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Abstract

Fault tolerant measures have played an important role in the reliability of an inter-

connection network. Edge connectivity, restricted-edge-connectivity, extra-edge-connec-

tivity and super-edge-connectivity of many well-known interconnection networks have

been explored. In this paper, we study the 2-extra-edge connectivity of a special class of

graphs G(G0,G1; M) proposed by Chen et al. [Appl. Math. Comput. 140 (2003) 245–

254]. Then by showing that several well-known interconnection networks such as hyper-

cubes, twisted cubes, crossed cubes and Möbius cubes are all contained in this class. We

show that their 2-extra-edge-connectivity are all not less than 3n � 4 when their dimen-

sion n is not less than 4. That is, when nP 4, at least 3n � 4 edges are to be removed to

get any of an n-dimensional above networks disconnected provided that the removed

edges does not isolate a vertex or an edge in the faulty networks. Compared with pre-

vious results, our result enhances the fault tolerant ability of above networks

theoretically.
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1. Introduction

For all the terminologies and notations not defined here, we follow [3]. For a

graph G = (V,E) and S � V(G) or S � G, we use NG(S)(EG(S)) to denote the set

of neighboring vertices (edges) of S in G � S. For any vertex v, we use d(v) to

denote the degree of v. If the degree of every vertex is identical to k, we call G a
k-regular graph. The connectivity of a graph is the minimum number of verti-

ces to be removed to get the graph disconnected. If the connectivity of a k-reg-

ular graph is k, we call G a k-regular maximum connected graph. The

minimum length of all the cycles in G is called the girth of G, denoted by

g(G). In this paper, we use graph and interconnection networks interchange-

ably, nodes and vertices interchangeably and links and edges interchangeably.

Routing has been a popular topic in the study of computer networks. In par-

ticular, it is important to know whether the non-faulty nodes in a given net-
work with faults still remain connected. Traditionally, connectivity and edge

connectivity have been mainly used for measures of functionality of the system.

For example, the minimum number of faulty links in an n-cube that results in

the remaining nodes being disconnected is its edge connectivity n. But the only

case that n faulty links can disconnect an n-cube is that all these n links are

neighboring to a same node [12]. However, the probability that all n faulty

links are neighbors of the same node is very small.

The use of forbidden faulty set [13] is motivated by the fact that the tradi-
tional graph connectivity model cannot correctly reflect network resilience of

large systems. The vertices or edges in a forbidden faulty set cannot fail at

the same time. By restricting the forbidden fault set to be the sets of neighbor-

ing edges of any spanning subgraph with not more than h-vertices in the faulty

networks, Fàbrega and Fiol [8] introduced the h-extra-edge-connectivity of

interconnection networks.
Definition 1.1 [8]. Given a graph G and a non-negative integer h, the h-extra-
edge-connectivity kh(G) of G is the minimum cardinality of a set of edges of G,

if any, whose deletion disconnects G and every remaining component contains

more than h vertices.

This is another important generalization of the traditional edge
connectivity.

In this paper we investigate the 2-extra-edge-connectivity of a special class of

graphs G(G0,G1; M) proposed by [4].
Definition 1.2. Assume that t is a positive integer. Let G1 and G2 be two graphs

with t vertices, andM be any arbitrary perfect matching between the vertices of

G1 and G2; i.e., a set of t edges with one endpoint in G1, and the other endpoint

in G2. The graph G(G1,G2; M) is defined as a graph with the vertex set
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V(G(G1,G2; M)) = V(G1) [ V(G2), and edge set E(G(G1,G2; M)) = E(G1) [
E(G2) [M.

For any vertex u 2 V(G), we use �eðuÞ ¼ ðu; �uÞ to denote the edge in M which

is incident to u in G(G0,G1; M), and we call �u to be u�s pair vertex.
Since the proposition of the class of graphs G(G0,G1; M), much of its prop-

erty has been studied. Many well-known interconnection networks such as

hypercubes, twisted cubes, crossed cubes, and Möbius cubes all belong to this

class, thus study of this class of graphs can lead to the findings of many impor-

tant properties of these well-known interconnection networks.

