Note

Connectivity of Cartesian product graphs ${ }^{\text {T}}$

Jun-Ming Xu*, Chao Yang
Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, China

Received 11 September 2003; received in revised form 9 November 2005; accepted 23 November 2005
Available online 4 January 2006

Abstract

Use $v_{i}, \kappa_{i}, \lambda_{i}, \delta_{i}$ to denote order, connectivity, edge-connectivity and minimum degree of a graph G_{i} for $i=1,2$, respectively. For the connectivity and the edge-connectivity of the Cartesian product graph, up to now, the best results are $\kappa\left(G_{1} \times G_{2}\right) \geqslant \kappa_{1}+\kappa_{2}$ and $\lambda\left(G_{1} \times G_{2}\right) \geqslant \lambda_{1}+\lambda_{2}$. This paper improves these results by proving that $\kappa\left(G_{1} \times G_{2}\right) \geqslant \min \left\{\kappa_{1}+\delta_{2}, \kappa_{2}+\delta_{1}\right\}$ and $\lambda\left(G_{1} \times G_{2}\right)=$ $\min \left\{\delta_{1}+\delta_{2}, \lambda_{1} v_{2}, \lambda_{2} v_{1}\right\}$ if G_{1} and G_{2} are connected undirected graphs; $\kappa\left(G_{1} \times G_{2}\right) \geqslant \min \left\{\kappa_{1}+\delta_{2}, \kappa_{2}+\delta_{1}, 2 \kappa_{1}+\kappa_{2}, 2 \kappa_{2}+\kappa_{1}\right\}$ if G_{1} and G_{2} are strongly connected digraphs. These results are also generalized to the Cartesian products of $n(\geqslant 3)$ connected graphs and n strongly connected digraphs, respectively.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Connectivity; Edge-connectivity; Cartesian product graphs

1. Introduction

We follow [7] for graph-theoretical terminology and notation not defined here. In this paper, a graph $G=(V, E)$ always means a connected undirected graph or strongly connected digraph with the vertex-set V and the edge-set E. For $x \in V(G)$, the symbol $N_{G}(x)$ denotes the set of neighbors of x if G is undirected; $N_{G}^{+}(x)$ and $N_{G}^{-}(x)$ denote the sets of out-neighbors and in-neighbors of x, respectively, if G is directed. The symbol $\delta(G)$ denotes the minimum degree of G, where $\delta(G)=\min \left\{\delta^{+}(G), \delta^{-}(G)\right\}$ if G is directed, and $\delta^{+}(G)$ and $\delta^{-}(G)$ are the minimum out-degree and the minimum in-degree of G, respectively. The symbols $\kappa(G)$ and $\lambda(G)$ denote the connectivity and the edge-connectivity of G, respectively. The well-known Whitney's inequality states that $\kappa(G) \leqslant \lambda(G) \leqslant \delta(G)$ for any graph G (see Theorem 4.4 in [7]). The connectivity is a basic concept in graph theory, but also an important measurement for reliability and fault tolerance in a network [6]. Let G_{i} be a graph. For short, we will write $v_{i}=\left|V\left(G_{i}\right)\right|, \delta_{i}=\delta\left(G_{i}\right), \kappa_{i}=\kappa\left(G_{i}\right)$ and $\lambda_{i}=\lambda\left(G_{i}\right)$.

The Cartesian product is an important method to construct a bigger graph, and plays an important role in design and analysis of networks [6]. For the connectivity and the edge-connectivity of the Cartesian product, up to now, the best results are $\kappa\left(G_{1} \times G_{2}\right) \geqslant \kappa_{1}+\kappa_{2}$ and $\lambda\left(G_{1} \times G_{2}\right) \geqslant \lambda_{1}+\lambda_{2}$ (see, for example, [6,5,1,2,4]). This paper improves these

[^0]results by proving that
(i) $\kappa\left(G_{1} \times G_{2}\right) \geqslant \min \left\{\kappa_{1}+\delta_{2}, \kappa_{2}+\delta_{1}\right\}$ and $\lambda\left(G_{1} \times G_{2}\right)=\min \left\{\delta_{1}+\delta_{2}, \lambda_{1} v_{2}, \lambda_{2} v_{1}\right\}$ if G_{1} and G_{2} are connected undirected graphs;
(ii) $\kappa\left(G_{1} \times G_{2}\right) \geqslant \min \left\{\kappa_{1}+\delta_{2}, \kappa_{2}+\delta_{1}, 2 \kappa_{1}+\kappa_{2}, 2 \kappa_{2}+\kappa_{1}\right\}$ if G_{1} and G_{2} are strongly connected digraphs.

These results are also generalized to the Cartesian products of $n(\geqslant 3)$ connected graphs and n strongly connected digraphs, respectively.

