Panconnectivity of locally twisted cubes ${ }^{\text {sin }}$

Meijie Ma, Jun-Ming Xu*
Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, China

Received 11 August 2005; accepted 29 August 2005

Abstract

The locally twisted cube $L T Q_{n}$ which is a newly introduced interconnection network for parallel computing is a variant of the hypercube Q_{n}. Yang et al. [X. Yang, G.M. Megson, D.J. Evans, Locally twisted cubes are 4-pancyclic, Applied Mathematics Letters 17 (2004) 919-925] proved that $L T Q_{n}$ is Hamiltonian connected and contains a cycle of length from 4 to 2^{n} for $n \geq 3$. In this work, we improve this result by showing that for any two different vertices u and v in $L T Q_{n}(n \geq 3)$, there exists a $u v$-path of length l with $d(u, v)+2 \leq l \leq 2^{n}-1$ except for a shortest $u v$-path.

© 2005 Elsevier Ltd. All rights reserved.
MSC: 05C38; 90B10
Keywords: Locally twisted cubes; Hypercubes; Path; Hamiltonian connected

1. Introduction

An interconnection network is usually represented by an undirected simple graph $G=(V, E)$, where V and E are the vertex set and the edge set, respectively, of G. For two vertices $u, v \in V$, a path joining u and v is called a $u v$-path, and the distance between u and v is the length of a shortest $u v$-path, denoted as $d_{G}(u, v)$, or simply $d(u, v)$. The diameter $D(G)$ of G is the maximum distance between any two vertices of G. A Hamiltonian cycle of G is a cycle that contains every vertex of G exactly once. A graph G is Hamiltonian if G contains a Hamiltonian cycle.

Recently, properties stronger than that of the Hamiltonian are considered in many network topologies. A graph G is pancyclic if G contains a cycle of length k for each k satisfying $4 \leq k \leq|V|$. Panconnectivity is another Hamiltonianlike property. A graph G is panconnected if for any two distinct vertices u and v of G and for each integer k satisfying $d(u, v) \leq k \leq|V|-1$, there is a $u v$-path of length k in G. If a graph G is panconnected, then clearly it is pancyclic. The Hamiltonian-like properties of many interconnection networks have been investigated in the literature (see, for example, [1-5]).

The hypercube network Q_{n} has been proved to be one of the most popular interconnection networks. The locally twisted cube $L T Q_{n}$ is a variant of Q_{n}, proposed by Yang et al. [6]. It has many attractive features superior to those of the hypercube, such as $D\left(L T Q_{n}\right)=\left\lceil\frac{n+3}{2}\right\rceil$ for $n \geq 5$. In particular, Yang et al. [1] showed that $L T Q_{n}$ is

[^0]Hamiltonian connected and contains a cycle of every length from 4 to 2^{n} for $n \geq 3$. In this work, we investigate the panconnectivity of $L T Q_{n}$. Since there is no $u v$-path of length $d(u, v)+1$ between some two vertices u and v in $L T Q_{n}$-for example, there is no $u v$-path of length 3 between 0000 and 1010 in $L T Q_{4}$-we prove the following theorem.

Theorem. For any two different vertices u and v in $\operatorname{LTQ}_{n}(n \geq 3)$, there exists a uv-path of length l with $d(u, v)+2 \leq l \leq 2^{n}-1$.

The proof of the theorem is in Section 3. Section 2 recalls the definition of the n-dimensional locally twisted cube $L T Q_{n}$.

2. Locally twisted cubes

An n-dimensional locally twisted cube $L T Q_{n}(n \geq 2)$, proposed first by Yang et al. [6], has 2^{n} vertices. Each vertex is an n-string on $\{0,1\}$. Two vertices $x=x_{1} x_{2} \ldots x_{n}$ and $y=y_{1} y_{2} \ldots y_{n}$ are adjacent if and only if one of the following conditions is satisfied:
(1) There is an integer $1 \leq k \leq n-2$ such that
(a) $x_{k}=\bar{y}_{k}\left(\bar{y}_{k}\right.$ is the complement of y_{k} in $\left.\{0,1\}\right)$,
(b) $x_{k+1}=y_{k+1}+x_{n}$, and
(c) all the remaining bits of x and y are identical.