Chen et al. studied the super-connectivity and super-edge-connectivity of the
class of graphs G(G0,G1; M) and they obtained the following results.

Lemma 1.3 [4]. Assume that t is a positive integer. Let G1 and G2 be two k-

regular maximum-edge-connected graphs with t vertices, and M be any perfect

matching between V(G1) and V(G2). Then G(G1,G2; M) is (k + 1)-regular super-

edge-connected if and only if (1) t > k + 1 or (2) t = k + 1 with k = 0.
Lemma 1.4 [4]. Assume that t is a positive integer. Let G1 and G2 be two

k-regular maximum connected graphs with t vertices, and M be any perfect

matching between V(G1) and V(G2). Then G(G1,G2; M) is (k + 1)-regular

super-connected if and only if (1) t > k + 1 or (2) t = k + 1 with k = 0,1,2.

The remaining of this article is organized as follows. In Section 2, we study a

special class of graphs in G(G0,G1; M) and obtain their 2-extra-edge-connectiv-

ity. Then in Section 3, by proving that hypercubes, twisted cubes, Möbius
cubes and crossed cubes all belong to this special class of graphs, we obtain

their 2-extra-edge-connectivity.
2. Fault tolerance analysis of G(G0,G1; M)

Lemma 2.1. Suppose G0 and G1 are two k-regular maximum-connected graphs

with the same order, g(G0) P 4 and g(G1) P 4, M is a perfect matching between
V(G0) and V(G1). Then G = G(G0,G1; M) is (k + 1)-regular maximum connected

and g(G) P 4.
Proof

(1) Applying Lemma 1.4, we immediately obtain that G is (k + 1)-regular

maximum connected.

(2) We only need to prove that there is no triangle in G(G0,G1; M). Since

g(G0)P 4 and g(G1) P 4, there is no triangle in G0 and G1. It is sufficient
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to show that every edge in M is not contained in a triangle. Suppose

e = (u0,u1) is any edge in M. Since M is a perfect matching, there is no

vertex adjacent to u0 and u1 simultaneously, so e cannot be contained

in a triangle. Thus there is no triangle in G, g(G) P 4. h

To simplify the impression of our results, we introduce the following

definition.

Definition 2.2. For a graph G, we define the cn-number of G to be the least

integer l such that any two vertices in G share at most l common neighboring
vertices, and we denote this number by cn(G).
Lemma 2.3. For any two graphs G0 and G1 with the same order, M is a perfect
matching between V(G0) and V(G1). If cn(G0) = cn(G1) = 2, then cn(G(G0,G1;

M)) = 2.
Proof. It is obvious that cn(G(G0,G1; M)) P max{cn(G0),cn(G1)} = 2, so we

only need to prove that for any two vertices x, y in V(G(G0,G1; M)), x and y

have at most two common neighboring vertices.

(1) If x and y are both in V(G0)(V(G1)). Since M is a perfect matching, there

is no vertices in G1(G0) which is adjacent to both x and y. So the common

neighbors of x and y all lie in G0(G1). Thus x and y have at most two com-
mon neighbors since cn(G0) = cn(G1) = 2.

(2) If x 2 V(G0)(V(G1)) and y 2 V(G1)(V(G0)), then the common neighbors of

x and y must be x�s or y�s pair vertex. Since M is a perfect matching, both

x and y have only one pair vertex. Thus x and y have at most two com-

mon neighbors. h
Lemma 2.4. Suppose G0 and G1 are two k-regular (k P 3) graphs with t vertices;

M is a perfect matching between V(G0) and V(G1). g(G0) P 4 and g(G1) P 4.

cn(G0) = cn(G1) = 2. F � E(G), jFj 6 3k � 2 and there is no isolated vertex or

isolated edge in G � F, F0 = F \ E(G0), F1 = F \ E(G1) and Fm = F \ M. Then
any vertex in G0 � F0(G1 � F1) is connected to G1 � F1(G0 � F0) in G � F.
Proof. Without loss of generality, we only need to prove that any vertex in

G1 � F1 is connected to G0 � F0 in G � F.

