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Abstract

Use v;, K;, 4;, 0; to denote order, connectivity, edge-connectivity and minimum degree of a graph G; fori =1, 2, respectively. For
the connectivity and the edge-connectivity of the Cartesian product graph, up to now, the best results are k(G| x G2) > k1 + k2 and
A(G1 x G2) =21 + 2. This paper improves these results by proving that k(G x G2) > min{x| + d3, k3 + 1} and /(G| x Gp) =
min{d; + 2, 2{vp, Aov1}if G and G are connected undirected graphs; k(G x G) = min{k| + 07, k3 + 1, 2K1 + K2, 2K2 + K1}
if G and G are strongly connected digraphs. These results are also generalized to the Cartesian products of n (> 3) connected
graphs and n strongly connected digraphs, respectively.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Connectivity; Edge-connectivity; Cartesian product graphs

1. Introduction

We follow [7] for graph-theoretical terminology and notation not defined here. In this paper, a graph G = (V, E)
always means a connected undirected graph or strongly connected digraph with the vertex-set V and the edge-set E. For
x € V(G), the symbol Ng(x) denotes the set of neighbors of x if G is undirected; N&r (x) and N (x) denote the sets
of out-neighbors and in-neighbors of x, respectively, if G is directed. The symbol §(G) denotes the minimum degree
of G, where (G) = min{6™(G), 6~ (G)} if G is directed, and 7 (G) and 6~ (G) are the minimum out-degree and the
minimum in-degree of G, respectively. The symbols x(G) and A(G) denote the connectivity and the edge-connectivity
of G, respectively. The well-known Whitney’s inequality states that x(G) < A(G) < (G) for any graph G (see Theorem
4.4 in [7]). The connectivity is a basic concept in graph theory, but also an important measurement for reliability and
fault tolerance in a network [6]. Let G; be a graph. For short, we will write v; = |V (G;)|, é; = 0(G;), ki = k(G;) and
Ai = M(G)).

The Cartesian product is an important method to construct a bigger graph, and plays an important role in design and
analysis of networks [6]. For the connectivity and the edge-connectivity of the Cartesian product, up to now, the best
results are k(G| x G2) 2 K1 + k2 and A(G| X G) > A1 + 23 (see, for example, [6,5,1,2,4]). This paper improves these
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results by proving that

(i) (G x Gp)> min{i| + 02, kp + 01} and A(G1 x G2) = min{d| + 7, A1v2, Arv1} if G| and G, are connected
undirected graphs;
(i1) k(G| x G2) = min{k| + 92, k2 + 01, 2K] + K2, 2K2 + 1} if G1 and G, are strongly connected digraphs.

These results are also generalized to the Cartesian products of n(>3) connected graphs and n strongly connected
digraphs, respectively.
The proofs of these results are in Sections 3 and 4. In the next section, some notations and lemmas will be recalled.

2. Some lemmas and notations

Let x and y be two distinct vertices in a graph G = (V, E). The symbols {(G; x, y) and n(G; x, y) denote the
maximum numbers of internally-disjoint and, respectively, edge-disjoint (x, y)-paths in G; the symbols x(G; x, y) and
AMG; x, y) denote the minimum numbers of vertices and, respectively, edges, whose deletion disconnects x and y in
the remaining graph. The following two results are well-known (see Theorems 4.2, 4.3 and 4.5 in [7]).

Lemma 1 (Menger’s Theorem). Let G be a connected undirected graph or a strongly connected digraph. Then, for
any x,y € V(G),

(i) K(G;x,y)=L(G;x,y) if (x,y) ¢ E(G);
(i) 2(G;x,y)=n(G;x,y).

Lemma 2 (Menger—Whitney’s Theorem). Let G be a connected undirected graph or a strongly connected digraph.
Then

(1) k(G)=k ifand only if {(G; x, y) =k for every x,y € V(G);
(i) A(G) =k ifand only if n(G; x, y) =k for every x, y € V(G).

