Article ID: 1000-341X(2006)03-0502-07

Document code: A

Diameters of Altered Graphs

WU Ye-zhou, XU Jun-ming

(Dept. of Math., University of Science and Technology of China, Hefei 230026, China) (E-mail: yzwu@ustc.edu.cn)

Abstract: Let P(t,n) and C(t,n) denote the minimum diameter of a connected graph obtained from a single path and a circle of order n plus t extra edges, respectively, and f(t,k) the maximum diameter of a connected graph obtained by deleting t edges from a graph with diameter k. This paper shows that for any integers $t \ge 4$ and $n \ge 5$, $P(t,n) \le \frac{n-8}{t+1} + 3$, $C(t,n) \le \frac{n-8}{t+1} + 3$ if t is odd and $C(t,n) \le \frac{n-7}{t+2} + 3$ if t is even; $\left\lceil \frac{n-1}{5} \right\rceil \le P(4,n) \le \left\lceil \frac{n+3}{5} \right\rceil$, $\left\lceil \frac{n}{4} \right\rceil - 1 \le C(3,n) \le \left\lceil \frac{n}{4} \right\rceil$; and $f(t,k) \ge (t+1)k - 2t + 4$ if $k \ge 3$ and is odd, which improves some known results.

Key words: diameter; altered graph; edge addition; edge deletion. MSC(2000): 05C12 CLC number: O157.5

1. Introduction

We follow [1] for graph-theoretical terminology and notation not defined here. Let G = (V, E) be a simple undirected graph with a vertex-set V = V(G) and an edge-set E = E(G). Let P(t, n) and C(t, n) be the minimum diameter of a graph obtained by adding t extra edges to a path and a cycle of order n, respectively. Let f(t, k) denote the maximum diameter of a connected graph obtained by deleting t edges from a graph with diameter k. For given integers t, n and k, the problems determining P(t, n), C(t, n) and f(t, k), proposed by Chung et al.^[2], are of important interest in designing and analysis of interconnection networks^[5].

For some small t and special n, the values of P(t,n) and C(t,n) have been determined. It is easy to verify that $P(1,n) = C(1,n) = \lfloor \frac{n}{2} \rfloor$ for $n \ge 3$; Schoone et al.^[4] determined $P(2,n) = \lceil \frac{n}{3} \rceil$ and $C(2,n) = \lceil \frac{n+2}{4} \rceil$ for $n \ge 4$, and $P(3,n) = \lceil \frac{n+1}{4} \rceil$ for $n \ge 5$; For general $t \ge 3$, $n \ge 5$, Chung and Garey et al.^[2] obtained the following results: $\frac{n}{t+1} - 1 \le P(t,n) < \frac{n}{t+1} + 3$, $\frac{n}{t+1} - 1 \le C(t,n) < \frac{n}{t+1} + 3$ if t is odd and $\frac{n}{t+2} - 1 \le C(t,n) < \frac{n}{t+2} + 3$ if t is even; Deng and Xu et al.^[3] determined P(t, (2k-1)(t+1)+2) = 2k for any positive integer k, $\left\lceil \frac{n-1}{t+1} \right\rceil \le P(t,n) \le \left\lceil \frac{n-1}{t+1} \right\rceil + 1$ for t = 4, 5 and $n \ge 5$, and, in general, $\left\lceil \frac{n-1}{t+1} \right\rceil \le P(t,n) \le \left\lfloor \frac{n-3}{t+1} \right\rfloor + 3$. As to f(t,k) Schoone et al.^[4] determined:

 $(t+1)k \ge f(t,k) \ge \left\{ \begin{array}{ll} (t+1)k-t, & \text{if k is even;} \\ (t+1)k-2t+2, & \text{if $k\ge 3$ and is odd.} \end{array} \right.$

Received date: 2004-12-29

Foundation item: the National Natural Science Foundation of China (10271114)

In this paper, we improve these upper bounds by proving that $P(t,n) \leq \frac{n-8}{t+1} + 3$ and $C(t,n) \leq \frac{n-8}{t+1} + 3$ if t is odd and $C(t,n) \leq \frac{n-7}{t+2} + 3$ if t is even for any integers $t \geq 4$ and $n \geq 5$. For special cases, we have $\left\lceil \frac{n-1}{5} \right\rceil \leq P(4,n) \leq \left\lceil \frac{n+3}{5} \right\rceil$ and $\left\lceil \frac{n}{4} \right\rceil - 1 \leq C(3,n) \leq \left\lceil \frac{n}{4} \right\rceil$ for $n \geq 5$. Finally we give $f(t,k) \geq (t+1)k - 2t + 4$ if $k \geq 3$ and is odd.

2. Several lemmas

Lemma 2.1 $P(t,n) \le k$ if $n \le k(t+1) - 2t + 5$ for integers $k \ge 1$ and $t \ge 4$.

Proof It is clear that $P(t,n) \leq P(t,k(t+1)-2t+5)$ for $n \leq k(t+1)-2t+5$. To prove the lemma, we only need to construct an altered graph G from a single path P of order k(t+1)-2t+5 by adding t extra edges such that the diameter of G is at most k.

