
digraphs, respectively.

The proofs of these results are in Sections 3 and 4. In the next section, some notations and lemmas will be recalled.

2. Some lemmas and notations

Let x and y be two distinct vertices in a graph G = (V , E). The symbols �(G; x, y) and �(G; x, y) denote the
maximum numbers of internally-disjoint and, respectively, edge-disjoint (x, y)-paths in G; the symbols �(G; x, y) and
�(G; x, y) denote the minimum numbers of vertices and, respectively, edges, whose deletion disconnects x and y in
the remaining graph. The following two results are well-known (see Theorems 4.2, 4.3 and 4.5 in [7]).

Lemma 1 (Menger’s Theorem). Let G be a connected undirected graph or a strongly connected digraph. Then, for
any x, y ∈ V (G),

(i) �(G; x, y) = �(G; x, y) if (x, y) /∈ E(G);
(ii) �(G; x, y) = �(G; x, y).

Lemma 2 (Menger–Whitney’s Theorem). Let G be a connected undirected graph or a strongly connected digraph.
Then

(i) �(G)�k if and only if �(G; x, y)�k for every x, y ∈ V (G);
(ii) �(G)�k if and only if �(G; x, y)�k for every x, y ∈ V (G).

For x ∈ V (G) and W = {w1, w2, . . . , wk} ⊂ V (G − x), if there exist k (x, wi)-paths W1, W2, . . . , Wk , any two of
which have only the vertex x in common, then the set of paths Fk(x, W) = {W1, W2, . . . , Wk} is called an (x, W)-fan
in G. Equally, if there exist k (wi, x)-paths U1, U2, . . . , Uk , any two of which have only the vertex x in common, then
the set of paths Fk(W, x) = {U1, U2, . . . , Uk} is called a (W, x)-fan in G. The following lemma insures the existence
of these fans if �(G)�k, found first by Dirac [3].

Lemma 3. Let G be a connected undirected graph or a strongly connected digraph. If �(G)�k, then for any vertex
x of G and a set W = {w1, w2, . . . , wk} of any k distinct vertices of G − x, there are an (x, W)-fan Fk(x, W) and a
(W, x)-fan Fk(W, x) of G.

Let Gi = (Vi, Ei) be a digraph for each i = 1, 2. The Cartesian product G1 × G2 of G1 and G2 is a digraph with
V (G1 × G2) = V1 × V2. There is a directed edge from a vertex x1x2 to another y1y2 in G1 × G2, x1, y1 ∈ V1 and
x2, y2 ∈ V2, if and only if either x1 = y1 and (x2, y2) ∈ E2, or x2 = y2 and (x1, y1) ∈ E1. The Cartesian product of
two undirected graphs can be defined similarly. From definition, the following fact can be verified easily.

Lemma 4. G1 × G2�G2 × G1 and �(G1 × G2) = �1 + �2 for any graphs G1 and G2.

The following observations and notations are very useful for the proofs of some results on the Cartesian product. If
H1 ⊆ G1 and H2 ⊆ G2, then for any a ∈ V1 and b ∈ V2, H1 ×{b} and {a}×H2 are subgraphs of G1 ×G2, denoted by
H1b and aH 2, respectively. In particular, if P = (x1, v1, v2, . . . , vm, y1) is an (x1, y1)-path in G1, then for any b ∈ V2,
Pb = (x1b, v1b, v2b, . . . , vmb, y1b) is an (x1b, y1b)-path from the vertex x1b to the vertex y1b in G1 × G2. Similarly,
if W = (x2, u1, u2, . . . , ul, y2) is an (x2, y2)-path in G2, then for any a ∈ V1, aW = (ax2, au1, au2, . . . , aul, ay2) is
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an (ax2, ay2)-path from the vertex ax2 to the vertex ay2 in G1 × G2. If x = x1x2 and y = y1y2 are two vertices in
G1 × G2, then Q = Px2 ∪ y1W is an (x, y)-path from x to y in G1 × G2. Such a path will be expressed as

Q : x = x1x2
Px2→ y1x2

y1W→ y1y2 = y.

