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Distance Domination Numbers of
Generalized de Bruijn and Kautz Digraphs*

Tian Fang' Xu Junming!

Abstract

The distance ¢-domination number 7,(G) of a strongly connected digraph G is the
minimum number v for which there is a set D C V(G) with cardinality v such that any
vertex v ¢ D can be reached within distance ¢ from some vertex in D. In this paper, we
establish a lower bound and an upper bound for 7, of a generalized de Bruijn digraph and
a generalized Kautz digraph, and also give a sufficient condition for these digraphs whose
~2 are equal to the lower bounds. As a consequence, for the de Bruijn digraph B(d, k),

we determine that v2(B(d, k)) = [L-‘ At the end of this paper, we conjecture
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1 Introduction

Let G(V, A) be a strongly connected digraph with vertex set V(G) and the arc set A(G). If

there is an arc (x,y) from x to y, then the vertex x is called a predecessor of y and y is called
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a successor of z. The distance dg(z,y) from the vertex = to the vertex y is the minimum
length of an (z,y)-directed path in G. The maximum distance between any two vertices in
G is called the diameter of G. For a vertex x in G, the k-th out-neighborhood of x, O(z), is
defined by {y € V(G) : dg(z,y) = k}, and O1(v) is usually called the out-neighborhood of
2 in G. Let S be a proper subgraph of G or a nonempty subset of V(G), we use the symbol
O¢(8S) to denote | J g Oe(s). For terminology and notation not given here, the reader is
referred to [2].

Let ¢ be a positive integer. A subset D C V(G) is called a distance ¢-dominating set of
G if v € O(D) for all v ¢ D, where 1 < k < ¢. The distance ¢-domination number of G,
v¢(@), is the minimum cardinality of a distance ¢-dominating set of G.

Slater [7] termed a distance ¢-dominating set as an ¢-basis and also gave an interpreta-
tion for an f-basis in terms of communication networks. Since then many researchers pay
much attention to this subject, for example, see [3, 6, 7, 8]. Although digraphs have many

applications, there are only a few studies for domination on digraphs [1, 5].

The concept of distance domination in graphs finds applications in many situations
and structures which give rise to graphs. A minimum /-dominating set in G may be used
to locate a minimum number of facilities (such as utilities, police stations, waste disposal
dumps, hospitals, blood banks, transmission towers) such that every intersection is within
¢ city block of a facility.

One is interested in determining the exact value of v¢(G) for a given strongly connected
digraph G and positive integer ¢. From definition, v,(G) = 1 for any positive integer ¢ not
less than the diameter of G. Thus let ¢ be any positive integer less than the diameter of G
below. Clearly, v1(G) is the classic domination number v(G) of G. However, Barkauskas
and Host [1] showed that the problem of determining (G) is NP-hard for a general graph
G.

In this paper, we consider a generalized de Bruijn digraph Gg(n,d) and a general-
ized Kautz digraph Gg(n,d) with d > 2 and n > d. They have the same vertex set
{0, 1, 2,---, n—1 }. The edge set of Gg(n,d) is {(z,y) : y =dx + i (mod n), 0 <i < d},
while the edge set of Gx(n,d) is {(z,y) : y = —dz — i (mod n), 0 < i < d}. In particular,
for any positive integer k, Gp(d*,d) and G (d* + d*~!,d) are the well-known de Bruijn
digraph B(d, k) and the Kautz digraph K (d, k), respectively.

Kikuchi and Shibata [5] have considered v(Gg(n,d)) and v(Gxk(n,d)). This motivates
us to consider v¢(Gp(n,d)) and v,(Gg(n,d)) for £ > 2. In this paper, we establish a
lower bound and an upper bound for v,(Gp(n,d)) and v,(Gk(n,d)), and also give a suf-
ficient condition for v2(Gp(n,d)) and v2(Gk(n,d)) attaining the lower bounds. As conse-

quence, we determine that v2(B(d, k)) = . At the end of this paper, we conjecture

k k—1
1(K(d, k) = [ |-
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2 (-domination numbers of Gg(n,d)

Let ¢ be any positive integer less than the diameter of G below.