"u 2 V(G1) � F1, if �eðuÞ 62 F m then we are done. So we suppose that
�eðuÞ 2 F m. Since u cannot be an isolated vertex in G � F, there exist a vertex

v 2 NG1
ðuÞ such that (u,v) 62 F1, if �eðvÞ 62 F m, then we are done, so we suppose

that �eðvÞ 2 F m. Since (u,v) cannot be an isolated edge in G � F, there exist an

edge e 2 EG1
ððu; vÞÞ � F 1. The edge e may be incident to u or v, but since

whether it is incident to u or v makes no difference to the following proof, we
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may suppose that e = (v,w) for simplicity, if �eðwÞ 62 M , then we are done, so we

suppose �eðwÞ 2 M . Since g(G1) P 4, w cannot be neighboring to u. Since

cn(G1) = 2, jNG1
ðuÞ \ NG1

ðwÞj 6 2.

Case I. NG1
ðuÞ \ NG1

ðwÞ ¼ fv; xg.
Subcase I.1. Both (u,x) and (w,x) belong to F.

Let X ¼ NG1
ðu; v;wÞ � fxg. Since g(G1)P 4, v has no common neighbors

with u or w. jXj = 3k � 6 since u and w have exactly two common neighbors.

Let X ¼ f�eðxiÞjxi 2 Xg, then jX j ¼ jX j since M is a perfect matching. It is easy

to see that X \ f�eðuÞ;�eðvÞ;�eðwÞ; ðu; xÞ; ðv; xÞg ¼ / and f�eðuÞ;�eðvÞ;�eðwÞ; ðu; xÞ;
ðv; xÞg � F , jX \ F j 6 jF j � 5 6 3k � 7 < jX j. So at least one edge of X does

not belong to F, which means that u can be connected to G0 � F0 in this

case.

Subcase I.2. At least one of (u,x) and (w,x) does not belong to F.

Thus u is connected to x in G � F, if �eðxÞ 62 F , then we are done, so we
suppose that �eðxÞ 2 F .

Since g(G1)P 4 and cn(G1) = 2, jNG1
ðu; v;w; xÞj ¼ 4k � 8. We define

Y ¼ f�eðyÞjy 2 NG1
ðu; v;w; xÞg. Then jYj = 4k � 8 since M is perfect matching.

It is easy to see that Y \ f�eðuÞ;�eðvÞ;�eðwÞ;�eðxÞg ¼ / and f�eðuÞ;�eðvÞ;�eðwÞ;
�eðxÞg � F . So jY\Fj 6 jFj � 4 6 3k � 6 < jYj (when k P 3). At least one edge

of Y does not belong to F, so u can be connected to G0 � F0.

Case II. NG1
ðuÞ \ NG1

ðwÞ ¼ fvg.
Let Z ¼ f�eðzÞjz 2 NG1

ðu; v;wÞg, then jZj ¼ jNG1
ðu; v;wÞj ¼ 3k � 4. Since

f�eðuÞ;�eðvÞ;�eðwÞg � F and f�eðuÞ;�eðvÞ;�eðwÞg \ Z ¼ /, jZ\Fj 6 jFj � 3 6

3k � 5 < jZj. Thus at least one edge of Z does not belong to F, which means

that u can be connected to G0 � F0. h
Lemma 2.5. Suppose G0 and G1 are two k-regular (kP 3) maximum connected

graphs. jV(G0)j = jV(G1)j = t. M is a perfect matching between V(G0) and V(G1).

Let G = G(G0,G1; M). If g(G0) P 4 and g(G1) P 4, then k1(G) = 2k.
Proof

(1) "e = (x,y) 2 E(G). For any vertex u 2 V(G) � {x,y}, jEG(u) \ EG(e)j 6
1(<k + 1) = dG(u) since g(G) P 4 by Lemma 2.1. So there is no isolated

vertex in G � EG(e). k1(G) 6 jEG(e)j = 2k.

(2) "F � E(G), jFj 6 2k � 1 and there is no isolated vertex in G � F. In the
following we will prove that G � F is connected.