3. Connectivity of Cartesian products

Lemma 5. Let Gi = (Vi, Ei) be a strongly connected digraph or a connected undirected graph for each i = 1, 2. Then
�(G1 × G2)�w if and only if

(i) �(G1 × G2; xa, xb)�w for any x ∈ V1, a, b ∈ V2, and
(ii) �(G1 × G2; xa, ya)�w for any x, y ∈ V1, a ∈ V2.

Proof. We only need to show that the sufficiency holds for digraphs. By Lemma 2, it is sufficient to show that
�(G1 × G2; xa, yb)�w for any xa, yb ∈ V (G1 × G2), where x, y ∈ V1, a, b ∈ V2.

If x = y or a = b, then �(G1 × G2; xa, yb)�w holds clearly by our hypothesis. Suppose that x �= y and a �= b.
Then (xa, yb) /∈ E(G1 × G2) below. It is sufficient to prove that there is an (xa, yb)-path in G1 × G2 − S for any
S ⊂ V (G1 × G2)\{xa, yb} with |S| < w.

Choose x1, x2, . . . , x�1 ∈ N+
G1

(x) and a1, a2, . . . , a�2 ∈ N+
G2

(a). Without loss of generality, suppose xi �= y, i =
1, 2, . . . , �1, aj �= b, j =1, 2, . . . , �2 (if, for example, x1 =y, we replace {x1a, x1b} with singleton {x1a} in (1)). Then
(�1 + �2) pairs of vertices

{x1a, x1b}, {x2a, x2b}, . . . , {x�1a, x�1b},
{xa1, ya1}, {xa2, ya2}, . . . , {xa�2 , ya�2

} (1)

are disjoint. By our hypotheses, Lemmas 1 and 4, we have that

|S| < w� min
x,a,b

�(G1 × G2; xa, xb)

= min
x,a,b

�(G1 × G2; xa, xb)

��(G1 × G2)

= �1 + �2,

which implies that there exists at least one pair in (1) that is not in S. Without loss of generality, suppose that {xa1, ya1}
is not in S. Because of our hypothesis that �(G1 × G2; xa1, ya1)�w and �(G1 × G2; ya1, yb)�w, there exist an
(xa1, ya1)-path P1 and a (ya1, yb)-path P2 in G1 ×G2 −S. Thus, G1 ×G2 −S contains an (xa, yb)-walk W =xa →
xa1

P1→ ya1
P2→ yb, which contains an (xa, yb)-path. �

Theorem 1. Let Gi = (Vi, Ei) be a connected undirected graph for each i = 1, 2. Then

�(G1 × G2)� min{�1 + �2, �2 + �1}.

Proof. By symmetry, we only need to show that

�(G1 × G2; xa, ya)� min{�1 + �2, �2 + �1} for any x, y ∈ V1 and a ∈ V2.

Since �(G1)=�1, by Lemma 2, there exist �1 internally-disjoint (x, y)-paths P1, P2, . . . , P�1 in G1. Choose u1, u2, . . . ,

u�2 ∈ NG2(a). We can construct (�1+�2) internally-disjoint (xa, ya)-paths R1, R2, . . . , R�1+�2 in G1×G2 as follows.

Ri = xa
Pia→ ya, i = 1, 2, . . . , �1;

R�1+j = xa → xuj

P1uj→ yuj → ya, j = 1, 2, . . . , �2.

It follows that �(G1 × G2; xa, ya)��1 + �2 � min{�1 + �2, �2 + �1}. �
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By induction we can obtain the following corollary immediately.

Corollary 1. Let G1, G2, . . . , Gn be connected undirected graphs. Then,

�(G1 × G2 × · · · × Gn)�
n∑

i=1

�i − max
1� i �n

{�i − �i}.