Lemma 2.1 For any positive integers n, d and £ with d > 2 and n > d,
n n
S — Gp(n,d) < |2 |.
| S G <[5

Proof Let D be a minimum ¢-dominating set of Gg(n,d). From the definition of Gg(n,d),
we have Gg(n,d) is d-regular and |D|+d|D|+ - - -+ d*|D| > n, from which the lower bound
of v¢(Gp(n,d)) can be derived immediately.

To obtain the upper bound of v¢(Gg(n, d)), let D = {1,2,---,[ 5 ]}. Then the elements
in

OuD) = {d',d" +1,--,d" +d" [ﬁ] — 1} (mod n)

is consecutive and |O(D)| = [%]d" > n. Thus D is a (-dominating set of Gpz(n,d), and
hence, v¢(Ggp(n,d)) <|D| = [%w

From the above proof, D = {1,2,---,[Z]} is an {-dominating set, but not minimum.
For example, {1, 2, 3} is a 2-dominating set of Gp(12,2). Furthermore, {1, 2} is not a
2-dominating set of Gp(12,2), whereas v2(Gp(12,2)) = 2 because the vertex set {2, 3} is
a minimum 2-dominating set of Gp(12,2). We are interested in the conditions subject to
which the lower bound of v¢(Gp(n,d)) given in Lemma 2.1 can be attained. The following

theorem gives such a sufficient condition for £ = 2.

Theorem 2.2 Letn and d be positive integers with d > 2 andn > d, and let m = (ﬁ]
If there is a vertex x € V(Gp(n,d)) satisfying

(d=1)xz—(m—10)=
(d? — d)x — (dm — £y) =

0 (mod n) (2.1)
0 (mod n) (2.2)
for some nonnegative integers {1 < dm and lo < d*m with 0 <l + s < (1+d+d*)m —
then

7

Y2(Gp(n,d) =

Proof From Lemma 2.1, we only need to construct a 2-dominating set of Gg(n,d) with

cardinality m under the given conditions. Let
D={z, z+1, ---, z+m—1} (mod n) C V(Gp(n,d)).
For short, let D; = O1(D) and Ds = O3(D). Then, from the definition of Gg(n, d), we have

Dy ={dx,dx+1,---,dz+dm — 1} (modn),
Dy = {d*z, d*z +1, ---,d’x + d*m — 1} (modn).
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Since dm < d? m < n, we have
|D| =m, |Di| = dm, |Ds| = d*m. (2.3)

To show that D is a 2-dominating set of Gg(n, d), it is sufficient to prove that |[DUD,UDq| >
n. Let
o(D) = |DNDi|+|DN Dy +|DyN Dy — [DNDyNDyl.

If we can prove that
O'(D) S él + 62, (24)

then by the inclusion-exclusion principle, from (3), (4) and the given conditions, we have
that

|[DUDyUDy| = |D|+|D1|+ |D2| — (D)
> m—|—dm—|—d2m—(€1—|—€2)
> (14+d+d>)m—[(1+d+d>)m—n]

n

We now prove the inequality (4). For this purpose, we rewrite Equations (1) and (2) as

follows.
de= x4+ m—{; (mod n)

d*z = dx+dm —{ly (mod n)
x+m-+dm— ({1 +¥¢2) (mod n).

Case 1. m < /.
In this case, we have do =2 +m — {1 < x, that is, dz +¢; —m =, and by 1 + (¢; —
m) + (m — 1) = ¢; < dm, which implies that D C Dy, and so |[DNDy| = |D| =m < {;.

Subcase 1.1. 1If dm < la, then d*x = dx + dm — {3 < dz, that is, d*z + {3 — dm = dx,
and by 1 + (fa — dm) + (dm — 1) = ¢y < d*m, which implies that D; C Ds, and so
|D1 ﬂD2| = |D1| =dm < {3. Since D C Dy C D>, |DﬂD1 ﬂD2| = |DﬂD2| = |D| =m. It
follows that (D) < £1 +m+ o —m = £y + Lo.

Subcase 1.2. 1If dm > l5, then |Dy N Da| = £y, In fact, if €5 > 1, then D1 N Dy =
{dz +dm — s, -+ ,dx + dm — 1} , and hence, |D1 N Da| = {o; if €2 = 0, then D1 N Dy =0
and |D1 ﬂD2| =0.

