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Panconnectivity of locally twisted cubes✩
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Abstract

The locally twisted cube LTQn which is a newly introduced interconnection network for parallel computing is a variant of
the hypercube Qn . Yang et al. [X. Yang, G.M. Megson, D.J. Evans, Locally twisted cubes are 4-pancyclic, Applied Mathematics
Letters 17 (2004) 919–925] proved that LTQn is Hamiltonian connected and contains a cycle of length from 4 to 2n for n ≥ 3. In
this work, we improve this result by showing that for any two different vertices u and v in LTQn (n ≥ 3), there exists a uv-path of
length l with d(u, v) + 2 ≤ l ≤ 2n − 1 except for a shortest uv-path.
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1. Introduction

An interconnection network is usually represented by an undirected simple graph G = (V , E), where V and E
are the vertex set and the edge set, respectively, of G. For two vertices u, v ∈ V , a path joining u and v is called a
uv-path, and the distance between u and v is the length of a shortest uv-path, denoted as dG(u, v), or simply d(u, v).
The diameter D(G) of G is the maximum distance between any two vertices of G. A Hamiltonian cycle of G is a
cycle that contains every vertex of G exactly once. A graph G is Hamiltonian if G contains a Hamiltonian cycle.

Recently, properties stronger than that of the Hamiltonian are considered in many network topologies. A graph G is
pancyclic if G contains a cycle of length k for each k satisfying 4 ≤ k ≤ |V |. Panconnectivity is another Hamiltonian-
like property. A graph G is panconnected if for any two distinct vertices u and v of G and for each integer k satisfying
d(u, v) ≤ k ≤ |V | − 1, there is a uv-path of length k in G. If a graph G is panconnected, then clearly it is pancyclic.
The Hamiltonian-like properties of many interconnection networks have been investigated in the literature (see, for
example, [1–5]).

The hypercube network Qn has been proved to be one of the most popular interconnection networks. The locally
twisted cube LTQn is a variant of Qn , proposed by Yang et al. [6]. It has many attractive features superior to
those of the hypercube, such as D(LTQn) = � n+3

2 � for n ≥ 5. In particular, Yang et al. [1] showed that LTQn is
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Hamiltonian connected and contains a cycle of every length from 4 to 2n for n ≥ 3. In this work, we investigate
the panconnectivity of LTQn . Since there is no uv-path of length d(u, v) + 1 between some two vertices u and v

in LTQn—for example, there is no uv-path of length 3 between 0000 and 1010 in LTQ4—we prove the following
theorem.

Theorem. For any two different vertices u and v in LTQn(n ≥ 3), there exists a uv-path of length l with
d(u, v) + 2 ≤ l ≤ 2n − 1.

The proof of the theorem is in Section 3. Section 2 recalls the definition of the n-dimensional locally twisted cube
LTQn .

2. Locally twisted cubes

An n-dimensional locally twisted cube LTQn (n ≥ 2), proposed first by Yang et al. [6], has 2n vertices. Each vertex
is an n-string on {0, 1}. Two vertices x = x1x2 . . . xn and y = y1y2 . . . yn are adjacent if and only if one of the
following conditions is satisfied:

(1) There is an integer 1 ≤ k ≤ n − 2 such that
(a) xk = ȳk (ȳk is the complement of yk in {0, 1}),
(b) xk+1 = yk+1 + xn , and
(c) all the remaining bits of x and y are identical.
If so, y is called the kth-dimensional neighbor of x , denoted by y = Nk(x).

(2) There is an integer k ∈ {n − 1, n} such that x and y differ only in the kth bit. If so, y is called the kth-dimensional
neighbor of x , denoted by y = Nk(x).

According to the above definition, it is not difficult to see that LTQn can be recursively defined as follows.
LTQ2 is a graph consisting of four vertices labelled with 00, 01, 10, and 11, respectively connected by four edges
(00, 01), (00, 10), (10, 11) and (01, 11). For n ≥ 3, LTQn is constructed from two disjoint copies of LTQn−1 by
adding 2n−1 edges as follows. Let 0LTQn−1 denote the graph obtained by prefixing the label of each vertex of one
copy of LTQn−1 with 0, let 1LTQn−1 denote the graph obtained by prefixing the label of each vertex of the other
copy of LTQn−1 with 1, and connect each vertex x = 0x2x3 . . . xn of 0LTQn−1 with the vertex 1(x2 + xn)x3 . . . xn

of 1LTQn−1 by an edge, where ‘+’ represents the modulo 2 addition. For short, we write LTQn = L ⊕ R, where
L ∼= 0LTQn−1 and R ∼= 1LTQn−1.