Forx € V(G) and W = {wq, wa, ..., wx} C V(G — x), if there exist k (x, w;)-paths W, Wa, ..., Wi, any two of
which have only the vertex x in common, then the set of paths Fy(x, W) = {Wy, Wa, ..., Wi} is called an (x, W)-fan
in G. Equally, if there exist k (w;, x)-paths Uy, Ua, ..., Ux, any two of which have only the vertex x in common, then
the set of paths Fy (W, x) ={Uj, U, ..., Ui} is called a (W, x)-fan in G. The following lemma insures the existence
of these fans if k(G) >k, found first by Dirac [3].

Lemma 3. Let G be a connected undirected graph or a strongly connected digraph. If 1(G) >k, then for any vertex
xof G and a set W = {w1, wy, ..., wr} of any k distinct vertices of G — x, there are an (x, W)-fan Fi(x, W) and a
(W, x)-fan Fr(W, x) of G.

Let G; = (V;, E;) be a digraph for each i = 1, 2. The Cartesian product G| x G> of G| and G is a digraph with
V(G1 x G3) = Vq x V;. There is a directed edge from a vertex xjx, to another y;y; in G x G, x1, y1 € V1 and
X2, y2 € V,, if and only if either x; = y; and (x3, y2) € E3, or x = y» and (x1, y1) € E1. The Cartesian product of
two undirected graphs can be defined similarly. From definition, the following fact can be verified easily.

Lemma 4. G| x G, =G, x Gy and 6(G| x Gp) = 61 + 0 for any graphs G| and G.

The following observations and notations are very useful for the proofs of some results on the Cartesian product. If
Hy € Gyand H; € Gy, thenforanya € Vi and b € V,, Hy x {b} and {a} x H, are subgraphs of G| x G7, denoted by
H\b and a H», respectively. In particular, if P = (x1, v, v2, ..., Uy, ¥1) is an (x1, y1)-path in G, then for any b € V>,
Pb=(x1b,v1b, v2b, ..., v,b, y1b) is an (x1b, y1b)-path from the vertex x1b to the vertex y;b in G| x G». Similarly,
if W= (xp,uy,uz,...,u;, y2)is an (x2, y2)-path in G, then for any a € V1, aW = (axy, auy, auy, ..., au;, ay,) is
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an (axa, ay,)-path from the vertex ax, to the vertex ay, in G; x G. If x = x1xp and y = y;y» are two vertices in
G1 x Gy, then Q = Pxp U y; W is an (x, y)-path from x to y in G| x G». Such a path will be expressed as

. Px; nw
Q:x=x1x2 = y1Xx2 = YIy2=y.

3. Connectivity of Cartesian products

Lemma 5. Ler G; = (V;, E;) be a strongly connected digraph or a connected undirected graph for eachi =1, 2. Then
k(G1 x G2) > w if and only if

(1) (G x Ga; xa, xb)>w forany x € Vi,a,b € V>, and
(i) {(Gy x Gp; xa,ya)>zw forany x,y € Vi,a € V,.

Proof. We only need to show that the sufficiency holds for digraphs. By Lemma 2, it is sufficient to show that
{(G1 x Gy; xa, yb) > w for any xa, yb € V(G| x Gy), where x,y € Vi,a,b € V,.

If x =y ora =b, then {(G| x G»; xa, yb) >w holds clearly by our hypothesis. Suppose that x # y and a # b.
Then (xa, yb) ¢ E(G1 x G3) below. It is sufficient to prove that there is an (xa, yb)-path in G; x G, — § for any
S C V(G1 x Gy)\{xa, yb} with |S| < w.

Choose x1, x2,..., x5, € Né’l (x)and ay, az, ..., a5, € Ngz (a). Without loss of generality, suppose x; # y,i =
1,2,...,01,a; #b, j=1,2,..., 0, (if, for example, x| = y, we replace {x;a, x1b} with singleton {xa} in (1)). Then
(01 + 02) pairs of vertices

{x1a, x1b}, {x2a, x2b}, ..., {x5,a, x5,b},
{xala yal}v{xa29 yaZ}s"-’{xa521 yaéz} (1)
are disjoint. By our hypotheses, Lemmas 1 and 4, we have that
S| <w< min {(G| x Ga; xa, xb)
x,a,b
= min k(G| x Gy; xa, xb)
x,a,b

<6(G1 x G2)
=01 + 02,

which implies that there exists at least one pair in (1) that is not in S. Without loss of generality, suppose that {xa, ya}
is not in S. Because of our hypothesis that {(G; x G2; xay, ya;) >w and {(G1 x G2; ya;, yb) > w, there exist an
(xay, yay)-path Py and a (ya;, yb)-path P> in G| x Go — S. Thus, G| x G — S contains an (xa, yb)-walk W =xa —

P P . .
xay — ya, =3 yb, which contains an (xa, yb)-path. ]

Theorem 1. Let G; = (V;, E;) be a connected undirected graph for eachi = 1, 2. Then
k(G X G2) > min{k| + 02, kK + I1}.