The proofs of these results are in Sections 3 and 4. In the next section, some notations and lemmas will be recalled.

2. Some lemmas and notations

Let x and y be two distinct vertices in a graph $G=(V, E)$. The symbols $\zeta(G ; x, y)$ and $\eta(G ; x, y)$ denote the maximum numbers of internally-disjoint and, respectively, edge-disjoint (x, y)-paths in G; the symbols $\kappa(G ; x, y)$ and $\lambda(G ; x, y)$ denote the minimum numbers of vertices and, respectively, edges, whose deletion disconnects x and y in the remaining graph. The following two results are well-known (see Theorems 4.2, 4.3 and 4.5 in [7]).

Lemma 1 (Menger's Theorem). Let G be a connected undirected graph or a strongly connected digraph. Then, for any $x, y \in V(G)$,
(i) $\kappa(G ; x, y)=\zeta(G ; x, y)$ if $(x, y) \notin E(G)$;
(ii) $\lambda(G ; x, y)=\eta(G ; x, y)$.

Lemma 2 (Menger-Whitney's Theorem). Let G be a connected undirected graph or a strongly connected digraph. Then
(i) $\kappa(G) \geqslant k$ if and only if $\zeta(G ; x, y) \geqslant k$ for every $x, y \in V(G)$;
(ii) $\lambda(G) \geqslant k$ if and only if $\eta(G ; x, y) \geqslant k$ for every $x, y \in V(G)$.

For $x \in V(G)$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\} \subset V(G-x)$, if there exist $k\left(x, w_{i}\right)$-paths $W_{1}, W_{2}, \ldots, W_{k}$, any two of which have only the vertex x in common, then the set of paths $F_{k}(x, W)=\left\{W_{1}, W_{2}, \ldots, W_{k}\right\}$ is called an (x, W)-fan in G. Equally, if there exist $k\left(w_{i}, x\right)$-paths $U_{1}, U_{2}, \ldots, U_{k}$, any two of which have only the vertex x in common, then the set of paths $F_{k}(W, x)=\left\{U_{1}, U_{2}, \ldots, U_{k}\right\}$ is called a (W, x)-fan in G. The following lemma insures the existence of these fans if $\kappa(G) \geqslant k$, found first by Dirac [3].

Lemma 3. Let G be a connected undirected graph or a strongly connected digraph. If $\kappa(G) \geqslant k$, then for any vertex x of G and a set $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ of any k distinct vertices of $G-x$, there are an (x, W)-fan $F_{k}(x, W)$ and a (W, x)-fan $F_{k}(W, x)$ of G.

Let $G_{i}=\left(V_{i}, E_{i}\right)$ be a digraph for each $i=1,2$. The Cartesian product $G_{1} \times G_{2}$ of G_{1} and G_{2} is a digraph with $V\left(G_{1} \times G_{2}\right)=V_{1} \times V_{2}$. There is a directed edge from a vertex $x_{1} x_{2}$ to another $y_{1} y_{2}$ in $G_{1} \times G_{2}, x_{1}, y_{1} \in V_{1}$ and $x_{2}, y_{2} \in V_{2}$, if and only if either $x_{1}=y_{1}$ and $\left(x_{2}, y_{2}\right) \in E_{2}$, or $x_{2}=y_{2}$ and $\left(x_{1}, y_{1}\right) \in E_{1}$. The Cartesian product of two undirected graphs can be defined similarly. From definition, the following fact can be verified easily.

Lemma 4. $G_{1} \times G_{2} \cong G_{2} \times G_{1}$ and $\delta\left(G_{1} \times G_{2}\right)=\delta_{1}+\delta_{2}$ for any graphs G_{1} and G_{2}.
The following observations and notations are very useful for the proofs of some results on the Cartesian product. If $H_{1} \subseteq G_{1}$ and $H_{2} \subseteq G_{2}$, then for any $a \in V_{1}$ and $b \in V_{2}, H_{1} \times\{b\}$ and $\{a\} \times H_{2}$ are subgraphs of $G_{1} \times G_{2}$, denoted by $H_{1} b$ and $a H_{2}$, respectively. In particular, if $P=\left(x_{1}, v_{1}, v_{2}, \ldots, v_{m}, y_{1}\right)$ is an $\left(x_{1}, y_{1}\right)$-path in G_{1}, then for any $b \in V_{2}$, $P b=\left(x_{1} b, v_{1} b, v_{2} b, \ldots, v_{m} b, y_{1} b\right)$ is an $\left(x_{1} b, y_{1} b\right)$-path from the vertex $x_{1} b$ to the vertex $y_{1} b$ in $G_{1} \times G_{2}$. Similarly, if $W=\left(x_{2}, u_{1}, u_{2}, \ldots, u_{l}, y_{2}\right)$ is an $\left(x_{2}, y_{2}\right)$-path in G_{2}, then for any $a \in V_{1}, a W=\left(a x_{2}, a u_{1}, a u_{2}, \ldots, a u_{l}, a y_{2}\right)$ is
an $\left(a x_{2}, a y_{2}\right)$-path from the vertex $a x_{2}$ to the vertex $a y_{2}$ in $G_{1} \times G_{2}$. If $x=x_{1} x_{2}$ and $y=y_{1} y_{2}$ are two vertices in $G_{1} \times G_{2}$, then $Q=P x_{2} \cup y_{1} W$ is an (x, y)-path from x to y in $G_{1} \times G_{2}$. Such a path will be expressed as