Proof. We proceed by induction on n�2. Clearly, the assertion holds if n = 2 since it is a version of Theorem 1.
Assume the induction hypothesis for n − 1 with n > 2. Let

H = G1 × G2 × · · · × Gn−1, �H = �(H), �H = �(H), vH = v(H).

By the induction hypothesis, we have that

�H − �H � max
1� i �n−1

{�i − �i}.

It follows that

�(G1 × G2 × · · · × Gn)��H + �n − max{�H − �H , �n − �n}

��H + �n − max

{
max

1� i �n−1
{�i − �i}, �n − �n

}

=
n∑

i=1

�i − max
1� i �n

{�i − �i}

as desired. �

Theorem 2. Let Gi = (Vi, Ei) be a strongly connected digraph for each i = 1, 2. Then �(G1 × G2)� min{�1 +
�2, �2 + �1, 2�1 + �2, 2�2 + �1}.

Proof. Let d = min{�1 − �1, �2 − �2, �1, �2}. It is sufficient to prove that

�(G1 × G2; xa, ya)��1 + �2 + d for any x, y ∈ V1 and a ∈ V2.

Let P1, . . . , P�1 be �1 internally-disjoint (x, y)-paths in G1. Then, |N−
G1

(y)\⋃�1
i=1 V (Pi)|��1 − �1 �d. Choose

W = {w1, w2, . . . , wd} ⊆ N−
G1

(y)\⋃�1
i=1 V (Pi) and an (x, W)-fan Fd(x, W) = {W1, W2, . . . , Wd} in G1 (such a

fan exists for d ��1 by Lemma 3).
Choose U = {u1, u2, . . . , u�2} ⊆ N+

G2
(a) and a (U, a)-fan F�2(U, a) = {U1, U2, . . . , U�2} in G2. Note that

|N+
G2

(a)\U |��2 −�2 �d . Choose T ={v1, v2, . . . , vd} ⊆ N+
G2

(a)\U and a (T , a)-fan Fd(T , a)={T1, T2, . . . , Td} in
G2 (such a fan exists for d ��2 by Lemma 3). We now construct (�1 + �2 + d) internally-disjoint (xa, ya) as follows:

Ri = xa
Pia→ ya, i = 1, 2, . . . , �1;

R�1+j = xa → xuj

P1uj→ yuj

yUj→ ya, j = 1, 2, . . . , �2;

R�1+�2+l = xa → xvl
Wlvl→ wlvl

wlTl→ wla → ya, l = 1, 2, . . . , d.

It follows that �(G1 × G2; xa, ya)��1 + �2 + d . �

Corollary 2. Let G1, G2, . . . , Gn be strongly connected digraphs. Then

(i) �(G1 × G2 × · · · × Gn)�
∑n

i=1 �i + min1� i �n {�i − �i , �i};
(ii) �(G1 × G2 × · · · × Gn)�

∑n
i=1 �i − max1� i �n {�i − �i} if �i �2�i .
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4. Edge-connectivity of Cartesian products

Lemma 6. Let Gi = (Vi, Ei) be a strongly connected digraph or a connected undirected graph for each i = 1, 2. Then
�(G1 × G2)�w if and only if

(i) �(G1 × G2; xa, ya)�w for any x, y ∈ V1, a ∈ V2, and
(ii) �(G1 × G2; xa, xb)�w for any x ∈ V1, a, b ∈ V2.

Proof. We only need to prove the sufficiency. Furthermore, it is sufficient to prove that �(G1 × G2; xa, yb)�w for
any x, y ∈ V1 and a, b ∈ V2. In fact, if x = y or a = b, the sufficiency holds by our hypothesis. Suppose x �= y and
a �= b below. By Lemma 2, it is sufficient to prove �(G1 × G2; xa, yb)�w. Indeed, let B ⊆ E(G1 × G2) such that
�(G1 ×G2; xa, yb)=|B| and G1 ×G2 −B contains no (xa, yb)-path. If |B| < w, then by our hypothesis, G1 ×G2 −B

contain a (xa, ya)-path P1 and a (ya, yb)-path P2. Thus,

xa
P1→ ya

P2→ yb

is an (xa, yb)-walk in G1 × G2 − B, which contains an (xa, yb)-path, a contradiction. �

The next lemma is simple but useful in the proof of Theorem 3.