Let F0 = F \ E(G0), F1 = F \ E(G1) and Fm = F \ M. It is clear that F0, F1

and Fm are disjoint to each other. So at least one of F0 and F1 is strictly less

than k. Without loss of generality, we suppose that jF0j < k. k(G0)P j(G0) = k

since G0 is k-regular maximum connected. Then G0 � F0 is connected since

jF0j < k(G0).
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In the following we will prove that any vertex in G1 � F1 is connected to

G0 � F0 in G � F.

For any vertex u1 2 V(G1), if �eðu1Þ 62 M , then we are done. So we suppose

that �eðu1Þ 2 M . Since there is no isolated vertex in G � F, there exist a vertex

v1 2 NG1
ðu1Þ such that (u1,v1) 62 F1. If �eðv1Þ 62 F m, then we are done. So we

suppose �eðv1Þ 2 F m. Let X ¼ f�eðuÞ 2 M ju 2 NG1
ððu1; v1ÞÞg. Then jX j ¼

jNG1
ððu1; v1ÞÞj since M is a compete matching. jNG1

ððu1; v1ÞÞj ¼ 2k � 2 since

g(G1) P 4. Since �eðu1Þ and �eðv1Þ cannot be in X, jX \ Fj 6 jFj � 2 6

2k � 3 < jXj. At least one edge of X does not belong to F. Thus u1 can be

connected to G0 � F0. h
Theorem 2.6. Suppose G0 and G1 are two k-regular (k P 3) maximum-connected

graphs with t vertices; M is a perfect matching between V(G0) and V(G1). Let

G = G(G0,G1; M). If (1) cn(G0) = cn(G1) = 2; (2) g(G0) P 4 and g(G1) P 4; (3)

k1(G0) = 2k � 2 and k1(G1) = 2k � 2, then k2(G) = 3k � 1.
Proof

(1) Let T = x ! z ! y be a path of length 2 between x and y. By Lemma 2.1,

g(G)P 4, so any vertex u not in T can have at most two neighboring ver-
tex in T, that is, jEG(u) \ EG(T)j 6 2 < k + 1 = dG(u) when kP 2. And for

any edge e not in T jEG(e) \ EG(T)j 6 3 < 2k = jEG(e)j (when kP 2), so

there is no isolated vertex or isolated edge in G � EG(T). It is easy to

see that jEG(T)j = (k + 1 � 1) + (k + 1 � 2) + (k + 1 � 1) = 3k � 1. Thus

k2(G) 6 3k � 1 when k P 2.

(2) For any edge subset F�E(G), jFj 6 3k � 2 and there is no isolated vertex

or isolated edge in G � F. In the following we will prove that G � F is

connected.

Let F0 = F \ E(G0), F1 = F \ E(G1) and Fm = F \ M.

Case I. At least one of G0 � F0 and G1 � F1 is connected.

Without loss of generality, we suppose that G0 � F0 is connected. By

Lemma 2.4, any vertex u 2 V(G1) can be connected to G0 � F0 in G � F. Thus

G � F is connected in this case.

Case II. Both G0 � F0 and G1 � F1 are disconnected.

Since both G0 and G1 are k-regular maximum-connected, j(G0) = j(G1) =
k(G0) = k(G1) = k. Then jF0j P k and jF1j P k since G0 � F0 and G1 � F1 are

disconnected. Thus jF0j 6 jFj � jF1j 6 2k � 2 and jF1j 6 2k � 2.

Subcase II.1. jF0j = 2k � 2 or jF1j = 2k � 2.

Without loss of generality, we suppose that jF0j = 2k � 2, so jF1j = k and

jFmj = 0.

Since k1(G1)P 2k � 2 > k, G1 is super-edge-connected. thus there exist a

vertex u1 in V(G1) such that EG1
ðu1Þ ¼ F 1. Since k(G1 � u1) P j(G1 � u1)P
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k � 1 > 0 (when kP 2), G1 � u1 = (G1 � F1) � u1 is connected. Suppose
�eðu1Þ ¼ ðu1; u0Þ. Since there is no isolated vertex and isolated edge in G � F,

there exist a vertex v0 2 NG0
ðu0Þ such that (u0,v0) 62 F0. Since jFmj = 0, �eðu0Þ 62 F

and �eðv0Þ 62 F . Thus u1 can be connected to G1 � u1 in G � F. And by Lemma

2.4, any vertex in G0 � F0 is connected to G1 � F1 in G � F. Thus G � F is

connected.
Subcase II.2. k 6 jF0j < 2k � 2 and k 6 jF1j < 2k � 2.

