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Distance Domination Numbers of

Generalized de Bruijn and Kautz Digraphs∗

Tian Fang† Xu Junming†

Abstract

The distance ℓ-domination number γℓ(G) of a strongly connected digraph G is the
minimum number γ for which there is a set D ⊂ V (G) with cardinality γ such that any
vertex v /∈ D can be reached within distance ℓ from some vertex in D. In this paper, we
establish a lower bound and an upper bound for γℓ of a generalized de Bruijn digraph and
a generalized Kautz digraph, and also give a sufficient condition for these digraphs whose
γ2 are equal to the lower bounds. As a consequence, for the de Bruijn digraph B(d, k),

we determine that γ2(B(d, k)) =
l

d
k

d2+d+1

m
. At the end of this paper, we conjecture

γ2(K(d, k)) =
l

d
k
+d

k−1

d2+d+1

m
.
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1 Introduction

Let G(V, A) be a strongly connected digraph with vertex set V (G) and the arc set A(G). If

there is an arc (x, y) from x to y, then the vertex x is called a predecessor of y and y is called

Received: June 9, 2004.
∗The work was supported partially by NNSF of China (No.10271114).
†Department of Mathematics, University of Science and Technology of China, Hefei 230026, China; ℄�+M%;�M=MG�"�� 230026.



2 Tian Fang, Xu Junming Vol.10

a successor of x. The distance dG(x, y) from the vertex x to the vertex y is the minimum

length of an (x, y)-directed path in G. The maximum distance between any two vertices in

G is called the diameter of G. For a vertex x in G, the k-th out-neighborhood of x, Ok(x), is

defined by {y ∈ V (G) : dG(x, y) = k}, and O1(v) is usually called the out-neighborhood of

x in G. Let S be a proper subgraph of G or a nonempty subset of V (G), we use the symbol

Oℓ(S) to denote
⋃

s∈S
Oℓ(s). For terminology and notation not given here, the reader is

referred to [2].

Let ℓ be a positive integer. A subset D ⊂ V (G) is called a distance ℓ-dominating set of

G if v ∈ Ok(D) for all v /∈ D, where 1 ≤ k ≤ ℓ. The distance ℓ-domination number of G,

γℓ(G), is the minimum cardinality of a distance ℓ-dominating set of G.

Slater [7] termed a distance ℓ-dominating set as an ℓ-basis and also gave an interpreta-

tion for an ℓ-basis in terms of communication networks. Since then many researchers pay

much attention to this subject, for example, see [3, 6, 7, 8]. Although digraphs have many

applications, there are only a few studies for domination on digraphs [1, 5].

The concept of distance domination in graphs finds applications in many situations

and structures which give rise to graphs. A minimum ℓ-dominating set in G may be used

to locate a minimum number of facilities (such as utilities, police stations, waste disposal

dumps, hospitals, blood banks, transmission towers) such that every intersection is within

ℓ city block of a facility.

One is interested in determining the exact value of γℓ(G) for a given strongly connected

digraph G and positive integer ℓ. From definition, γℓ(G) = 1 for any positive integer ℓ not

less than the diameter of G. Thus let ℓ be any positive integer less than the diameter of G

below. Clearly, γ1(G) is the classic domination number γ(G) of G. However, Barkauskas

and Host [1] showed that the problem of determining γ(G) is NP-hard for a general graph

G.

In this paper, we consider a generalized de Bruijn digraph GB(n, d) and a general-

ized Kautz digraph GK(n, d) with d ≥ 2 and n ≥ d. They have the same vertex set

{0, 1, 2, · · · , n− 1 }. The edge set of GB(n, d) is {(x, y) : y ≡ dx + i (mod n), 0 ≤ i < d},

while the edge set of GK(n, d) is {(x, y) : y ≡ −dx − i (mod n), 0 < i ≤ d}. In particular,

for any positive integer k, GB(dk, d) and GK(dk + dk−1, d) are the well-known de Bruijn

digraph B(d, k) and the Kautz digraph K(d, k), respectively.

Kikuchi and Shibata [5] have considered γ(GB(n, d)) and γ(GK(n, d)). This motivates

us to consider γℓ(GB(n, d)) and γℓ(GK(n, d)) for ℓ ≥ 2. In this paper, we establish a

lower bound and an upper bound for γℓ(GB(n, d)) and γℓ(GK(n, d)), and also give a suf-

ficient condition for γ2(GB(n, d)) and γ2(GK(n, d)) attaining the lower bounds. As conse-

quence, we determine that γ2(B(d, k)) =
⌈

d
k

d2+d+1

⌉

. At the end of this paper, we conjecture

γ2(K(d, k)) =
⌈

d
k
+d

k−1

d2+d+1

⌉

.
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2 ℓ-domination numbers of GB(n, d)

Let ℓ be any positive integer less than the diameter of G below.