Lemma. Let u and v be two vertices in LTQn with n ≥ 3. Then dLTQn (u, v) = dL(u, v) if both u and v are in L.
Similarly, dLTQn (u, v) = dR(u, v) if both u and v are in R.

Proof. Notice that the first bits of the vertices in L (or R) are 0 (or 1). An exact minimal routing Algorithm 4.1 given
in [6] can determine a shortest path between u and v (see Theorem 4.2 in [6]), in which the first bits of all vertices are
0 (resp. 1) if u and v are in L (resp. R). The lemma follows.

3. Proof of theorem

We prove the theorem by induction on n ≥ 3.
For n = 3, since LTQ3 is vertex symmetric from Fig. 1, we only need to prove that for the vertex u = 000 and

v ∈ {001, 111, 110, 010} in LTQ3, there exists a uv-path of length l with d(u, v)+2 ≤ l ≤ 7. All uv-paths of required
length are constructed as follows.

The paths of different lengths between 000 and 001 are listed as follows:

P1 = 〈000, 001〉
P3 = 〈000, 010, 011, 001〉
P4 = 〈000, 010, 110, 111, 001〉
P5 = 〈000, 010, 011, 101, 111, 001〉
P6 = 〈000, 100, 110, 111, 101, 011, 001〉
P7 = 〈000, 100, 101, 011, 010, 110, 111, 001〉.
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Fig. 1. (a) An ordinary drawing of LTQ3; (b) a symmetric drawing of LTQ3.

The paths of different lengths between 000 and 010 are listed as follows:

P1 = 〈000, 010〉
P3 = 〈000, 100, 110, 010〉
P4 = 〈000, 100, 101, 011, 010〉
P5 = 〈000, 100, 101, 111, 110, 010〉
P6 = 〈000, 100, 110, 111, 001, 011, 010〉
P7 = 〈000, 100, 101, 011, 001, 111, 110, 010〉.

The paths of different lengths between 000 and 111 are listed as follows:

P2 = 〈000, 001, 111〉
P4 = 〈000, 001, 011, 101, 111〉
P5 = 〈000, 001, 011, 010, 110, 111〉
P6 = 〈000, 100, 101, 011, 010, 110, 111〉
P7 = 〈000, 001, 011, 010, 110, 100, 101, 111〉.

The paths of different lengths between 000 and 110 are listed as follows:

P2 = 〈000, 100, 110〉
P4 = 〈000, 100, 101, 111, 110〉
P5 = 〈000, 100, 101, 011, 010, 110〉
P6 = 〈000, 100, 101, 011, 001, 111, 110〉
P7 = 〈000, 100, 101, 111, 001, 011, 010, 110〉.

Thus, the theorem holds for n = 3. Assume the conclusion holds for k with 3 ≤ k < n. Let u and v be any two
vertices in LTQn = L ⊕ R. We complete the proof with the following two cases.

Case 1. Both u and v are in L or R. Without loss of generality, we may assume u and v are in L.

For dLTQn (u, v) + 2 = dL(u, v) + 2 ≤ l ≤ 2n−1 − 1, by the induction hypothesis, there exists a uv-path of length
l in L ⊂ LTQn .

Suppose that 2n−1 ≤ l ≤ 2n − 1. We can write l = l1 + l2 + 2 where 0 ≤ l1 ≤ 2n−1 − 2 and D(R) + 2 ≤
2n−1 − 2 ≤ l2 ≤ 2n−1 − 1. Let P0 = 〈u = u0, u1, u2, . . . , u2n−1−2, v〉 be a uv-path of length 2n−1 − 1 in L. Let u′

i
be the neighbor of ui in R and v′ be the neighbor of v in R. By the induction hypothesis, there is a u′

l1
v′-path PR of

length l2 in R. Hence P = 〈u, u1, u2, . . . , ul1 , u′
l1
, PR, v′, v〉 is a uv-path of length l in LTQn (see Fig. 2(a)).

Case 2. u = 0u2u3 . . . un ∈ L and v = 1v2v3 . . . vn ∈ R.
We first assume d(u, v) = 1. Then v = 1(u2 + un)u3 . . . un .
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Fig. 2. Illustrations for the proof of the theorem.