If there is no isolated vertex in G0 � F0 or G1 � F1, then G0 � F0 and

G1 � F1 are both connected since k1(G0) = 2k � 2 and k1(G1) = 2k � 2. So there

exist a vertex u0 2 V(G0) and a vertex v1 2 V(G1) such that NG0
ðu0Þ � F 0 and

NG1
ðv1Þ � F 1, that is, u0 is an isolated vertex G0 � F0 and v1 is an isolated

vertex in G1 � F1. Since k(G0 � u0) P j(G0 � u0)P k � 1 and jF0 \
E(G0 � u0)j = jF0j � k 6 k � 2, (G0 � u0) � F0 is connected. Similarly, we can

prove that (G1 � v1) � F1 is connected. Since there is no isolated vertex and
edge in G � F, u0 and v1 cannot be adjacent to each other. Thus u0 is connected

to (G1 � v1) � F1 and v1 is connected to (G0 � u0) � F0 in G � F.

jFmj = jFj � jF0j � jF1j 6 k � 2. Since there are t � 2 > k � 2 edges of M

between (G0 � u0) � F0 and (G1 � v1) � F1, (G0 � u0) � F0 and (G1 � v1) � F1

can be connected to each other. Thus G � F is connected in this case. h
3. Applications

Topologies of many interconnection networks can be viewed as G(G0,G1;

M) for some k-regular graphs G0 and G1, such as hypercubes, twisted cubes,
crossed cubes and Möbius cubes. These networks are derived by changing

the connection of some hypercube edges according to some specified rules,

and thus, have many attractive properties as the same as the hypercube�s.
Moreover, they have many advantages over the hypercube. In particular, they

have a diameter of approximately a half of the hypercubes�s diameter. Thus,

each of these networks is regarded as an attractive alternative to the hypercube

and has attracted many researcher�s interest. In this section, we prove that all

these networks belong to the class of graphs studied in Section 2, and thus ob-
tain the particular results on their 2-extra-edge-connectivity.
3.1. Hypercubes

The n-dimensional binary hypercube Qn is a graph whose vertex set V(Qn)

consists of all binary sequence of length n on the set {0,1}, and two vertices

u = un�1un�2 � � � u0 and v = vn�1vn�2 � � � v0 are linked by an edge if and only if

u and v differ in exactly one coordinate, i.e.
Pn

i¼1jui � vij ¼ 1. The Hamming
distance of any two vertices u, v in V(Qn) is defined to be:
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Hðu; vÞ ¼
Pn

i¼1jui � vij. The distance between two vertices d(u,v) is equal to its

Hamming distance.

The hypercube Qn is an n-regular bipartite graph with 2n vertices. It is the

best well-known and popular topological structure of interconnection net-

works because of its attractive properties [10]. Saad and Schultz [14] proved

that Qn is n-connected. Esfahanian [6] determined j 0(Qn) = 2n � 2 for n P 3
and k 0(Qn) = 2n � 2 for n P 2.

Let iQn�1(i 2 {0,1}) be the spanning subgraph of all the vertices in Qn with

the leftmost bit i, then 0Qn�1 and 1Qn�1 are two n � 1 dimensional hypercubes

and Qn = G(0Qn�1,1Qn�1; M) for a particular perfect matching M between

V(G0) and V(G1).

