

Available online at www.sciencedirect.com

Applied Mathematics Letters 19 (2006) 681-685

Applied Mathematics Letters

www.elsevier.com/locate/aml

Panconnectivity of locally twisted cubes[☆]

Meijie Ma, Jun-Ming Xu*

Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, China

Received 11 August 2005; accepted 29 August 2005

Abstract

The locally twisted cube LTQ_n which is a newly introduced interconnection network for parallel computing is a variant of the hypercube Q_n . Yang et al. [X. Yang, G.M. Megson, D.J. Evans, Locally twisted cubes are 4-pancyclic, Applied Mathematics Letters 17 (2004) 919–925] proved that LTQ_n is Hamiltonian connected and contains a cycle of length from 4 to 2^n for $n \ge 3$. In this work, we improve this result by showing that for any two different vertices u and v in LTQ_n ($n \ge 3$), there exists a uv-path of length l with $d(u, v) + 2 \le l \le 2^n - 1$ except for a shortest uv-path. © 2005 Elsevier Ltd. All rights reserved.

MSC: 05C38; 90B10

Keywords: Locally twisted cubes; Hypercubes; Path; Hamiltonian connected

1. Introduction

An interconnection network is usually represented by an undirected simple graph G = (V, E), where V and E are the vertex set and the edge set, respectively, of G. For two vertices $u, v \in V$, a path joining u and v is called a uv-path, and the distance between u and v is the length of a shortest uv-path, denoted as $d_G(u, v)$, or simply d(u, v). The diameter D(G) of G is the maximum distance between any two vertices of G. A Hamiltonian cycle of G is a cycle that contains every vertex of G exactly once. A graph G is Hamiltonian if G contains a Hamiltonian cycle.

Recently, properties stronger than that of the Hamiltonian are considered in many network topologies. A graph *G* is pancyclic if *G* contains a cycle of length *k* for each *k* satisfying $4 \le k \le |V|$. Panconnectivity is another Hamiltonian-like property. A graph *G* is panconnected if for any two distinct vertices *u* and *v* of *G* and for each integer *k* satisfying $d(u, v) \le k \le |V| - 1$, there is a *uv*-path of length *k* in *G*. If a graph *G* is panconnected, then clearly it is pancyclic. The Hamiltonian-like properties of many interconnection networks have been investigated in the literature (see, for example, [1–5]).

The hypercube network Q_n has been proved to be one of the most popular interconnection networks. The locally twisted cube LTQ_n is a variant of Q_n , proposed by Yang et al. [6]. It has many attractive features superior to those of the hypercube, such as $D(LTQ_n) = \lceil \frac{n+3}{2} \rceil$ for $n \ge 5$. In particular, Yang et al. [1] showed that LTQ_n is

 $[\]stackrel{\scriptscriptstyle\rm th}{\sim}$ The work was supported by NNSF of China (No. 10271114).

^{*} Corresponding author.

E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

Hamiltonian connected and contains a cycle of every length from 4 to 2^n for $n \ge 3$. In this work, we investigate the panconnectivity of LTQ_n . Since there is no *uv*-path of length d(u, v) + 1 between some two vertices *u* and *v* in LTQ_n —for example, there is no *uv*-path of length 3 between 0000 and 1010 in LTQ_4 —we prove the following theorem.

Theorem. For any two different vertices u and v in LTQ_n $(n \ge 3)$, there exists a uv-path of length l with $d(u, v) + 2 \le l \le 2^n - 1$.

The proof of the theorem is in Section 3. Section 2 recalls the definition of the *n*-dimensional locally twisted cube LTQ_n .