Lemma 7. Let G be a �-edge-connected undirected graph and let X={x1, x2, . . . , xs} and Y ={y1, y2, . . . , ys}(s��)

be two disjoint sets of vertices of G. Two disjoint fans Fs(x, X) and Fs(y, Y ) has common vertices with G in exactly
X ∪ Y . Let G′ = G ∪ Fs(x, X) ∪ Fs(y, Y ), then there are � edge-disjoint (x, y)-paths in G′.

Proof. Let B be an edge subset of G′ such that |B| < �. Then at least one of the (x, xi)-paths (1� i��) in Fs(x, X), say
(x, x1)-path P1, remains intact after the removal of B. And assume (y, y1)-path P2 is intact in Fs(y, Y ) − B. Because
G is �-edge-connected, G − B is still connected, and there is an (x1, y1)-path in G − B. This path, together with P1
and P2, forms an (x, y)-path in G′ − B. Thus �(G′; x, y) = �(G′; x, y)��. �

Theorem 3. Let Gi = (Vi, Ei) �= K1 be a connected undirected graph for each i = 1, 2. Then

�(G1 × G2) = min{�1 + �2, �1v2, �2v1}.

Proof. Clearly, �(G1×G2)� min{�1+�2, �1v2, �2v1}. We only need to prove �(G1×G2)� min{�1+�2, �1v2, �2v1}.
Note that if �1 = �1 and �2 = �2 then the conclusion holds clearly by the known result. Without loss of generality,
suppose that �1 > �1. By Lemmas 2 and 6, it is sufficient to prove that

�(G1 × G2; xa, ya)� min{�1 + �2, �1v2, �2v1}, ∀x, y ∈ V1, a ∈ V2. (2)

The main idea of the proof is to find edge-disjoint subgraphs containing xa and ya of G1 × G2, each of which has
several edge-disjoint (xa, ya)-paths. By summing the number of paths over those subgraphs, we obtain the desired
result.

The first subgraph H0 of G1 × G2 is obtained as follows. Select �1 edge-disjoint (x, y)-paths P1, P2, . . . , P�1 (if xy

is an edge in G1, then choose P1 = xy) in G1. Let H ′
0 = ⋃�1

i=1 Pi , then H0 = H ′
0a is a subgraph of G1 × G2. By the

construction of H0, it has �1 edge-disjoint (xa, ya)-paths.
Let X andY be the sets of �1−�1 neighbors of x and y in G1−E(H ′

0), respectively.We may assume X∩Y=∅, otherwise,
let z ∈ X∩Y , then xzy is yet another (x, y)-path besides Pi(1� i��1), and may add this path to H ′

0 in the previous step.
Let B={b1, b2, . . . , b�2} be the set of �2 neighbors of a vertex a in G2, and let C=V2−{a}−B={c1, c2, . . . , cv2−�2−1}.

Next, we will construct a series of subgraphs of G1 × G2 by the following way, which will be call Method A
for convenience. Take x1, x2, . . . , xs ∈ X, y1, y2, . . . , ys ∈ Y and b ∈ B, where 0�s��1 − 1. The subgraph H
is composed by the union of G1b and 2(s + 1) paths: xa → xb, xa → xia → xib(1� i�s), ya → yb and
ya → yia → yib(1� i�s), as illustrated in Fig. 1. By Lemma 7, H has s + 1 edge disjoint (xa, ya)-paths.