If so, y is called the k th-dimensional neighbor of x, denoted by $y=N_{k}(x)$.
(2) There is an integer $k \in\{n-1, n\}$ such that x and y differ only in the k th bit. If so, y is called the k th-dimensional neighbor of x, denoted by $y=N_{k}(x)$.
According to the above definition, it is not difficult to see that $L T Q_{n}$ can be recursively defined as follows. $L T Q_{2}$ is a graph consisting of four vertices labelled with $00,01,10$, and 11 , respectively connected by four edges $(00,01),(00,10),(10,11)$ and $(01,11)$. For $n \geq 3, L T Q_{n}$ is constructed from two disjoint copies of $L T Q_{n-1}$ by adding 2^{n-1} edges as follows. Let $0 L T Q_{n-1}$ denote the graph obtained by prefixing the label of each vertex of one copy of $L T Q_{n-1}$ with 0 , let $1 L T Q_{n-1}$ denote the graph obtained by prefixing the label of each vertex of the other copy of $L T Q_{n-1}$ with 1 , and connect each vertex $x=0 x_{2} x_{3} \ldots x_{n}$ of $0 L T Q_{n-1}$ with the vertex $1\left(x_{2}+x_{n}\right) x_{3} \ldots x_{n}$ of $1 L T Q_{n-1}$ by an edge, where ' + ' represents the modulo 2 addition. For short, we write $L T Q_{n}=L \oplus R$, where $L \cong 0 L T Q_{n-1}$ and $R \cong 1 L T Q_{n-1}$.

Lemma. Let u and v be two vertices in $L T Q_{n}$ with $n \geq 3$. Then $d_{L T Q_{n}}(u, v)=d_{L}(u, v)$ if both u and v are in L. Similarly, $d_{L T Q_{n}}(u, v)=d_{R}(u, v)$ if both u and v are in R.

Proof. Notice that the first bits of the vertices in L (or R) are 0 (or 1). An exact minimal routing Algorithm 4.1 given in [6] can determine a shortest path between u and v (see Theorem 4.2 in [6]), in which the first bits of all vertices are 0 (resp. 1) if u and v are in L (resp. R). The lemma follows.

3. Proof of theorem

We prove the theorem by induction on $n \geq 3$.
For $n=3$, since $L T Q_{3}$ is vertex symmetric from Fig. 1, we only need to prove that for the vertex $u=000$ and $v \in\{001,111,110,010\}$ in $L T Q_{3}$, there exists a $u v$-path of length l with $d(u, v)+2 \leq l \leq 7$. All $u v$-paths of required length are constructed as follows.

The paths of different lengths between 000 and 001 are listed as follows:

$$
\begin{aligned}
& P_{1}=\langle 000,001\rangle \\
& P_{3}=\langle 000,010,011,001\rangle \\
& P_{4}=\langle 000,010,110,111,001\rangle \\
& P_{5}=\langle 000,010,011,101,111,001\rangle \\
& P_{6}=\langle 000,100,110,111,101,011,001\rangle \\
& P_{7}=\langle 000,100,101,011,010,110,111,001\rangle .
\end{aligned}
$$

Fig. 1. (a) An ordinary drawing of $L T Q_{3}$; (b) a symmetric drawing of $L T Q_{3}$.
The paths of different lengths between 000 and 010 are listed as follows:

$$
\begin{aligned}
& P_{1}=\langle 000,010\rangle \\
& P_{3}=\langle 000,100,110,010\rangle \\
& P_{4}=\langle 000,100,101,011,010\rangle \\
& P_{5}=\langle 000,100,101,111,110,010\rangle \\
& P_{6}=\langle 000,100,110,111,001,011,010\rangle \\
& P_{7}=\langle 000,100,101,011,001,111,110,010\rangle .
\end{aligned}
$$

The paths of different lengths between 000 and 111 are listed as follows:

$$
\begin{aligned}
& P_{2}=\langle 000,001,111\rangle \\
& P_{4}=\langle 000,001,011,101,111\rangle \\
& P_{5}=\langle 000,001,011,010,110,111\rangle \\
& P_{6}=\langle 000,100,101,011,010,110,111\rangle \\
& P_{7}=\langle 000,001,011,010,110,100,101,111\rangle .
\end{aligned}
$$

The paths of different lengths between 000 and 110 are listed as follows:

$$
\begin{aligned}
& P_{2}=\langle 000,100,110\rangle \\
& P_{4}=\langle 000,100,101,111,110\rangle \\
& P_{5}=\langle 000,100,101,011,010,110\rangle \\
& P_{6}=\langle 000,100,101,011,001,111,110\rangle \\
& P_{7}=\langle 000,100,101,111,001,011,010,110\rangle .
\end{aligned}
$$

Thus, the theorem holds for $n=3$. Assume the conclusion holds for k with $3 \leq k<n$. Let u and v be any two vertices in $L T Q_{n}=L \oplus R$. We complete the proof with the following two cases.