2. Locally twisted cubes

An *n*-dimensional locally twisted cube LTQ_n $(n \ge 2)$, proposed first by Yang et al. [6], has 2^n vertices. Each vertex is an *n*-string on $\{0, 1\}$. Two vertices $x = x_1x_2...x_n$ and $y = y_1y_2...y_n$ are adjacent if and only if one of the following conditions is satisfied:

- (1) There is an integer $1 \le k \le n-2$ such that
 - (a) $x_k = \bar{y}_k$ (\bar{y}_k is the complement of y_k in {0, 1}),
 - (b) $x_{k+1} = y_{k+1} + x_n$, and
 - (c) all the remaining bits of x and y are identical.
 - If so, y is called the kth-dimensional neighbor of x, denoted by $y = N_k(x)$.
- (2) There is an integer $k \in \{n 1, n\}$ such that x and y differ only in the kth bit. If so, y is called the kth-dimensional neighbor of x, denoted by $y = N_k(x)$.

According to the above definition, it is not difficult to see that LTQ_n can be recursively defined as follows. LTQ_2 is a graph consisting of four vertices labelled with 00, 01, 10, and 11, respectively connected by four edges (00, 01), (00, 10), (10, 11) and (01, 11). For $n \ge 3$, LTQ_n is constructed from two disjoint copies of LTQ_{n-1} by adding 2^{n-1} edges as follows. Let $0LTQ_{n-1}$ denote the graph obtained by prefixing the label of each vertex of one copy of LTQ_{n-1} with 0, let $1LTQ_{n-1}$ denote the graph obtained by prefixing the label of each vertex of the other copy of LTQ_{n-1} with 1, and connect each vertex $x = 0x_2x_3...x_n$ of $0LTQ_{n-1}$ with the vertex $1(x_2 + x_n)x_3...x_n$ of $1LTQ_{n-1}$ by an edge, where '+' represents the modulo 2 addition. For short, we write $LTQ_n = L \oplus R$, where $L \cong 0LTQ_{n-1}$ and $R \cong 1LTQ_{n-1}$.

Lemma. Let u and v be two vertices in LTQ_n with $n \ge 3$. Then $d_{LTQ_n}(u, v) = d_L(u, v)$ if both u and v are in L. Similarly, $d_{LTO_n}(u, v) = d_R(u, v)$ if both u and v are in R.

Proof. Notice that the first bits of the vertices in L (or R) are 0 (or 1). An exact minimal routing Algorithm 4.1 given in [6] can determine a shortest path between u and v (see Theorem 4.2 in [6]), in which the first bits of all vertices are 0 (resp. 1) if u and v are in L (resp. R). The lemma follows.

3. Proof of theorem

We prove the theorem by induction on $n \ge 3$.

For n = 3, since LTQ_3 is vertex symmetric from Fig. 1, we only need to prove that for the vertex u = 000 and $v \in \{001, 111, 110, 010\}$ in LTQ_3 , there exists a uv-path of length l with $d(u, v) + 2 \le l \le 7$. All uv-paths of required length are constructed as follows.

The paths of different lengths between 000 and 001 are listed as follows:

 $P_{1} = \langle 000, 001 \rangle$ $P_{3} = \langle 000, 010, 011, 001 \rangle$ $P_{4} = \langle 000, 010, 110, 111, 001 \rangle$ $P_{5} = \langle 000, 010, 011, 101, 111, 001 \rangle$ $P_{6} = \langle 000, 100, 110, 111, 101, 011, 001 \rangle$ $P_{7} = \langle 000, 100, 101, 011, 010, 110, 111, 001 \rangle.$

Fig. 1. (a) An ordinary drawing of LTQ_3 ; (b) a symmetric drawing of LTQ_3 .

The paths of different lengths between 000 and 010 are listed as follows:

 $P_{1} = \langle 000, 010 \rangle$ $P_{3} = \langle 000, 100, 110, 010 \rangle$ $P_{4} = \langle 000, 100, 101, 011, 010 \rangle$ $P_{5} = \langle 000, 100, 101, 111, 110, 010 \rangle$ $P_{6} = \langle 000, 100, 110, 111, 001, 011, 010 \rangle$ $P_{7} = \langle 000, 100, 101, 011, 001, 111, 110, 010 \rangle$

The paths of different lengths between 000 and 111 are listed as follows:

 $P_{2} = \langle 000, 001, 111 \rangle$ $P_{4} = \langle 000, 001, 011, 101, 111 \rangle$ $P_{5} = \langle 000, 001, 011, 010, 110, 111 \rangle$ $P_{6} = \langle 000, 100, 101, 011, 010, 110, 111 \rangle$ $P_{7} = \langle 000, 001, 011, 010, 110, 100, 101, 111 \rangle.$

The paths of different lengths between 000 and 110 are listed as follows:

 $P_{2} = \langle 000, 100, 110 \rangle$ $P_{4} = \langle 000, 100, 101, 111, 110 \rangle$ $P_{5} = \langle 000, 100, 101, 011, 010, 110 \rangle$ $P_{6} = \langle 000, 100, 101, 011, 001, 111, 110 \rangle$ $P_{7} = \langle 000, 100, 101, 111, 001, 011, 010, 110 \rangle.$

Thus, the theorem holds for n = 3. Assume the conclusion holds for k with $3 \le k < n$. Let u and v be any two vertices in $LTQ_n = L \oplus R$. We complete the proof with the following two cases.

Case 1. Both u and v are in L or R. Without loss of generality, we may assume u and v are in L.

For $d_{LTQ_n}(u, v) + 2 = d_L(u, v) + 2 \le l \le 2^{n-1} - 1$, by the induction hypothesis, there exists a *uv*-path of length l in $L \subset LTQ_n$.

Suppose that $2^{n-1} \le l \le 2^n - 1$. We can write $l = l_1 + l_2 + 2$ where $0 \le l_1 \le 2^{n-1} - 2$ and $D(R) + 2 \le 2^{n-1} - 2 \le l_2 \le 2^{n-1} - 1$. Let $P_0 = \langle u = u_0, u_1, u_2, \dots, u_{2^{n-1}-2}, v \rangle$ be a *uv*-path of length $2^{n-1} - 1$ in *L*. Let u'_i be the neighbor of u_i in *R* and v' be the neighbor of v in *R*. By the induction hypothesis, there is a $u'_{l_1}v'$ -path P_R of length l_2 in *R*. Hence $P = \langle u, u_1, u_2, \dots, u_{l_1}, u'_{l_1}, P_R, v', v \rangle$ is a *uv*-path of length l in LTQ_n (see Fig. 2(a)).

Case 2. $u = 0u_2u_3 \dots u_n \in L$ and $v = 1v_2v_3 \dots v_n \in R$. We first assume d(u, v) = 1. Then $v = 1(u_2 + u_n)u_3 \dots u_n$.

Fig. 2. Illustrations for the proof of the theorem.

Thus

$$P = \langle u = 0u_2 \dots u_n, 0u_2 \dots \bar{u}_{n-1}u_n, 1(u_2 + u_n)u_3 \dots \bar{u}_{n-1}u_n, 1(u_2 + u_n)u_3 \dots u_{n-1}u_n = v \rangle$$

is a uv-path of length 3 in LTQ_n .

If $u_n = 0$,

$$P = \langle u = 0u_2u_3...u_n, 0u_2u_3...\bar{u}_n, 1(u_2 + \bar{u}_n)u_3...\bar{u}_n, 1(u_2 + \bar{u}_n)u_3...u_n, 1(u_2 + u_n)u_3...u_n = v \rangle$$

is a *uv*-path of length 4 in LTQ_n .

If $u_n = 1$,

$$P = \langle u = 0u_2u_3 \dots u_n, 0u_2u_3 \dots \bar{u}_n, 1(u_2 + \bar{u}_n)u_3 \dots \bar{u}_n 1(u_2 + u_n)u_3 \dots \bar{u}_n, 1(u_2 + u_n)u_3 \dots u_n = v \rangle$$

is a *uv*-path of length 4 in LTQ_n .