If �1 − �1 = |X| = |Y |��2(�1 − 1), namely �1 + �2 �(�2 + 1)�1, we can partition X and Y into �2 disjoint set
X1, X2, . . . , X�2 and Y1, Y2, . . . , Y�2 , respectively, such that 0� |Xi | = |Yi |��1 − 1. By applying Method A to Xi , Yi
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Fig. 1. An illustration for Method A.
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Fig. 2. An illustration for Method B.

and bi , we construct �2 subgraphs Hi(1� i��2), each of which has |Xi | + 1 edge-disjoint (xa, ya)-paths. It is easy
to see that the subgraphs H0, H1, . . . , H�2 are mutually edge-disjoint. Thus in all there are at least

�1 +
�2∑
i=1

(|Xi | + 1) = �1 +
�2∑
i=1

|Xi | + �2

= �1 + (�1 − �1) + �2

= �1 + �2

edge-disjoint (xa, ya)-paths.
If |X| = |Y | > �2(�1 − 1), the construction of the first �2 + 1 subgraphs is the same as before, with slight difference

that we always choose |Xi | = |Yi | = �1 − 1 when we apply Method A. Let

X′ = X

∖ �2⋃
i=1

Xi and Y ′ = Y

∖ �2⋃
i=1

Yi .

Clearly, X′ �= ∅ and Y ′ �= ∅. With X′, Y ′ and C, we introduce Method B to find more subgraphs of G1 × G2. Take
x1, x2, . . . , xs ∈ X′, y1, y2, . . . , ys ∈ Y ′ and c ∈ C, where 0�s��1. Let Pac be an ac-path in G2. As illustrated in

Fig. 2, the subgraph H is the union ofG1c and 2s paths:xa → xia
xiPac→ xic(1� i�s) andya → yia

yiPac→ yic(1� i�s).
By Lemma 7, H has s edge-disjoint (xa, ya)-paths.

Now, we can continue finding subgraphs. Each time, take �1 (or less if there are not so many) unused vertices from
X′ and Y ′, respectively, take one vertex from C and apply Method B to construct a subgraph of G1 × G2. First assume
�2(�1 −1) < |X|= |Y |��2(�1 −1)+ (v2 −�2 −1)�1, namely (�2 +1)�1 < �1 +�2 �v2�1. The process will end when
we use up the vertices of X′ and Y ′. So the total number of edge-disjoint (xa, ya)-paths in all subgraphs is at least

�1 +
�2∑
i=1

(|Xi | + 1) + |X′| = �1 +
�2∑
i=1

|Xi | + |X′| + �2

= �1 + (�1 − �1) + �2

= �1 + �2.
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If |X| = |Y | > �2(�1 − 1) + (v2 − �2 − 1)�1, namely �1 + �2 > v2�1, the process will terminate when the vertices
in C are exhausted. In this situation, the number of edge-disjoint (xa, ya)-paths is at least

�1 +
�2∑
i=1

(|Xi | + 1) + (v2 − �2 − 1)�1 = �1 + �2�1 + (v2 − �2 − 1)�1

= v2�1.

Summing the above discussion, the inequality (2) holds, and so theorem follows. �

Corollary 3. Let G1, G2, . . . , Gn be connected undirected graphs. Then

�(G1 × G2 × · · · × Gn) = min

{
n∑

i=1

�i , min
1� i �n

{v1 · · · vi−1�ivi+1 · · · vn}
}

.

Proof. We proceed by induction on n�2. The assertion is true for n = 2 by Theorem 3. Suppose that n�3 and the
assertion holds for n − 1. It is clear that

(�1 + �2 + · · · + �n−1)vn �(�1 + �2 + · · · + �n−1) · (1 + �n)

> �1 + �2 + · · · + �n−1 + �n.

It follows that

�(G1 × G2 × · · · × Gn)

= min{�(G1 × · · · × Gn−1) + �n, �(G1 × · · · × Gn−1)vn, v(G1 × · · · × Gn−1)�n}

= min

{
n∑

i=1

�i , min

{
n−1∑
i=1

�i , min
1� i �n−1

{v1 · · · vi−1�ivi+1 · · · vn−1}
}

vn, v1 · · · vn−1�n

}

= min

{
n∑

i=1

�i , min
1� i �n

{v1 · · · vi−1�ivi+1 · · · vn}
}

.
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