If m +dm < {1 + {2, we have d’*x = z +m + dm — ({1 + {2) < x, that is, d*z + ({1 +
l3) — (m+dm) = z, and by {1 < dm, {3 < d*m, then 1+ ({1 + 0y —m —dm) + (m —1) =
{1 + 0y — dm < d*m, which implies D C Ds, and so |D N Do| = |D| = m. Thus by D C Dy,
|DNDyNDs|=|DN Dy| =|D| =m. It follows that o(D) < €1 +m + €y —m = {1 + {s.

If m 4+ dm > €1 + £s, it also follows that o(D) < ¢ + £3. In fact, if {4 4+ 4o > dm + 1,
then DN Dy ={x+m— ({1 + Ll —dm),---,x +m — 1}, and so |D N Dy| = {1 + €2 — dm.
Thus |[DNDyNDsy| =|DNDy| = £y + €5 —dm. Tt follows that o(D) < €1+ (€1 + £l —dm) +
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by — (b + L0y —dm) = £y + Lo, If €1 + €y < dm, then DN Dy =, and so |D N Dy| = 0. Thus
|[DN DN Dy =|DN Dy =0. It also follows that (D) < €1 +0+ ¥l — 0= {1 + {5.

Case 2. If m > ¢y, then |D N D] = ¢;. In fact, if ¢ > 1, then DN Dy = {&+m —
{1, -+, x+m—1}, and hence, |DND;| = ¢1. If {; = 0, then DND; = () and |DND;| = ¢; = 0.

Subcase 2.1. 1f dm < lo, then d?z = dx + dm — {3 < dz, that is, d*x + f5 — dm = dz,
and by /5 < d?>m, which implies that D; C Ds, and so |D; N Dy| = |D1| = dm.

If m +dm < {1 + ly, we also have d?r = x +m + dm — ({1 + f2) < =, that is,
d*x + (b1 +ls) — (m+dm) = x, and by £1 < dm, 2 < d*m, then £1 + l5 — dm < d*m, which
implies D C Dy, and so |DNDz| = |D| = m. And by Dy C D, |DND1ND2| = |DND4| = 4.
It follows that o(D) =41 + m+dm — €1 < £y + L.

If m+dm > €1 + £, it also follows that o(D) < ¢; + ¢5. In fact, since ¢o > dm,
then ¢ + ¢ > dm + 1, thus DN Dy = {x+m — ({1 + o — dm),- -,z +m — 1}, and so
|[DNDy| =41+l —dm > £;. Thus DND1NDy =DNDy ={x+m—4{1,---,x+m—1}, and
|[DND1N D3| = |DNDy| = £;. Tt follows that (D) < €1+ (b1 4+l —dm)+dm— €, = {1+ {s.

Subcase 2.2. 1If dm > l5, then |Dy N Da| = £y, In fact, if €5 > 1, then D1 N Dy =
{dz +dm — Ly, -+ ,dx +dm — 1}, and so |D1 N Da| = €5. If {3 =0, then D; N Dy = (§ and
|D1 N D3| =0.

Since m+dm > {1 + {5, it also follows that o(D) < £1 + 5. In fact, if 1+ 45 > dm +1,
then DN Dy = {x+m—(l1+Lla—dm),---,z+m—1}, and so |[DNDs| = {1+l —dm < (5.
Thus |[DNDyNDs| <|DNDy| =41+l —dm < 4. Tt follows that o(D) < €1 + ({1 + 4o —
dm) + €y — (b1 + Ly —dm) = b1+ {s. If {1+ 05 < dm, then DN Dy =), and so | DN Ds| = 0.
Thus |D N Dy N Ds| =0. It also follows that (D) =41 + 0+ ¢y — 0= {1 + {s.

The proof of the theorem is completed.