For $5 \le l \le 2^n - 1$, we can write $l = l_1 + l_2 + 1$ where $3 \le l_1 \le 2^{n-1} - 1$ and $l_2 = 1$ or $3 \le l_1 \le 2^{n-1} - 1$ and $3 \le l_2 \le 2^{n-1} - 1$. Let $u' = 0u_2u_3 \dots \bar{u}_{n-1}u_n$ be a neighbor of u in L and $v' = 1(u_2 + u_n)u_3 \dots \bar{u}_{n-1}u_n$ be a neighbor of v in R. It is clear that $u'v' \in E(LTQ_n)$. By the induction hypothesis, there exist a uu'-path P_L of length l_1 in L and a v'v-path P_R of length l_2 in R. Then $P = \langle u, P_L, u', v', P_R, v \rangle$ is a uv-path of length l in LTQ_n (see Fig. 2(b)).

We now assume $d(u, v) \ge 2$. Let P_0 be a uv-path of length d(u, v) in LTQ_n . Then there is an edge u'v' in P_0 with $u' \in L$ and $v' \in R$. Let P(u, u') be the segment of P_0 between u and u'. Let P(v', v) be the segment of P_0 between v' and v. It is clear that P(u, u') is a shortest path between u and u', and P(v', v) is a shortest path between v' and v. By lemma, we may assume $P(u, u') \subset L$ and $P(v', v) \subset R$. We use l' and l'' to denote the lengths of P(u, u') and P(v', v), respectively. Noting that $d_{LTQ_n}(u, v) = l' + l'' + 1$ and $d_{LTQ_n}(u, v) \ge 2$, we have $l' \ge 1$ or $l'' \ge 1$. We may assume $\ell' \ge 1$.

For $d(u, v) + 2 \le l \le 2^{n-1}$, we can write $l = l_1 + l'' + 1$ where $d(u, u') + 2 \le l_1 \le 2^{n-1} - 1$. By the induction hypothesis, there exists a *uu'*-path P_L of length l_1 in *L*. Then $P(u, P_L, u', v', P'_R, v)$ is a *uv*-path of length l in LTQ_n (see Fig. 2(c)).

For $2^{n-1} + 1 \le l \le 2^n - 1$, we can write $l = l_1 + l_2 + 1$ where $D(L) + 2 \le l_1 \le 2^{n-1} - 1$, $D(R) + 2 \le l_2 \le 2^{n-1} - 1(D(LTQ_3) = 2)$. Choose $u_1 \in L$ such that $u_1 \ne u$ and the neighbor v_1 of u_1 in R is different from v. By the induction hypothesis, there exist a uu_1 -path P_L of length l_1 in L and a v_1v -path P_R of length l_2 in R. Then $P(u, P_L, u_1, v_1, P_R, v)$ is a uv-path of length l in LTQ_n (see Fig. 2(d)).

We can obtain the results in [1] from the theorem.

Corollary. For $n \ge 3$, LTQ_n is Hamiltonian connected and pancyclic.

References

- [1] X. Yang, G.M. Megson, D.J. Evans, Locally twisted cubes are 4-Pancyclic, Applied Mathematics Letters 17 (2004) 919–925.
- [2] J.-M. Chang, J.-S. Yang, Y.-L. Wang, Y. Cheng, Panconnectivity, fault-tolerant Hamiltonicity and Hamiltonian-connectivity in alternating group graphs, Networks 44 (2004) 302–310.
- [3] T.-K. Li, C.-H. Tsai, J.J.M. Tan, L.-H. Hsu, Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes, Information Processing Letters 87 (2003) 107–110.
- [4] J. Fan, Hamilton-connectivity and cycle-embedding of Möbius cubes, Information Processing Letters 82 (2002) 113-117.
- [5] W.-T. Huang, W.-K. Chen, C.-H. Chen, Pancyclicity of Möbius cubes, in: Proceedings of the Ninth International Conference on Parallel and Distributed Systems, ICPADS'02, 17–20 December 2002, pp. 591–596.
- [6] X. Yang, D.J. Evans, G.M. Megson, The locally twisted cubes, International Journal of Computer Mathematics 82 (4) (2005) 401-413.