Case 1. Both u and v are in L or R. Without loss of generality, we may assume u and v are in L.
For $d_{L T Q_{n}}(u, v)+2=d_{L}(u, v)+2 \leq l \leq 2^{n-1}-1$, by the induction hypothesis, there exists a $u v$-path of length l in $L \subset L T Q_{n}$.

Suppose that $2^{n-1} \leq l \leq 2^{n}-1$. We can write $l=l_{1}+l_{2}+2$ where $0 \leq l_{1} \leq 2^{n-1}-2$ and $D(R)+2 \leq$ $2^{n-1}-2 \leq l_{2} \leq 2^{n-1}-1$. Let $P_{0}=\left\langle u=u_{0}, u_{1}, u_{2}, \ldots, u_{2^{n-1}-2}, v\right\rangle$ be a $u v$-path of length $2^{n-1}-1$ in L. Let u_{i}^{\prime} be the neighbor of u_{i} in R and v^{\prime} be the neighbor of v in R. By the induction hypothesis, there is a $u_{l_{1}}^{\prime} v^{\prime}$-path P_{R} of length l_{2} in R. Hence $P=\left\langle u, u_{1}, u_{2}, \ldots, u_{l_{1}}, u_{l_{1}}^{\prime}, P_{R}, v^{\prime}, v\right\rangle$ is a $u v$-path of length l in $L T Q_{n}$ (see Fig. 2(a)).

Case 2. $u=0 u_{2} u_{3} \ldots u_{n} \in L$ and $v=1 v_{2} v_{3} \ldots v_{n} \in R$.
We first assume $d(u, v)=1$. Then $v=1\left(u_{2}+u_{n}\right) u_{3} \ldots u_{n}$.

Fig. 2. Illustrations for the proof of the theorem.
Thus

$$
\begin{gathered}
P=\left\langle u=0 u_{2} \ldots u_{n}, 0 u_{2} \ldots \bar{u}_{n-1} u_{n}, 1\left(u_{2}+u_{n}\right) u_{3} \ldots \bar{u}_{n-1} u_{n}\right. \\
\left.1\left(u_{2}+u_{n}\right) u_{3} \ldots u_{n-1} u_{n}=v\right\rangle
\end{gathered}
$$

is a $u v$-path of length 3 in $L T Q_{n}$.
If $u_{n}=0$,

$$
\begin{array}{r}
P=\left\langle u=0 u_{2} u_{3} \ldots u_{n}, 0 u_{2} u_{3} \ldots \bar{u}_{n}, 1\left(u_{2}+\bar{u}_{n}\right) u_{3} \ldots \bar{u}_{n}\right. \\
\left.1\left(u_{2}+\bar{u}_{n}\right) u_{3} \ldots u_{n}, 1\left(u_{2}+u_{n}\right) u_{3} \ldots u_{n}=v\right\rangle
\end{array}
$$

is a $u v$-path of length 4 in $L T Q_{n}$.
If $u_{n}=1$,

$$
\begin{gathered}
P=\left\langle u=0 u_{2} u_{3} \ldots u_{n}, 0 u_{2} u_{3} \ldots \bar{u}_{n}, 1\left(u_{2}+\bar{u}_{n}\right) u_{3} \ldots \bar{u}_{n}\right. \\
\left.1\left(u_{2}+u_{n}\right) u_{3} \ldots \bar{u}_{n}, 1\left(u_{2}+u_{n}\right) u_{3} \ldots u_{n}=v\right\rangle
\end{gathered}
$$

is a $u v$-path of length 4 in $L T Q_{n}$.
For $5 \leq l \leq 2^{n}-1$, we can write $l=l_{1}+l_{2}+1$ where $3 \leq l_{1} \leq 2^{n-1}-1$ and $l_{2}=1$ or $3 \leq l_{1} \leq 2^{n-1}-1$ and $3 \leq \bar{l}_{2} \leq 2^{n-1}-1$. Let $u^{\prime}=0 u_{2} u_{3} \ldots \bar{u}_{n-1} u_{n}$ be a neighbor of \bar{u} in L and $v^{\prime}=1\left(u_{2}+u_{n}\right) u_{3} \ldots \bar{u}_{n-1} u_{n}$ be a neighbor of v in R. It is clear that $u^{\prime} v^{\prime} \in E\left(L T Q_{n}\right)$. By the induction hypothesis, there exist a $u u^{\prime}$-path P_{L} of length l_{1} in L and a $v^{\prime} v$-path P_{R} of length l_{2} in R. Then $P=\left\langle u, P_{L}, u^{\prime}, v^{\prime}, P_{R}, v\right\rangle$ is a $u v$-path of length l in $L T Q_{n}$ (see Fig. 2(b)).