Lemma 2.1 For any positive integers n, d and ℓ with d ≥ 2 and n ≥ d,
⌈

n

1 + d + · · · + dℓ

⌉

≤ γℓ(GB(n, d)) ≤
⌈ n

dℓ

⌉

.

Proof Let D be a minimum ℓ-dominating set of GB(n, d). From the definition of GB(n, d),

we have GB(n, d) is d-regular and |D|+ d|D|+ · · ·+ dℓ|D| ≥ n, from which the lower bound

of γℓ(GB(n, d)) can be derived immediately.

To obtain the upper bound of γℓ(GB(n, d)), let D = {1, 2, · · · , ⌈ n

dℓ ⌉}. Then the elements

in

Oℓ(D) = {dℓ, dℓ + 1, · · · , dℓ + dℓ

⌈ n

dℓ

⌉

− 1} (mod n)

is consecutive and |Oℓ(D)| = ⌈ n

dℓ ⌉ dℓ ≥ n. Thus D is a ℓ-dominating set of GB(n, d), and

hence, γℓ(GB(n, d)) ≤ |D| =
⌈

n

dℓ

⌉

.

From the above proof, D = {1, 2, · · · , ⌈ n

dℓ ⌉} is an ℓ-dominating set, but not minimum.

For example, {1, 2, 3} is a 2-dominating set of GB(12, 2). Furthermore, {1, 2} is not a

2-dominating set of GB(12, 2), whereas γ2(GB(12, 2)) = 2 because the vertex set {2, 3} is

a minimum 2-dominating set of GB(12, 2). We are interested in the conditions subject to

which the lower bound of γℓ(GB(n, d)) given in Lemma 2.1 can be attained. The following

theorem gives such a sufficient condition for ℓ = 2.

Theorem 2.2 Let n and d be positive integers with d ≥ 2 and n ≥ d, and let m = ⌈ n

1+d+d2 ⌉.

If there is a vertex x ∈ V (GB(n, d)) satisfying

(d − 1)x − (m − ℓ1) ≡ 0 (mod n) (2.1)

(d2 − d)x − (dm − ℓ2) ≡ 0 (mod n) (2.2)

for some nonnegative integers ℓ1 ≤ dm and ℓ2 ≤ d2m with 0 ≤ ℓ1 + ℓ2 ≤ (1+ d+ d2)m−n,

then

γ2(GB(n, d)) = m

Proof From Lemma 2.1, we only need to construct a 2-dominating set of GB(n, d) with

cardinality m under the given conditions. Let

D = {x, x + 1, · · · , x + m − 1} (mod n) ⊆ V (GB(n, d)).

For short, let D1 = O1(D) and D2 = O2(D). Then, from the definition of GB(n, d), we have

D1 = {dx, dx + 1, · · · , dx + dm − 1} (mod n),

D2 = {d2x, d2x + 1, · · · , d2x + d2m − 1} (mod n).
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Since dm < d2 m < n, we have

|D| = m, |D1| = dm, |D2| = d2m. (2.3)

To show that D is a 2-dominating set of GB(n, d), it is sufficient to prove that |D∪D1∪D2| ≥

n. Let

σ(D) = |D ∩ D1| + |D ∩ D2| + |D1 ∩ D2| − |D ∩ D1 ∩ D2|.

If we can prove that

σ(D) ≤ ℓ1 + ℓ2, (2.4)

then by the inclusion-exclusion principle, from (3), (4) and the given conditions, we have

that

|D ∪ D1 ∪ D2| = |D| + |D1| + |D2| − σ(D)

≥ m + dm + d2m − (ℓ1 + ℓ2)

≥ (1 + d + d2)m − [(1 + d + d2)m − n]

= n

We now prove the inequality (4). For this purpose, we rewrite Equations (1) and (2) as

follows.
dx ≡ x + m − ℓ1 (mod n)

d2x ≡ dx + dm − ℓ2 (mod n)

≡ x + m + dm − (ℓ1 + ℓ2) (mod n).

Case 1. m < ℓ1.

In this case, we have dx = x + m − ℓ1 < x, that is, dx + ℓ1 − m = x, and by 1 + (ℓ1 −

m) + (m − 1) = ℓ1 ≤ dm, which implies that D ⊂ D1, and so |D ∩ D1| = |D| = m < ℓ1.

Subcase 1.1. If dm < ℓ2, then d2x = dx + dm − ℓ2 < dx, that is, d2x + ℓ2 − dm = dx,

and by 1 + (ℓ2 − dm) + (dm − 1) = ℓ2 ≤ d2m, which implies that D1 ⊂ D2, and so

|D1 ∩D2| = |D1| = dm < ℓ2. Since D ⊂ D1 ⊂ D2, |D ∩D1 ∩D2| = |D ∩D2| = |D| = m. It

follows that σ(D) < ℓ1 + m + ℓ2 − m = ℓ1 + ℓ2.