$$
Q: x=x_{1} x_{2} \xrightarrow{P x_{2}} y_{1} x_{2} \xrightarrow{y_{1} W} y_{1} y_{2}=y
$$

3. Connectivity of Cartesian products

Lemma 5. Let $G_{i}=\left(V_{i}, E_{i}\right)$ be a strongly connected digraph or a connected undirected graph for each $i=1,2$. Then $\kappa\left(G_{1} \times G_{2}\right) \geqslant w$ if and only if
(i) $\zeta\left(G_{1} \times G_{2} ; x a, x b\right) \geqslant w$ for any $x \in V_{1}, a, b \in V_{2}$, and
(ii) $\zeta\left(G_{1} \times G_{2} ; x a, y a\right) \geqslant w$ for any $x, y \in V_{1}, a \in V_{2}$.

Proof. We only need to show that the sufficiency holds for digraphs. By Lemma 2, it is sufficient to show that $\zeta\left(G_{1} \times G_{2} ; x a, y b\right) \geqslant w$ for any $x a, y b \in V\left(G_{1} \times G_{2}\right)$, where $x, y \in V_{1}, a, b \in V_{2}$.

If $x=y$ or $a=b$, then $\zeta\left(G_{1} \times G_{2} ; x a, y b\right) \geqslant w$ holds clearly by our hypothesis. Suppose that $x \neq y$ and $a \neq b$. Then $(x a, y b) \notin E\left(G_{1} \times G_{2}\right)$ below. It is sufficient to prove that there is an $(x a, y b)$-path in $G_{1} \times G_{2}-S$ for any $S \subset V\left(G_{1} \times G_{2}\right) \backslash\{x a, y b\}$ with $|S|<w$.

Choose $x_{1}, x_{2}, \ldots, x_{\delta_{1}} \in N_{G_{1}}^{+}(x)$ and $a_{1}, a_{2}, \ldots, a_{\delta_{2}} \in N_{G_{2}}^{+}(a)$. Without loss of generality, suppose $x_{i} \neq y, i=$ $1,2, \ldots, \delta_{1}, a_{j} \neq b, j=1,2, \ldots, \delta_{2}$ (if, for example, $x_{1}=y$, we replace $\left\{x_{1} a, x_{1} b\right\}$ with singleton $\left\{x_{1} a\right\}$ in (1)). Then $\left(\delta_{1}+\delta_{2}\right)$ pairs of vertices

$$
\begin{align*}
& \left\{x_{1} a, x_{1} b\right\},\left\{x_{2} a, x_{2} b\right\}, \ldots,\left\{x_{\delta_{1}} a, x_{\delta_{1}} b\right\}, \\
& \left\{x a_{1}, y a_{1}\right\},\left\{x a_{2}, y a_{2}\right\}, \ldots,\left\{x a_{\delta_{2}}, y a_{\delta_{2}}\right\} \tag{1}
\end{align*}
$$

are disjoint. By our hypotheses, Lemmas 1 and 4, we have that

$$
\begin{aligned}
|S| & <w \leqslant \min _{x, a, b} \zeta\left(G_{1} \times G_{2} ; x a, x b\right) \\
& =\min _{x, a, b} \kappa\left(G_{1} \times G_{2} ; x a, x b\right) \\
& \leqslant \delta\left(G_{1} \times G_{2}\right) \\
& =\delta_{1}+\delta_{2},
\end{aligned}
$$

which implies that there exists at least one pair in (1) that is not in S. Without loss of generality, suppose that $\left\{x a_{1}, y a_{1}\right\}$ is not in S. Because of our hypothesis that $\zeta\left(G_{1} \times G_{2} ; x a_{1}, y a_{1}\right) \geqslant w$ and $\zeta\left(G_{1} \times G_{2} ; y a_{1}, y b\right) \geqslant w$, there exist an $\left(x a_{1}, y a_{1}\right)$-path P_{1} and a $\left(y a_{1}, y b\right)$-path P_{2} in $G_{1} \times G_{2}-S$. Thus, $G_{1} \times G_{2}-S$ contains an $(x a, y b)$-walk $W=x a \rightarrow$ $x a_{1} \xrightarrow{P_{1}} y a_{1} \xrightarrow{P_{2}} y b$, which contains an $(x a, y b)$-path.