Proof. By symmetry, we only need to show that

{(G1 x Gy; xa, ya) > min{x| + 2, kKo + 01} for any x, y € V| and a € V5.

Since k(G 1)=x1, by Lemma 2, there exist « internally-disjoint (x, y)-paths Py, P2, ..., P, in G.Chooseuy, uy, ...,
ugs, € Ng,(a). We can construct (k| +05) internally-disjoint (xa, ya)-paths Ry, Ra, ..., Ry 45, iIn G| X G as follows.
Pi .
R, = xa iy ya, i=1,2,...,K1;
Piuj .
Ry j4j=xa —> xuj — yu; —>ya, j= 1,2,...,00.

It follows that {(G| x G3; xa, ya) =K1 + 02 = min{x| + 02, ko + ¢1}. O
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By induction we can obtain the following corollary immediately.

Corollary 1. Let G, G2, ..., G, be connected undirected graphs. Then,

n
k(G x Gy x - x Gp) = 251' —  max {6; — 1}

. N
i=1

Proof. We proceed by induction on n >2. Clearly, the assertion holds if n = 2 since it is a version of Theorem 1.
Assume the induction hypothesis for n — 1 with n > 2. Let

H=G1 xGyx---xGy_1, 0og=90H), xgp=x(H), vyg=v(H).
By the induction hypothesis, we have that

og — kg < max {0; — K;}.
1<i<n—1

It follows that

K(G1 X Gy X -+ x Gp) =0y + 6, —max{oyg — kg, 0n — Kn}

SIn—

>0y + oy —max{ max {0; — K;}, Op — Kn}
1<i<

n
= E 5,'— max {51'—Ki}
‘ 1<i<n
i=1
as desired. [

Theorem 2. Let G; = (V;, E;) be a strongly connected digraph for each i = 1,2. Then k(G x G3)> min{x; +
02, k2 + 01, 2K1 + K2, 2K2 + K1}

Proof. Let d = min{d| — k1, 02 — K2, K1, K2}. It is sufficient to prove that
{(Gy x Gy;xa,ya)=2K| + Ko +d forany x,y € V| and a € V.

Let Py, ..., Py, be k; internally-disjoint (x, y)-paths in G;. Then, |N51 (y)\U;l1 V(P;)|>d1 — k1 >d. Choose
W ={wi,wy,...,wg} < NE] (y)\UiK;1 V(P;) and an (x, W)-fan Fy(x, W) = {W, Wh, ..., W4} in G| (such a
fan exists for d < by Lemma 3).

Choose U = {uy,uz, ..., ux,} < Né‘z(a) and a (U, a)-fan F,(U,a) = (U1, Us, ..., U} in G,. Note that
IN&,@\U|>d2— 12 >d. Choose T = {v1, v2, ..., va} S N (@)\U and a (T, a)-fan Fy(T,a)={T, Tz, ..., T4} in
G (such a fan exists for d < k> by Lemma 3). We now construct (k1 + k2 + d) internally-disjoint (xa, ya) as follows:

Pia .
Ri=xa > ya, i=12...,K1;
Pruj YU, .
Ri+j=xa — xuj — yuj — ya, J=12,...,K2;
Wi w Ty
Ri\ 41041 =Xa — xv; — wpyy — wia — ya, [=1,2,...,d.