Subcase 1.2. If dm ≥ ℓ2, then |D1 ∩ D2| = ℓ2. In fact, if ℓ2 ≥ 1, then D1 ∩ D2 =

{dx + dm − ℓ2, · · · , dx + dm − 1} , and hence, |D1 ∩ D2| = ℓ2; if ℓ2 = 0, then D1 ∩ D2 = ∅

and |D1 ∩ D2| = 0.

If m + dm < ℓ1 + ℓ2, we have d2x = x + m + dm − (ℓ1 + ℓ2) < x, that is, d2x + (ℓ1 +

ℓ2) − (m + dm) = x, and by ℓ1 ≤ dm, ℓ2 ≤ d2m, then 1 + (ℓ1 + ℓ2 − m − dm) + (m − 1) =

ℓ1 + ℓ2 − dm ≤ d2m, which implies D ⊂ D2, and so |D ∩D2| = |D| = m. Thus by D ⊂ D1,

|D ∩ D1 ∩ D2| = |D ∩ D2| = |D| = m. It follows that σ(D) < ℓ1 + m + ℓ2 − m = ℓ1 + ℓ2.

If m + dm ≥ ℓ1 + ℓ2, it also follows that σ(D) ≤ ℓ1 + ℓ2. In fact, if ℓ1 + ℓ2 ≥ dm + 1,

then D ∩ D2 = {x + m − (ℓ1 + ℓ2 − dm), · · · , x + m − 1}, and so |D ∩ D2| = ℓ1 + ℓ2 − dm.

Thus |D∩D1 ∩D2| = |D∩D2| = ℓ1 + ℓ2 − dm. It follows that σ(D) < ℓ1 +(ℓ1 + ℓ2 − dm)+
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ℓ2 − (ℓ1 + ℓ2 − dm) = ℓ1 + ℓ2. If ℓ1 + ℓ2 ≤ dm, then D ∩D2 = ∅, and so |D ∩D2| = 0. Thus

|D ∩ D1 ∩ D2| = |D ∩ D2| = 0. It also follows that σ(D) < ℓ1 + 0 + ℓ2 − 0 = ℓ1 + ℓ2.

Case 2. If m ≥ ℓ1, then |D ∩ D1| = ℓ1. In fact, if ℓ1 ≥ 1, then D ∩ D1 = {x + m −

ℓ1, · · · , x+m−1}, and hence, |D∩D1| = ℓ1. If ℓ1 = 0, then D∩D1 = ∅ and |D∩D1| = ℓ1 = 0.

Subcase 2.1. If dm < ℓ2, then d2x = dx + dm − ℓ2 < dx, that is, d2x + ℓ2 − dm = dx,

and by ℓ2 ≤ d2m, which implies that D1 ⊂ D2, and so |D1 ∩ D2| = |D1| = dm.

If m + dm < ℓ1 + ℓ2, we also have d2x = x + m + dm − (ℓ1 + ℓ2) < x, that is,

d2x+(ℓ1 + ℓ2)− (m+ dm) = x, and by ℓ1 ≤ dm, ℓ2 ≤ d2m, then ℓ1 + ℓ2− dm ≤ d2m, which

implies D ⊂ D2, and so |D∩D2| = |D| = m. And by D1 ⊂ D2, |D∩D1∩D2| = |D∩D1| = ℓ1.

It follows that σ(D) = ℓ1 + m + dm − ℓ1 < ℓ1 + ℓ2.

If m + dm ≥ ℓ1 + ℓ2, it also follows that σ(D) ≤ ℓ1 + ℓ2. In fact, since ℓ2 > dm,

then ℓ1 + ℓ2 ≥ dm + 1, thus D ∩ D2 = {x + m − (ℓ1 + ℓ2 − dm), · · · , x + m − 1}, and so

|D∩D2| = ℓ1+ℓ2−dm > ℓ1. Thus D∩D1∩D2 = D∩D1 = {x+m−ℓ1, · · · , x+m−1}, and

|D∩D1∩D2| = |D∩D1| = ℓ1. It follows that σ(D) ≤ ℓ1 +(ℓ1 +ℓ2−dm)+dm−ℓ1 = ℓ1 +ℓ2.

Subcase 2.2. If dm ≥ ℓ2, then |D1 ∩ D2| = ℓ2. In fact, if ℓ2 ≥ 1, then D1 ∩ D2 =

{dx + dm − ℓ2, · · · , dx + dm − 1}, and so |D1 ∩ D2| = ℓ2. If ℓ2 = 0, then D1 ∩ D2 = ∅ and

|D1 ∩ D2| = 0.