Theorem 1. Let $G_{i}=\left(V_{i}, E_{i}\right)$ be a connected undirected graph for each $i=1$, 2. Then

$$
\kappa\left(G_{1} \times G_{2}\right) \geqslant \min \left\{\kappa_{1}+\delta_{2}, \kappa_{2}+\delta_{1}\right\} .
$$

Proof. By symmetry, we only need to show that

$$
\zeta\left(G_{1} \times G_{2} ; x a, y a\right) \geqslant \min \left\{\kappa_{1}+\delta_{2}, \kappa_{2}+\delta_{1}\right\} \text { for any } x, y \in V_{1} \text { and } a \in V_{2}
$$

Since $\kappa\left(G_{1}\right)=\kappa_{1}$, by Lemma 2, there exist κ_{1} internally-disjoint (x, y)-paths $P_{1}, P_{2}, \ldots, P_{\kappa_{1}}$ in G_{1}. Choose u_{1}, u_{2}, \ldots, $u_{\delta_{2}} \in N_{G_{2}}(a)$. We can construct ($\kappa_{1}+\delta_{2}$) internally-disjoint ($x a, y a$)-paths $R_{1}, R_{2}, \ldots, R_{\kappa_{1}+\delta_{2}}$ in $G_{1} \times G_{2}$ as follows.

$$
\begin{aligned}
& R_{i}=x a \xrightarrow{P_{i} a} y a, \quad i=1,2, \ldots, \kappa_{1} ; \\
& R_{\mathcal{K}_{1}+j}=x a \rightarrow x u_{j} \xrightarrow{P_{1} u_{j}} y u_{j} \rightarrow y a, \quad j=1,2, \ldots, \delta_{2} .
\end{aligned}
$$

It follows that $\zeta\left(G_{1} \times G_{2} ; x a, y a\right) \geqslant \kappa_{1}+\delta_{2} \geqslant \min \left\{\kappa_{1}+\delta_{2}, \kappa_{2}+\delta_{1}\right\}$.

By induction we can obtain the following corollary immediately.
Corollary 1. Let $G_{1}, G_{2}, \ldots, G_{n}$ be connected undirected graphs. Then,

$$
\kappa\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right) \geqslant \sum_{i=1}^{n} \delta_{i}-\max _{1 \leqslant i \leqslant n}\left\{\delta_{i}-\kappa_{i}\right\} .
$$

Proof. We proceed by induction on $n \geqslant 2$. Clearly, the assertion holds if $n=2$ since it is a version of Theorem 1 . Assume the induction hypothesis for $n-1$ with $n>2$. Let

$$
H=G_{1} \times G_{2} \times \cdots \times G_{n-1}, \quad \delta_{H}=\delta(H), \quad \kappa_{H}=\kappa(H), \quad v_{H}=v(H) .
$$

By the induction hypothesis, we have that

$$
\delta_{H}-\kappa_{H} \leqslant \max _{1 \leqslant i \leqslant n-1}\left\{\delta_{i}-\kappa_{i}\right\} .
$$

It follows that

$$
\begin{aligned}
\kappa\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right) & \geqslant \delta_{H}+\delta_{n}-\max \left\{\delta_{H}-\kappa_{H}, \delta_{n}-\kappa_{n}\right\} \\
& \geqslant \delta_{H}+\delta_{n}-\max \left\{\max _{1 \leqslant i \leqslant n-1}\left\{\delta_{i}-\kappa_{i}\right\}, \delta_{n}-\kappa_{n}\right\} \\
& =\sum_{i=1}^{n} \delta_{i}-\max _{1 \leqslant i \leqslant n}\left\{\delta_{i}-\kappa_{i}\right\}
\end{aligned}
$$

as desired.
Theorem 2. Let $G_{i}=\left(V_{i}, E_{i}\right)$ be a strongly connected digraph for each $i=1,2$. Then $\kappa\left(G_{1} \times G_{2}\right) \geqslant \min \left\{\kappa_{1}+\right.$ $\left.\delta_{2}, \kappa_{2}+\delta_{1}, 2 \kappa_{1}+\kappa_{2}, 2 \kappa_{2}+\kappa_{1}\right\}$.