It follows that {(G| x G2; xa, ya)>Kk; + k2 +d. O
Corollary 2. Let G, Ga, ..., G, be strongly connected digraphs. Then

(i) K(G1 X Gy x -+ x Gp) =Y ' ki +minj<;<n {0i — Kiy Ki};
(i) k(G x Gy x -+ x Gp) =D 1| 0; —maxi<;<n {0 — K} if 0; <2K;.
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4. Edge-connectivity of Cartesian products

Lemma 6. Let G; = (V;, E;) be a strongly connected digraph or a connected undirected graph for eachi =1, 2. Then
MG1 x Gy) > w if and only if

(1) n(G1 x Gp; xa,ya)>w forany x,y € Vi,a € Va, and
(i) n(G1 x Gy; xa,xb)>w forany x € Vi,a,b € V>.

Proof. We only need to prove the sufficiency. Furthermore, it is sufficient to prove that (G| x G»; xa, yb) >w for
any x,y € Vi and a, b € V,. In fact, if x = y or a = b, the sufficiency holds by our hypothesis. Suppose x # y and
a # b below. By Lemma 2, it is sufficient to prove A(G| x G2; xa, yb) >w. Indeed, let B € E(G| x G3) such that
MG1xGy; xa, yb)=|B|and G| x G, — B contains no (xa, yb)-path. If | B| < w, then by our hypothesis, G| x G, — B
contain a (xa, ya)-path P and a (ya, yb)-path P,. Thus,

Py Py
xa — ya — yb

is an (xa, yb)-walk in G| x G, — B, which contains an (xa, yb)-path, a contradiction. []
The next lemma is simple but useful in the proof of Theorem 3.

Lemma 7. Let G be a A-edge-connected undirected graph and let X ={x1, x2, ..., xsyand Y ={y1, y2, ..., ys}(s <)
be two disjoint sets of vertices of G. Two disjoint fans Fg(x, X) and Fs(y, Y) has common vertices with G in exactly
XUY.Let G' =G U Fy(x, X) U Fy(y, Y), then there are /. edge-disjoint (x, y)-paths in G’.

Proof. Let B be an edge subset of G’ such that | B| < /. Then at least one of the (x, x;)-paths (1 <i <A)in Fy(x, X), say
(x, x1)-path Pj, remains intact after the removal of B. And assume (y, yj)-path P, is intact in F;(y, Y) — B. Because
G is A-edge-connected, G — B is still connected, and there is an (xp, y;)-path in G — B. This path, together with P;
and P,, forms an (x, y)-path in G’ — B. Thus n(G’; x, y) = A(G'; x, y) = /. [

Theorem 3. Let G; = (V;, E;) # K| be a connected undirected graph for eachi = 1,2. Then
/(G1 x G2) =min{d1 + d2, A1v2, Aov1}).

Proof. Clearly, A(G| x G2) < min{d|+ 2, A1v2, Aov1}. We only need to prove A(G X G2) > min{d;+ 32, 11v2, Lpv1}.
Note that if 5; = 4; and d, = A, then the conclusion holds clearly by the known result. Without loss of generality,
suppose that §; > 4;. By Lemmas 2 and 6, it is sufficient to prove that

n(G1 x Gy; xa, ya) > min{d; + 9, Livo, v}, Vx,ye Vi, a€ V,. 2)

The main idea of the proof is to find edge-disjoint subgraphs containing xa and ya of G| x G, each of which has
several edge-disjoint (xa, ya)-paths. By summing the number of paths over those subgraphs, we obtain the desired
result.

The first subgraph Hy of G| x G is obtained as follows. Select 4, edge-disjoint (x, y)-paths Py, Ps, ..., P;, (if xy
is an edge in G1, then choose Py = xy) in G1. Let Hy = Ul’il P;, then Hy = Hja is a subgraph of G| x G;. By the
construction of Hy, it has 4; edge-disjoint (xa, ya)-paths.

Let X and Y be the sets of 6 — A1 neighbors of xand y in G| — E (H|)), respectively. We may assume X NY =/, otherwise,
letz € XNY,thenxzyis yet another (x, y)-path besides P; (1 <i < /1), and may add this path to Hj in the previous step.
Let B={b1, bs, ..., bs, } be the set of 6, neighbors of a vertex ain G2, andlet C =V, —{a} - B={c1, c2, ..., ¢y,_5,-1}-

Next, we will construct a series of subgraphs of G; x G by the following way, which will be call Method A
for convenience. Take x1,x2,...,x; € X, y1,¥2,...,ys € Y and b € B, where 0<s<4; — 1. The subgraph H
is composed by the union of G1b and 2(s + 1) paths: xa — xb, xa — xja — x;b(1<i<s), ya — yb and
ya — yia — y;b(1<i<s), as illustrated in Fig. 1. By Lemma 7, H has s 4 1 edge disjoint (xa, ya)-paths.