Since m+ dm ≥ ℓ1 + ℓ2, it also follows that σ(D) ≤ ℓ1 + ℓ2. In fact, if ℓ1 + ℓ2 ≥ dm+1,

then D∩D2 = {x+m− (ℓ1 + ℓ2−dm), · · · , x+m−1}, and so |D∩D2| = ℓ1 + ℓ2−dm ≤ ℓ1.

Thus |D ∩D1 ∩D2| ≤ |D ∩D2| = ℓ1 + ℓ2 − dm ≤ ℓ1. It follows that σ(D) ≤ ℓ1 + (ℓ1 + ℓ2 −

dm) + ℓ2 − (ℓ1 + ℓ2 − dm) = ℓ1 + ℓ2. If ℓ1 + ℓ2 ≤ dm, then D∩D2 = ∅, and so |D∩D2| = 0.

Thus |D ∩ D1 ∩ D2| = 0. It also follows that σ(D) = ℓ1 + 0 + ℓ2 − 0 = ℓ1 + ℓ2.

The proof of the theorem is completed.

Corollary For the de Bruijn digraph B(d, k), γ2(B(d, k)) =
⌈

d
k

d2+d+1

⌉

.

Proof For k = 1, 2, B(d, 1) = K+

d
and B(d, 2) = L(K+

d
), that is, the line digraph of

B(d, 1). We could easily verify that γ2(B(d, 1)) = 1 since K+

d
is obtained from a complete

digraph Kd by appending a loop at each vertex. For k = 2, let a be any vertex in V (B(d, 2)),

then we will prove that for any other vertex b in V (B(d, 2)), b can be reached from a within

distance 2. Since B(d, 2) is the line digraph of K+

d
, then there are u, v, z, w ∈ V (K+

d
) such

that a = (u, v), b = (z, w). If v = z, then b is adjacent from a in B(d, 2). If v 6= z, then

there must exist an edge (v, z) in K+

d
. Let P = {a} ∪ (v, z) ∪ {b}, then the line digraph

L(P ) is a path from a to b with distance 2.

For k ≥ 3, we only need to find a common solution to satisfy the equations (1) and

(2) in Theorem 2.2 under the given conditions. We first assume that k = 3h, where h is a

positive integer. Then the value of ℓ1 + ℓ2 in Theorem 2.2 is an integer between 0 and d+d2.

From the definition of B(d, k), we have d ≥ 2. The equations

x ≡ d3h−3 + d3h−6 + · · · + d3 + 1 (mod dk)

ℓ1 = 1

ℓ2 = d
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leads x to satisfy Equations (1) and (2) in Theorem 2.2.

Next let us assume that k = 3h + 1, then the value of ℓ1 + ℓ2 in Theorem 2.2 is an

integer between 0 and 1 + d2. We put

x ≡ d3h−2 + d3h−5 + · · · + d4 + d (mod dk)

ℓ1 = 1

ℓ2 = d

then x satisfies Equations (1) and (2) in Theorem 2.2.

At last we assume k = 3h + 2, then the value of ℓ1 + ℓ2 in Theorem 2.2 is an integer

between 0 and 1 + d. Let

x ≡ d3h−1 + d3h−4 + · · · + d5 + d2 (mod dk)

ℓ1 = 1

ℓ2 = d

then x satisfies Equations (1) and (2) in Theorem 2.2.

3 ℓ-domination numbers of GK(n, d)

Consider a generalized Kautz digraph GK(n, d), we can prove analogies of a generalized de

Bruijn digraph GB(n, d) by a similar argument. We state them as follows, but the proofs

are omitted here.

Lemma 3.1 For any positive integers n, d and ℓ with d ≥ 2, we have that

⌈

n

1 + d + · · · + dℓ

⌉

≤ γℓ(GK(n, d)) ≤
⌈ n

dℓ

⌉

.

Theorem 3.2 Let n and d be positive integers with d ≥ 2 and n ≥ d, and let m = ⌈ n

1+d+d2 ⌉.

If there is a vertex x ∈ V (GK(n, d)) satisfying

(d + 1)x + (d + 1)m − ℓ1 ≡ 0 (mod n)

d(d + 1)x + ℓ2 ≡ 0 (mod n)
(3.5)

for some nonnegative integers ℓ1 ≤ dm and ℓ2 ≤ d2m with 0 ≤ ℓ1 + ℓ2 ≤ (1 + d + d2)m−n,

then γ2(GK(n, d)) = m.

For the Kautz digraph K(d, k), it seems to have an analogy of the de Bruijn digraph

B(d, k) in Corollary of Theorem 2.2. However, unfortunately, we find that Equations (5)

have no solution for K(d, k) in general. We propose the following conjecture.

Conjecture For the Kautz digraph K(d, k), γ2(K(d, k)) =
⌈

d
k
+d

k−1

d2+d+1

⌉

.
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