Proof. Let $d=\min \left\{\delta_{1}-\kappa_{1}, \delta_{2}-\kappa_{2}, \kappa_{1}, \kappa_{2}\right\}$. It is sufficient to prove that

$$
\zeta\left(G_{1} \times G_{2} ; x a, y a\right) \geqslant \kappa_{1}+\kappa_{2}+d \quad \text { for any } x, y \in V_{1} \text { and } a \in V_{2} .
$$

Let $P_{1}, \ldots, P_{\kappa_{1}}$ be κ_{1} internally-disjoint (x, y)-paths in G_{1}. Then, $\left|N_{G_{1}}^{-}(y) \backslash \bigcup_{i=1}^{\kappa_{1}} V\left(P_{i}\right)\right| \geqslant \delta_{1}-\kappa_{1} \geqslant d$. Choose $W=\left\{w_{1}, w_{2}, \ldots, w_{d}\right\} \subseteq N_{G_{1}}^{-}(y) \backslash \bigcup_{i=1}^{\kappa_{1}} V\left(P_{i}\right)$ and an (x, W)-fan $F_{d}(x, W)=\left\{W_{1}, W_{2}, \ldots, W_{d}\right\}$ in G_{1} (such a fan exists for $d \leqslant \kappa_{1}$ by Lemma 3).

Choose $U=\left\{u_{1}, u_{2}, \ldots, u_{K_{2}}\right\} \subseteq N_{G_{2}}^{+}(a)$ and a (U, a)-fan $F_{K_{2}}(U, a)=\left\{U_{1}, U_{2}, \ldots, U_{K_{2}}\right\}$ in G_{2}. Note that $\left|N_{G_{2}}^{+}(a) \backslash U\right| \geqslant \delta_{2}-\kappa_{2} \geqslant d$. Choose $T=\left\{v_{1}, v_{2}, \ldots, v_{d}\right\} \subseteq N_{G_{2}}^{+}(a) \backslash U$ and a (T, a)-fan $F_{d}(T, a)=\left\{T_{1}, T_{2}, \ldots, T_{d}\right\}$ in G_{2} (such a fan exists for $d \leqslant \kappa_{2}$ by Lemma 3). We now construct ($\kappa_{1}+\kappa_{2}+d$) internally-disjoint ($x a, y a$) as follows:

$$
\begin{aligned}
& R_{i}=x a \xrightarrow{P_{i} a} y a, \quad i=1,2, \ldots, \kappa_{1} ; \\
& R_{\kappa_{1}+j}=x a \rightarrow x u_{j} \xrightarrow{P_{1} u_{j}} y u_{j} \xrightarrow{y U_{j}} y a, \quad j=1,2, \ldots, \kappa_{2} ; \\
& R_{\kappa_{1}+\kappa_{2}+l}=x a \rightarrow x v_{l} \xrightarrow{W_{l} l_{l}} w_{l} v_{l} \xrightarrow{w_{l} T_{l}} w_{l} a \rightarrow y a, \quad l=1,2, \ldots, d .
\end{aligned}
$$

It follows that $\zeta\left(G_{1} \times G_{2} ; x a, y a\right) \geqslant \kappa_{1}+\kappa_{2}+d$.
Corollary 2. Let $G_{1}, G_{2}, \ldots, G_{n}$ be strongly connected digraphs. Then
(i) $\kappa\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right) \geqslant \sum_{i=1}^{n} \kappa_{i}+\min _{1 \leqslant i \leqslant n}\left\{\delta_{i}-\kappa_{i}, \kappa_{i}\right\}$;
(ii) $\kappa\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right) \geqslant \sum_{i=1}^{n} \delta_{i}-\max _{1 \leqslant i \leqslant n}\left\{\delta_{i}-\kappa_{i}\right\}$ if $\delta_{i} \leqslant 2 \kappa_{i}$.

4. Edge-connectivity of Cartesian products

Lemma 6. Let $G_{i}=\left(V_{i}, E_{i}\right)$ be a strongly connected digraph or a connected undirected graph for each $i=1,2$. Then $\lambda\left(G_{1} \times G_{2}\right) \geqslant w$ if and only if
(i) $\eta\left(G_{1} \times G_{2} ; x a, y a\right) \geqslant w$ for any $x, y \in V_{1}, a \in V_{2}$, and
(ii) $\eta\left(G_{1} \times G_{2} ; x a, x b\right) \geqslant w$ for any $x \in V_{1}, a, b \in V_{2}$.

Proof. We only need to prove the sufficiency. Furthermore, it is sufficient to prove that $\eta\left(G_{1} \times G_{2} ; x a, y b\right) \geqslant w$ for any $x, y \in V_{1}$ and $a, b \in V_{2}$. In fact, if $x=y$ or $a=b$, the sufficiency holds by our hypothesis. Suppose $x \neq y$ and $a \neq b$ below. By Lemma 2, it is sufficient to prove $\lambda\left(G_{1} \times G_{2} ; x a, y b\right) \geqslant w$. Indeed, let $B \subseteq E\left(G_{1} \times G_{2}\right)$ such that $\lambda\left(G_{1} \times G_{2} ; x a, y b\right)=|B|$ and $G_{1} \times G_{2}-B$ contains no $(x a, y b)$-path. If $|B|<w$, then by our hypothesis, $G_{1} \times G_{2}-B$ contain a $(x a, y a)$-path P_{1} and a $(y a, y b)$-path P_{2}. Thus,