Corollary 3.1. k2(Qn) = 3n � 5 for n P 4.
Proof. Q2 is isomorphic to C4, so g(Q2) = 4 and cn(Q2) = 2. Applying Lemma

2.1 and Lemma 2.3 recursively, we obtain that Qn is a n-regular maximum-

connected graph, cn(Qn) = 2 and g(Qn) P 4 when n P 2, applying Lemma
2.5, we may obtain that k1(Qn) = 2n � 2 for n P 3. Then applying Theorem

2.6, we may obtain that k2(Qn) = 3n � 4 when n P 4. h
3.2. Twisted cubes

The n-dimensional twisted cube. TQn, is derived by changing the connectiv-

ity of some of the n-cube�s links. Construction methods proposed by [1,2] and

[7] differ slightly. In [1,2], the construction method applies only to an odd-

dimensioned TQn. A link connecting nodes X (= xn�1 � � � xixi�1 � � � x0) and

Y( = yn�1yiyi�1 � � � y0) is said to span dimension i if and only if xi 5 yi. A parity

function, P, is defined for the dimension i link as: Pi(X) = xi � xi�1 � � � � � x0
where � is the EXCLUSIVE-OR operation. Construction starts with an n-

cube, where n = 2k + 1, kP 0. For each node X (= xn�1 � � � xixi�1 � � � x0) in

the n-cube, if P 2j�2ðX Þ ¼ 0 ð0 6 j 6 nþ1
2
Þ, relocate the link spanning dimension

2j � 1 to node Y where y2jy2j�1 ¼ �x2j�x2j�1 and yi = xi for i 5 2j or 2j � 1 (the

link label 2j � 1 is retained even though the relocated link now spans two

dimensions). Construction is complete when all such links are relocated. The

second construction method proposed by [7] is similar but applied to only

one 2-cube in the TQn(n P 3). In this section, we only discuss twisted cubes
proposed in [1,2].

TQn can be recursively defined as follows: TQ1 is a complete graph K2 with

two vertices labelled by 0 and 1. Let n be an odd integer and n P 3. We decom-

pose vertices of TQn into four sets V00, V01, V10 and V11, where Vij consists of

those vertices x with xn�1 = i and xn�2 = j. For each ij 2 {00,01,10,11}, the in-

duced subgraph of Vij in TQn is isomorphic to TQn�2, denoted by TQij
n�2. Edges
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which connect these four subtwisted cubes can be described as follows: Any

vertex x = xn�1xn�2 � � � x1x0 with Pn�3(x) = 0 is connected to �xn�1�xn�2 � � � x1x0
and �xn�1xn�2 � � � x1x0; or is connected to xn�1�xn�2 � � � x1x0 and �xn�1xn�2 � � � x1x0, if
Pn�3(x) = 1.

From the above definition, TQ00
n�2 [ TQ10

n�2 and TQ01
n�2 [ TQ11

n�2 are isomorphic

to TQn�2 � K2 (where TQn�2 � K2 denotes the cartesian product graph of G
and H). Moreover, the edges joining TQ00

n�2 [ TQ10
n�2 and TQ01

n�2 [ TQ11
n�2 form

a perfect matching of TQn. Thus, TQn can be viewed as G(TQn�2 � K2;

TQn�2 � K2; M) for some perfect matching M, where TQ1 is a complete graph

K2 with two vertices labelled by 0 and 1.

Corollary 3.2. For an odd integer n P 5, k2(TQn) = 3n � 4.
Proof. TQ1 � K2 = G(TQ1,TQ1; M) is isomorphic to the 4-cycle C4. So its 2-

regular maximum connected. cn(TQ1 � K2) = 2 and g(TQ1 � K2) = 4. Since

TQn = G(TQn�2 � K2; TQn�2 � K2; M) and TQn � K2 = G(TQn,TQn; M),

applying Lemma 2.1 and Lemma 2.3 recursively. We may obtain that when
n P 3, the following propositions hold.

(1) TQn is n-regular maximum connected and TQn � K2 is (n + 1)-regular

maximum connected;

(2) cn(TQn) = cn(TQn � K2) = 2;

(3) g(TQn) P 4 and g(TQn � K2) P 4.