We now assume $d(u, v) \geq 2$. Let P_{0} be a $u v$-path of length $d(u, v)$ in $L T Q_{n}$. Then there is an edge $u^{\prime} v^{\prime}$ in P_{0} with $u^{\prime} \in L$ and $v^{\prime} \in R$. Let $P\left(u, u^{\prime}\right)$ be the segment of P_{0} between u and u^{\prime}. Let $P\left(v^{\prime}, v\right)$ be the segment of P_{0} between v^{\prime} and v. It is clear that $P\left(u, u^{\prime}\right)$ is a shortest path between u and u^{\prime}, and $P\left(v^{\prime}, v\right)$ is a shortest path between v^{\prime} and v. By lemma, we may assume $P\left(u, u^{\prime}\right) \subset L$ and $P\left(v^{\prime}, v\right) \subset R$. We use l^{\prime} and $l^{\prime \prime}$ to denote the lengths of $P\left(u, u^{\prime}\right)$ and $P\left(v^{\prime}, v\right)$, respectively. Noting that $d_{L T Q_{n}}(u, v)=l^{\prime}+l^{\prime \prime}+1$ and $d_{L T Q_{n}}(u, v) \geq 2$, we have $l^{\prime} \geq 1$ or $l^{\prime \prime} \geq 1$. We may assume $\ell^{\prime} \geq 1$.

For $d(u, v)+2 \leq l \leq 2^{n-1}$, we can write $l=l_{1}+l^{\prime \prime}+1$ where $d\left(u, u^{\prime}\right)+2 \leq l_{1} \leq 2^{n-1}-1$. By the induction hypothesis, there exists a $u u^{\prime}$-path P_{L} of length l_{1} in L. Then $P\left\langle u, P_{L}, u^{\prime}, v^{\prime}, P_{R}^{\prime}, v\right\rangle$ is a $u v$-path of length l in $L T Q_{n}$ (see Fig. 2(c)).

For $2^{n-1}+1 \leq l \leq 2^{n}-1$, we can write $l=l_{1}+l_{2}+1$ where $D(L)+2 \leq l_{1} \leq 2^{n-1}-1$, $D(R)+2 \leq l_{2} \leq 2^{n-1}-1\left(D\left(L T Q_{3}\right)=2\right)$. Choose $u_{1} \in L$ such that $u_{1} \neq u$ and the neighbor v_{1} of u_{1} in R is different from v. By the induction hypothesis, there exist a $u u_{1}$-path P_{L} of length l_{1} in L and a $v_{1} v$-path P_{R} of length l_{2} in R. Then $P\left\langle u, P_{L}, u_{1}, v_{1}, P_{R}, v\right\rangle$ is a $u v$-path of length l in $L T Q_{n}$ (see Fig. 2(d)).

We can obtain the results in [1] from the theorem.
Corollary. For $n \geq 3, L T Q_{n}$ is Hamiltonian connected and pancyclic.

References

[1] X. Yang, G.M. Megson, D.J. Evans, Locally twisted cubes are 4-Pancyclic, Applied Mathematics Letters 17 (2004) 919-925.
[2] J.-M. Chang, J.-S. Yang, Y.-L. Wang, Y. Cheng, Panconnectivity, fault-tolerant Hamiltonicity and Hamiltonian-connectivity in alternating group graphs, Networks 44 (2004) 302-310.
[3] T.-K. Li, C.-H. Tsai, J.J.M. Tan, L.-H. Hsu, Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes, Information Processing Letters 87 (2003) 107-110.
[4] J. Fan, Hamilton-connectivity and cycle-embedding of Möbius cubes, Information Processing Letters 82 (2002) 113-117.
[5] W.-T. Huang, W.-K. Chen, C.-H. Chen, Pancyclicity of Möbius cubes, in: Proceedings of the Ninth International Conference on Parallel and Distributed Systems, ICPADS'02, 17-20 December 2002, pp. 591-596.
[6] X. Yang, D.J. Evans, G.M. Megson, The locally twisted cubes, International Journal of Computer Mathematics 82 (4) (2005) $401-413$.

[^0]: The work was supported by NNSF of China (No. 10271114).

 * Corresponding author.

 E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