$$
x a \xrightarrow{P_{1}} y a \xrightarrow{P_{2}} y b
$$

is an $(x a, y b)$-walk in $G_{1} \times G_{2}-B$, which contains an $(x a, y b)$-path, a contradiction.
The next lemma is simple but useful in the proof of Theorem 3.
Lemma 7. Let G be a λ-edge-connected undirected graph and let $X=\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}(s \leqslant \lambda)$ be two disjoint sets of vertices of G. Two disjoint fans $F_{s}(x, X)$ and $F_{s}(y, Y)$ has common vertices with G in exactly $X \cup Y$. Let $G^{\prime}=G \cup F_{s}(x, X) \cup F_{s}(y, Y)$, then there are λ edge-disjoint (x, y)-paths in G^{\prime}.

Proof. Let B be an edge subset of G^{\prime} such that $|B|<\lambda$. Then at least one of the $\left(x, x_{i}\right)$-paths $(1 \leqslant i \leqslant \lambda)$ in $F_{s}(x, X)$, say $\left(x, x_{1}\right)$-path P_{1}, remains intact after the removal of B. And assume $\left(y, y_{1}\right)$-path P_{2} is intact in $F_{s}(y, Y)-B$. Because G is λ-edge-connected, $G-B$ is still connected, and there is an $\left(x_{1}, y_{1}\right)$-path in $G-B$. This path, together with P_{1} and P_{2}, forms an (x, y)-path in $G^{\prime}-B$. Thus $\eta\left(G^{\prime} ; x, y\right)=\lambda\left(G^{\prime} ; x, y\right) \geqslant \lambda$.

Theorem 3. Let $G_{i}=\left(V_{i}, E_{i}\right) \neq K_{1}$ be a connected undirected graph for each $i=1,2$. Then

$$
\lambda\left(G_{1} \times G_{2}\right)=\min \left\{\delta_{1}+\delta_{2}, \lambda_{1} v_{2}, \lambda_{2} v_{1}\right\} .
$$

Proof. Clearly, $\lambda\left(G_{1} \times G_{2}\right) \leqslant \min \left\{\delta_{1}+\delta_{2}, \lambda_{1} v_{2}, \lambda_{2} v_{1}\right\}$. We only need to prove $\lambda\left(G_{1} \times G_{2}\right) \geqslant \min \left\{\delta_{1}+\delta_{2}, \lambda_{1} v_{2}, \lambda_{2} v_{1}\right\}$. Note that if $\delta_{1}=\lambda_{1}$ and $\delta_{2}=\lambda_{2}$ then the conclusion holds clearly by the known result. Without loss of generality, suppose that $\delta_{1}>\lambda_{1}$. By Lemmas 2 and 6 , it is sufficient to prove that

$$
\begin{equation*}
\eta\left(G_{1} \times G_{2} ; x a, y a\right) \geqslant \min \left\{\delta_{1}+\delta_{2}, \lambda_{1} v_{2}, \lambda_{2} v_{1}\right\}, \quad \forall x, y \in V_{1}, \quad a \in V_{2} \tag{2}
\end{equation*}
$$

The main idea of the proof is to find edge-disjoint subgraphs containing $x a$ and $y a$ of $G_{1} \times G_{2}$, each of which has several edge-disjoint $(x a, y a)$-paths. By summing the number of paths over those subgraphs, we obtain the desired result.

The first subgraph H_{0} of $G_{1} \times G_{2}$ is obtained as follows. Select λ_{1} edge-disjoint (x, y)-paths $P_{1}, P_{2}, \ldots, P_{\lambda_{1}}$ (if $x y$ is an edge in G_{1}, then choose $P_{1}=x y$) in G_{1}. Let $H_{0}^{\prime}=\bigcup_{i=1}^{\lambda_{1}} P_{i}$, then $H_{0}=H_{0}^{\prime} a$ is a subgraph of $G_{1} \times G_{2}$. By the construction of H_{0}, it has λ_{1} edge-disjoint ($x a, y a$)-paths.

Let X and Y be the sets of $\delta_{1}-\lambda_{1}$ neighbors of x and y in $G_{1}-E\left(H_{0}^{\prime}\right)$, respectively. We may assume $X \cap Y=\emptyset$, otherwise, let $z \in X \cap Y$, then $x z y$ is yet another (x, y)-path besides $P_{i}\left(1 \leqslant i \leqslant \lambda_{1}\right)$, and may add this path to H_{0}^{\prime} in the previous step. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{\delta_{2}}\right\}$ be the set of δ_{2} neighbors of a vertex a in G_{2}, and let $C=V_{2}-\{a\}-B=\left\{c_{1}, c_{2}, \ldots, c_{v_{2}-\delta_{2}-1}\right\}$.