By Lemma 2.5, we may obtain that k1(TQn � K2) = 2k and j1(TQn+2) =
2k + 2 for n P 3. Then by applying Theorem 2.6, we may obtain

k2(TQn � K2) = 3n � 1 and k2(TQn+2) = 3n + 2 when n P 3. That is, for an

odd integer n P 5, k2(TQn) = 3n � 4. h
3.3. Crossed cubes

The n-dimensional crossed cube, CQn, is an interconnection network defined

inductively in the following way. CQ1 is a complete graph on two nodes with

labels 0 and 1. For n > 1, CQn contains CQ
0
n�1 and CQ1

n�1, where all binary node

addresses in a CQm
k are prefixed by m. Node x = 0xn�2 � � � x0 in CQ0

n�1 is linked

to node y = 1yn�2 � � � y0 in CQ1
n�1 if and only if xn�2 = yn�2 for even n, and

x2i+1x2i � y2i+1y2i for 0 6 i < b(n � 1)/2c. Two binary strings x = x1x0 and

y = y1y0 are pair-related, denoted by x � y, if and only if (x,y) 2
{(00,00),(10,10),(01,11),(11,01)}. From the above definition, it follows that

every node in CQn with a leading 0 bit has exactly one neighbor with a leading

1 bit and vice versa. The CQn has a recursive structure and is a connected, reg-

ular graph. Efe [15] and Haq [9] proved that CQn can be viewed as
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G(CQn�1,CQn�1; M) for some perfect matching M. Kulasinghe [11] proved

that CQn is n-connected.

Corollary 3.3. k2(CQn) = 3n � 4 for n P 4.
Proof. Since CQn = G(CQn�1,CQn�1; M) for some perfect matching M, then

CQ2 = G(K2,K2; M) is isomorphic to a four-cycle C4. So its 2-regular maxi-

mum-connected, g(CQ2) = 4 and cn(CQ2) = 2. Applying Lemma 2.1 and

Lemma 2.3 recursively, we may obtain that CQn is a (n + 1)-regular maxi-
mum-connected, g(CQn) P 4 and cn(CQn) = 2 for each integer n P 2.

Applying Lemma 2.5, we may obtain that k1(CQn) = 2n � 2 for n P 3.

Applying Theorem 2.6, we may obtain that k2(CQn) = 3n � 4 for n P 4. h
3.4. M€obius cubes

The n-dimensional Möbius cube MQn, proposed by Cull and Larson [5], is

such a graph, whose vertex-set is the same as the vertex-set of Qn, the vertex

X = x1x2 � � � xn connects to n other vertices Xi, (1 6 i 6 n), where each Xi satis-

fies one of the following equations:

X i ¼ x1x2 � � �xi�1�xixiþ1 � � �xn if xi�1 ¼ 0¼ x1x2 � � �xi�1�xi�xiþ1 � � ��xn if xi�1 ¼ 1:

From the above definition, X connects to Xi by complementing the bit xi if

xi�1 = 0 or by complementing all bits of xi, . . .,xn if xi�1 = 1. The connection

between X and X1 is undefined, so we can assume x0 is neither equal to 0 or

equal to 1, which gives us slightly different network topologies. If we assume

x0 = 0, we call the network a �0-Möbius cube�; and if we assume x0 = 1, we call
the network a �1-Möbius cube�, denoted by 0-MQn and 1-MQn, respectively.

From the above definition, 0-MQn and 1-MQn can be recursively con-

structed from a 0-MQn�1 and 1-MQn�1 by adding a perfect matching, where

0-MQ1 and 1-MQ1 are a complete graph K2 with two vertices labelled by 0

and 1.

In the following, when we use x-MQn in a proposition, we mean that the

proposition hold for both 0-MQn and 1-MQn.

Corollary 3.4. k2(x-MQn) = 3n � 4 for n P 4.
Proof. From the above statement, we can see that both 0-MQ2 and 1-MQ2 can
be viewed as G(K2,K2; M) for some perfect matching M, so they are both

isomorphic to the 4-cycle C4. So g(x-MQ2) = 4, x-MQ2 are 2-regular maxi-

mum-connected and cn(x-MQ2) = 2. Applying Lemma 2.1 and Lemma 2.3

recursively, we may obtain that x-MQn is n-regular maximum-connected,

g(x-MQn) P 4 and cn(x-MQn) = 2 for each integer n P 2.
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By Lemma 2.5, we may obtain that k1(x-MQn) = 2n � 2 for n P 3. Applying

Theorem 2.6, we may obtain that, k2(x-MQn) = 3n � 4 for any integer

n P 4. h
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