Thus

P = 〈u = 0u2 . . . un, 0u2 . . . ūn−1un, 1(u2 + un)u3 . . . ūn−1un,

1(u2 + un)u3 . . . un−1un = v〉
is a uv-path of length 3 in LTQn .

If un = 0,

P = 〈u = 0u2u3 . . . un, 0u2u3 . . . ūn, 1(u2 + ūn)u3 . . . ūn,

1(u2 + ūn)u3 . . . un, 1(u2 + un)u3 . . . un = v〉
is a uv-path of length 4 in LTQn .

If un = 1,

P = 〈u = 0u2u3 . . . un, 0u2u3 . . . ūn, 1(u2 + ūn)u3 . . . ūn,

1(u2 + un)u3 . . . ūn, 1(u2 + un)u3 . . . un = v〉
is a uv-path of length 4 in LTQn .

For 5 ≤ l ≤ 2n − 1, we can write l = l1 + l2 + 1 where 3 ≤ l1 ≤ 2n−1 − 1 and l2 = 1 or 3 ≤ l1 ≤ 2n−1 − 1
and 3 ≤ l2 ≤ 2n−1 − 1. Let u′ = 0u2u3 . . . ūn−1un be a neighbor of u in L and v′ = 1(u2 + un)u3 . . . ūn−1un be a
neighbor of v in R. It is clear that u′v′ ∈ E(LTQn). By the induction hypothesis, there exist a uu′-path PL of length
l1 in L and a v′v-path PR of length l2 in R. Then P = 〈u, PL , u′, v′, PR, v〉 is a uv-path of length l in LTQn (see
Fig. 2(b)).

We now assume d(u, v) ≥ 2. Let P0 be a uv-path of length d(u, v) in LTQn . Then there is an edge u′v′ in P0 with
u′ ∈ L and v′ ∈ R. Let P(u, u′) be the segment of P0 between u and u′. Let P(v′, v) be the segment of P0 between
v′ and v. It is clear that P(u, u′) is a shortest path between u and u′, and P(v′, v) is a shortest path between v′ and v.
By lemma, we may assume P(u, u′) ⊂ L and P(v′, v) ⊂ R. We use l ′ and l ′′ to denote the lengths of P(u, u′) and
P(v′, v), respectively. Noting that dLTQn (u, v) = l ′ + l ′′ + 1 and dLTQn (u, v) ≥ 2, we have l ′ ≥ 1 or l ′′ ≥ 1. We may
assume �′ ≥ 1.

For d(u, v) + 2 ≤ l ≤ 2n−1, we can write l = l1 + l ′′ + 1 where d(u, u′) + 2 ≤ l1 ≤ 2n−1 − 1. By the induction
hypothesis, there exists a uu′-path PL of length l1 in L. Then P〈u, PL , u′, v′, P ′

R , v〉 is a uv-path of length l in LTQn
(see Fig. 2(c)).

For 2n−1 + 1 ≤ l ≤ 2n − 1, we can write l = l1 + l2 + 1 where D(L) + 2 ≤ l1 ≤ 2n−1 − 1,
D(R) + 2 ≤ l2 ≤ 2n−1 − 1(D(LTQ3) = 2). Choose u1 ∈ L such that u1 �= u and the neighbor v1 of u1 in R
is different from v. By the induction hypothesis, there exist a uu1-path PL of length l1 in L and a v1v-path PR of
length l2 in R. Then P〈u, PL , u1, v1, PR , v〉 is a uv-path of length l in LTQn (see Fig. 2(d)). �

We can obtain the results in [1] from the theorem.

Corollary. For n ≥ 3, LTQn is Hamiltonian connected and pancyclic.



M. Ma, J.-M. Xu / Applied Mathematics Letters 19 (2006) 681–685 685

References

[1] X. Yang, G.M. Megson, D.J. Evans, Locally twisted cubes are 4-Pancyclic, Applied Mathematics Letters 17 (2004) 919–925.
[2] J.-M. Chang, J.-S. Yang, Y.-L. Wang, Y. Cheng, Panconnectivity, fault-tolerant Hamiltonicity and Hamiltonian-connectivity in alternating group

graphs, Networks 44 (2004) 302–310.
[3] T.-K. Li, C.-H. Tsai, J.J.M. Tan, L.-H. Hsu, Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes, Information Processing

Letters 87 (2003) 107–110.
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