Next, we will construct a series of subgraphs of $G_{1} \times G_{2}$ by the following way, which will be call Method A for convenience. Take $x_{1}, x_{2}, \ldots, x_{s} \in X, y_{1}, y_{2}, \ldots, y_{s} \in Y$ and $b \in B$, where $0 \leqslant s \leqslant \lambda_{1}-1$. The subgraph H is composed by the union of $G_{1} b$ and $2(s+1)$ paths: $x a \rightarrow x b, x a \rightarrow x_{i} a \rightarrow x_{i} b(1 \leqslant i \leqslant s), y a \rightarrow y b$ and $y a \rightarrow y_{i} a \rightarrow y_{i} b(1 \leqslant i \leqslant s)$, as illustrated in Fig. 1. By Lemma 7, H has $s+1$ edge disjoint ($x a, y a$)-paths.

If $\delta_{1}-\lambda_{1}=|X|=|Y| \leqslant \delta_{2}\left(\lambda_{1}-1\right)$, namely $\delta_{1}+\delta_{2} \leqslant\left(\delta_{2}+1\right) \lambda_{1}$, we can partition X and Y into δ_{2} disjoint set $X_{1}, X_{2}, \ldots, X_{\delta_{2}}$ and $Y_{1}, Y_{2}, \ldots, Y_{\delta_{2}}$, respectively, such that $0 \leqslant\left|X_{i}\right|=\left|Y_{i}\right| \leqslant \lambda_{1}-1$. By applying Method A to X_{i}, Y_{i}

Fig. 1. An illustration for Method A.

Fig. 2. An illustration for Method B.
and b_{i}, we construct δ_{2} subgraphs $H_{i}\left(1 \leqslant i \leqslant \delta_{2}\right)$, each of which has $\left|X_{i}\right|+1$ edge-disjoint ($x a, y a$)-paths. It is easy to see that the subgraphs $H_{0}, H_{1}, \ldots, H_{\delta_{2}}$ are mutually edge-disjoint. Thus in all there are at least

$$
\begin{aligned}
\lambda_{1}+\sum_{i=1}^{\delta_{2}}\left(\left|X_{i}\right|+1\right) & =\lambda_{1}+\sum_{i=1}^{\delta_{2}}\left|X_{i}\right|+\delta_{2} \\
& =\lambda_{1}+\left(\delta_{1}-\lambda_{1}\right)+\delta_{2} \\
& =\delta_{1}+\delta_{2}
\end{aligned}
$$

edge-disjoint ($x a, y a$)-paths.
If $|X|=|Y|>\delta_{2}\left(\lambda_{1}-1\right)$, the construction of the first $\delta_{2}+1$ subgraphs is the same as before, with slight difference that we always choose $\left|X_{i}\right|=\left|Y_{i}\right|=\lambda_{1}-1$ when we apply Method A. Let

$$
X^{\prime}=X \backslash \bigcup_{i=1}^{\delta_{2}} X_{i} \quad \text { and } \quad Y^{\prime}=Y \bigvee \bigcup_{i=1}^{\delta_{2}} Y_{i} .
$$

Clearly, $X^{\prime} \neq \emptyset$ and $Y^{\prime} \neq \emptyset$. With X^{\prime}, Y^{\prime} and C, we introduce Method B to find more subgraphs of $G_{1} \times G_{2}$. Take $x_{1}, x_{2}, \ldots, x_{s} \in X^{\prime}, y_{1}, y_{2}, \ldots, y_{s} \in Y^{\prime}$ and $c \in C$, where $0 \leqslant s \leqslant \lambda_{1}$. Let $P_{a c}$ be an ac-path in G_{2}. As illustrated in Fig. 2, the subgraph H is the union of $G_{1} c$ and $2 s$ paths: $x a \rightarrow x_{i} a \xrightarrow{x_{i} P_{a c}} x_{i} c(1 \leqslant i \leqslant s)$ and $y a \rightarrow y_{i} \xrightarrow{y_{i} P_{a c}} y_{i} c(1 \leqslant i \leqslant s)$. By Lemma 7, H has s edge-disjoint ($x a, y a$)-paths.