If o1 — 41 = |X| = |Y|<d2(41 — 1), namely 1 + 02 <(J2 + 1)41, we can partition X and Y into J, disjoint set
X1, X2,..., X5, and Y1, Y2, ..., ¥, respectively, such that 0< | X; | = |Y;| <A1 — 1. By applying Method A to X;, Y;
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Fig. 1. An illustration for Method A.

Fig. 2. An illustration for Method B.

and b;, we construct 0, subgraphs H; (1 <i <J7), each of which has |X;| + 1 edge-disjoint (xa, ya)-paths. It is easy
to see that the subgraphs Hy, H1, ..., Hg, are mutually edge-disjoint. Thus in all there are at least

52 52
A X+ D=A+ Y X+
i=1 i=1
=1+ (61— /1) + 2
=01+ 02

edge-disjoint (xa, ya)-paths.
If | X| =|Y| > 02(41 — 1), the construction of the first 5, + 1 subgraphs is the same as before, with slight difference
that we always choose | X;| = |¥;| = 21 — 1 when we apply Method A. Let

52 ‘52
X' =X UX,- and Y’:Y\U Y;.

i=1

Clearly, X’ # #and Y’ # (. With X', Y’ and C, we introduce Method B to find more subgraphs of G| x G;. Take
X1, X2, ..., %X € X', y1,¥2,...,ys € Y and ¢ € C, where 0<s <1;. Let P, be an ac-path in G;. As illustrated in
Fig. 2, the subgraph His the union of G| c and 2s paths: xa — x;a xﬁ“ xic(1<i<s)and ya — y;a yf)“c yic(1<i<s).
By Lemma 7, H has s edge-disjoint (xa, ya)-paths.

Now, we can continue finding subgraphs. Each time, take 4; (or less if there are not so many) unused vertices from
X' and Y’, respectively, take one vertex from C and apply Method B to construct a subgraph of G| x G>. First assume
02(A1—1) < |X|=1Y|< (A1 — 1)+ (v2 — 92 — 1) A1, namely (3 + 1)A; < d1 + 2 <wvalp. The process will end when
we use up the vertices of X" and Y’. So the total number of edge-disjoint (xa, ya)-paths in all subgraphs is at least

52 52
Y (Xl + D+ X =h+ ) 1K+ X+ 6,

i=1 i=1
=1+ (61— /A1) + 02
=01 + 7.
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If |1 X|=1|Y|> (A — 1)+ (va — 92 — 1)A1, namely 01 + 2 > va 41, the process will terminate when the vertices
in C are exhausted. In this situation, the number of edge-disjoint (xa, ya)-paths is at least
02
A Xl + 1)+ (2 = 82 — Dy =41 + 6241 + (v — 62 — D
i=1
= vz)q .

Summing the above discussion, the inequality (2) holds, and so theorem follows. [J

Corollary 3. Let G, Gy, ..., G, be connected undirected graphs. Then

n
)»(Gl X G2 X e X Gn) = min E 51', min {v1 ~--U,'_1)v,'l),‘+1 s vn}
= 1<i<n
1=

Proof. We proceed by induction on n >2. The assertion is true for n = 2 by Theorem 3. Suppose that n >3 and the
assertion holds for n — 1. It is clear that

O14+60+ -+ 0D =01+0+--+d—1) - (1+0,)
>51+52+"'+5n—1+5n~

It follows that
MG1 x Gy x -+ x Gp)
=min{6(G| X -+ X Gy_1) + 0, M(G1 X -+ X G 1)Uy, V(G| X -+ X Gu_1) Ay}

n—

n 1
= min Eéi,min Eéi, min  {v] - Vi1 AiVig1 Un—1} [ Vn, V1 Up—1dg
= = 1<i<n—1
= i=

n

= min E Oj, min {v{---V;_14jVit1 "V}
— 1<in
1=
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