Corollary For the de Bruijn digraph B(d, k), y2(B(d, k)) = {#ﬁlﬂ—"
Proof For k = 1,2, B(d,1) = K and B(d,2) = L(K), that is, the line digraph of
B(d,1). We could easily verify that 72(B(d, 1)) = 1 since K is obtained from a complete
digraph K, by appending a loop at each vertex. For k = 2, let a be any vertex in V (B(d, 2)),
then we will prove that for any other vertex b in V(B(d,2)), b can be reached from a within
distance 2. Since B(d,2) is the line digraph of Kj, then there are u,v,z,w € V(Kj) such
that a = (u,v), b = (z,w). If v = z, then b is adjacent from a in B(d,2). If v # z, then
there must exist an edge (v,z) in K. Let P = {a} U (v,z) U {b}, then the line digraph
L(P) is a path from a to b with distance 2.

For k > 3, we only need to find a common solution to satisfy the equations (1) and
(2) in Theorem 2.2 under the given conditions. We first assume that k = 3h, where h is a
positive integer. Then the value of £; +¢5 in Theorem 2.2 is an integer between 0 and d+ d>.
From the definition of B(d, k), we have d > 2. The equations

r = &340 4+ @ + 1 (mod d¥)
6 =1
by = d
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leads x to satisfy Equations (1) and (2) in Theorem 2.2.
Next let us assume that k& = 3h + 1, then the value of ¢; + {5 in Theorem 2.2 is an
integer between 0 and 1 + d2. We put

z = "4 4 4 d* + d (mod d")
6 =1
by = d

then z satisfies Equations (1) and (2) in Theorem 2.2.
At last we assume k = 3h + 2, then the value of #; + 5 in Theorem 2.2 is an integer
between 0 and 1+ d. Let

r = S4Bt 4 4 d® + d? (mod dF)
6= 1
by = d

then z satisfies Equations (1) and (2) in Theorem 2.2.

3 (-domination numbers of Gg(n,d)

Consider a generalized Kautz digraph Gk (n,d), we can prove analogies of a generalized de
Bruijn digraph Gg(n,d) by a similar argument. We state them as follows, but the proofs

are omitted here.

Lemma 3.1 For any positive integers n, d and { with d > 2, we have that

{ﬁ-‘ < ’YZ(GK(nad)) < [%—‘ .

Theorem 3.2 Letn and d be positive integers with d > 2 andn > d, and let m = (ﬁ]
If there is a vertex x € V(Gg(n,d)) satisfying

(d+1)z+(d+1)m—4~4,= 0 (mod n)

d(d+ 1)z +¢;= 0 (mod n) (3.5)

for some nonnegative integers {1 < dm and ly < d*m with 0 < {1 + 4 < (1+d+ d2)m —n,
then v2(G g (n,d)) = m.

For the Kautz digraph K(d, k), it seems to have an analogy of the de Bruijn digraph
B(d, k) in Corollary of Theorem 2.2. However, unfortunately, we find that Equations (5)

have no solution for K(d, k) in general. We propose the following conjecture.

Conjecture For the Kautz digraph K(d, k), v2(K(d, k)) = [%—‘.



No.1 Distance Domination Numbers of Generalized de Bruijn and Kautz Digraphs 7
References
[1] A.E. Barkuskas, L.H. Host, Finding efficient dominating sets in oriented graphs, Congr, Numer.,

2]

[5]

98 (1993), 27-32.

J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. New York: North Holland,
1976.

M. Fischermann and L. Volkmann, Graphs having distance-n domination number half their
orer. Discrete Applied Math., 120 (2002), 97-107.

J. Ghoshal, R. Laskar, D. Pillone, Topics on domination in directed graphs, in domination in
Graphs (eds. T.W. Haynes, S.T. Hedetniemi, P.J. Slater), Marcel Dekker, New York, (1998),
pp. 401-437.

Y. Kikuchi and Y. Shibata, On the domination numbers of generalized de Bruijn digraphs and
generalized Kautz digraphs. Inform. process. Lett., 86 (2003) 79-85.

A. Meir and and J. W. Moon, Relation between packing and covering number of a tree. Pacific
Journal of Mathematics, 61(1) (1975), 225-233.

P. J. Slater, R-dominations in graphs. J. Assoc. Comput. Macg., 23 (1976), 446-460.

N. Sridharan, V. S. A. Subramanian and M. D. Elias, Bounds on the Distance Two-Domination
Number of a Graph. Graphs and Combinatorics., 18 (2002), 667-675.