Now, we can continue finding subgraphs. Each time, take λ_{1} (or less if there are not so many) unused vertices from X^{\prime} and Y^{\prime}, respectively, take one vertex from C and apply Method B to construct a subgraph of $G_{1} \times G_{2}$. First assume $\delta_{2}\left(\lambda_{1}-1\right)<|X|=|Y| \leqslant \delta_{2}\left(\lambda_{1}-1\right)+\left(v_{2}-\delta_{2}-1\right) \lambda_{1}$, namely $\left(\delta_{2}+1\right) \lambda_{1}<\delta_{1}+\delta_{2} \leqslant v_{2} \lambda_{1}$. The process will end when we use up the vertices of X^{\prime} and Y^{\prime}. So the total number of edge-disjoint ($x a, y a$)-paths in all subgraphs is at least

$$
\begin{aligned}
\lambda_{1}+\sum_{i=1}^{\delta_{2}}\left(\left|X_{i}\right|+1\right)+\left|X^{\prime}\right| & =\lambda_{1}+\sum_{i=1}^{\delta_{2}}\left|X_{i}\right|+\left|X^{\prime}\right|+\delta_{2} \\
& =\lambda_{1}+\left(\delta_{1}-\lambda_{1}\right)+\delta_{2} \\
& =\delta_{1}+\delta_{2}
\end{aligned}
$$

If $|X|=|Y|>\delta_{2}\left(\lambda_{1}-1\right)+\left(v_{2}-\delta_{2}-1\right) \lambda_{1}$, namely $\delta_{1}+\delta_{2}>v_{2} \lambda_{1}$, the process will terminate when the vertices in C are exhausted. In this situation, the number of edge-disjoint $(x a, y a)$-paths is at least

$$
\begin{aligned}
\lambda_{1}+\sum_{i=1}^{\delta_{2}}\left(\left|X_{i}\right|+1\right)+\left(v_{2}-\delta_{2}-1\right) \lambda_{1} & =\lambda_{1}+\delta_{2} \lambda_{1}+\left(v_{2}-\delta_{2}-1\right) \lambda_{1} \\
& =v_{2} \lambda_{1} .
\end{aligned}
$$

Summing the above discussion, the inequality (2) holds, and so theorem follows.
Corollary 3. Let $G_{1}, G_{2}, \ldots, G_{n}$ be connected undirected graphs. Then

$$
\lambda\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right)=\min \left\{\sum_{i=1}^{n} \delta_{i}, \min _{1 \leqslant i \leqslant n}\left\{v_{1} \cdots v_{i-1} \lambda_{i} v_{i+1} \cdots v_{n}\right\}\right\} .
$$

Proof. We proceed by induction on $n \geqslant 2$. The assertion is true for $n=2$ by Theorem 3. Suppose that $n \geqslant 3$ and the assertion holds for $n-1$. It is clear that

$$
\begin{aligned}
\left(\delta_{1}+\delta_{2}+\cdots+\delta_{n-1}\right) v_{n} & \geqslant\left(\delta_{1}+\delta_{2}+\cdots+\delta_{n-1}\right) \cdot\left(1+\delta_{n}\right) \\
& >\delta_{1}+\delta_{2}+\cdots+\delta_{n-1}+\delta_{n}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \lambda\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right) \\
& \quad=\min \left\{\delta\left(G_{1} \times \cdots \times G_{n-1}\right)+\delta_{n}, \lambda\left(G_{1} \times \cdots \times G_{n-1}\right) v_{n}, v\left(G_{1} \times \cdots \times G_{n-1}\right) \lambda_{n}\right\} \\
& \quad=\min \left\{\sum_{i=1}^{n} \delta_{i}, \min \left\{\sum_{i=1}^{n-1} \delta_{i}, \min _{1 \leqslant i \leqslant n-1}\left\{v_{1} \cdots v_{i-1} \lambda_{i} v_{i+1} \cdots v_{n-1}\right\}\right\} v_{n}, v_{1} \cdots v_{n-1} \lambda_{n}\right\} \\
& \quad=\min \left\{\sum_{i=1}^{n} \delta_{i}, \min _{1 \leqslant i \leqslant n}\left\{v_{1} \cdots v_{i-1} \lambda_{i} v_{i+1} \cdots v_{n}\right\}\right\} .
\end{aligned}
$$

References

[1] W.-S. Chiue, B.-S. Shieh, On connectivity of the Cartesian product of two graphs, Applied Math. and Computation 102 (1999) $129-137$.
[2] K. Day, A.-E. Al-Ayyoub, The cross product of interconnection networks, IEEE Trans. Parallel and Distributed Systems 8 (2) (1997) $109-118$.
[3] G.A. Dirac, Généralisations du théorém de Menger, C. R. Acad. Sci. Pairs 250 (1960) 4252-4253.
[4] G. Sabidussi, Graphs with given group and given graph-theoretical properties, Canad. J. Math. 9 (1957) 515-525.
[5] J.-M. Xu, Connectivity of Cartesian Product Digraphs and Fault-Tolerant Routings of Generalized Hypercubes, Applied Math. J. Chinese Univ. 13B (2) (1998) 179-187.
[6] J.-M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht/ Boston/London, 2001.
[7] J.-M. Xu, Theory and Application of Graphs, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.

[^0]: The work was supported by NNSF of China (No. 10271114).

 * Corresponding author.

 E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