Let $P = (x_1, x_2, ..., x_{k(t+1)-2t+5})$ be a single path. We construct G from P by adding t edges as follows:

$$e_{1} = (x_{2k}, x_{1})$$

$$e_{2} = (x_{k}, x_{3k})$$

$$e_{j} = (x_{2k}, x_{k(j+1)-2j+5}), j = 3, 5, \dots, 2\lceil \frac{t}{2} \rceil - 1$$

$$e_{i} = (x_{k}, x_{k(i+1)-2i+5}), i = 4, 6, \dots, 2\lfloor \frac{t}{2} \rfloor$$

See Fig.1 for an example, where k = 5, t = 8 and n = 34.

Fig.1 Illustration of Lemma 2.1 for k = 5, t = 8 and n = 34.

Let $P' = (x_{2k}, x_{2k+1}, \dots, x_{4k-1})$ and $H = P' + e_3$. It is easy to see that H is a cycle of length 2k, and so d(H) = k.

Thus, let $P'' = (x_{2k+1}, x_{2k+2}, \dots, x_{4k-2})$, where $P'' \subset P'$. We have

$$d_G(x_i, x_k) + d_G(x_i, x_{2k}) = \begin{cases} k+1, & \text{if } x_i \in V(P''); \\ k, & \text{if } x_i \notin V(P''). \end{cases}$$

So, for any two distinct vertices x_a and x_b in G, if $x_a, x_b \in V(P')$, then $d_G(x_a, x_b) \leq d_H(x_a, x_b) \leq k$; Otherwise,

$$d_G(x_a, x_k) + d_G(x_a, x_{2k}) + d_G(x_b, x_k) + d_G(x_b, x_{2k}) \le (k+1) + k = 2k+1,$$

which implies

$$2(d_G(x_a, x_b)) \le d_G(x_a, x_k) + d_G(x_b, x_k) + d_G(x_a, x_{2k}) + d_G(x_b, x_{2k}) \le 2k + 1,$$

that is, $d_G(x_a, x_b) \leq k$. Thus, we get $d(G) \leq k$.

Lemma 2.2 $P(t,n) \leq 2k$ if $n \leq 2k(t+1) - t + 1$ for integers $k \geq 1$ and $t \geq 4$.

Proof Similar to the proof of Lemma 2.1, we construct an altered graph G from a single path $P = (x_1, x_2, \ldots, x_{2k(t+1)-t+1})$ by adding t extra edges:

$$e_i = (x_{k+1}, x_{(2i+1)k-i+2}), \ i = 1, 2, \dots, t.$$

See Fig.2 for an example, where k = 3, t = 6 and n = 37.

Fig.2 Illustration of Lemma 2.2 for k = 3, t = 6 and n = 37.

It is easy to know $d_G(x_i, x_k) \leq k$ for any $i = 1, 2, \dots, 2k(t+1) - t + 1$. Thus

$$d_G(x_i, x_j) \le d(x_i, x_k) + d(x_k, x_j) \le 2k$$
 for $1 \le i \ne j \le 2k(t+1) - t + 1$,

which means that $d(G) \leq 2k$.

Lemma 2.3 Let both t and k be integers. If $t \ge 4$, then

$$C(t,n) \le \begin{cases} k & \text{for } n \le k(t+1) - 2t + 5, \ k \ge 3; \\ 2k & \text{for } n \le 2k(t+1) - t + 1, \ k \ge 1. \end{cases}$$

Proof If we add one edge joining two end vertices of the path $P_{k(t+1)-2t+5}$ and add other t edges in the same way as one used in the proof of Lemma 2.1, then we could get an altered graph G from a single cycle of order k(t+1) - 2t + 5 by adding t extra edges such that the diameter of G is not more than k. Thus we have

$$C(t,n) \le k$$
 for $n \le k(t+1) - 2t + 5$ and $k \ge 3$.

In a way similar to one used in the proof of Lemma 2.2, we get another altered graph from a single cycle of order 2k(t+1) - t + 1 by adding t extra edges such that the diameter at most 2k. It means that

$$C(t,n) \leq 2k$$
 for $n \leq 2k(t+1) - t + 1$ and $k \geq 1$

as required.

Lemma 2.4 Let t and k be integers. If t is even and $t \ge 4$, then $C(t, n) \le k$ for $n \le k(t+2)-2t+2$ and $k \ge 3$.

Proof Again we need to construct an altered graph G from a single cycle $C_n = (x_1, x_2, \dots, x_n, x_1)$ by adding t extra edges, where n = k(t+2) - 2t + 2.

Now we let G_p be the altered graph of diameter k in the proof of Lemma 2.1 obtained from a single path of order k(t+2) - 2(t+1) + 5 by adding t+1 extra edges. Assume the t+1 added edges are $e_1, e_2, \dots, e_t, e_{t+1}$.

Notices that k(t+2) - 2(t+1) + 5 = n+1 and if t is even, $e_{t+1} = (x_{2k}, x_{n+1})$. So if we alter the graph G_p by deleting the vertex x_{n+1} and the edge e_{t+1} and adjoining the vertices x_1 and x_n , we get another graph G_c , which is an altered graph obtained from a single cycle of order n by adding t extra edges.

See Fig.3 for an example, where k = 5, n = 30 and t = 6.

Fig.3 Illustration of Lemma 2.4 for k = 5, t = 6 and n = 30.

It is clear that $d_{G_c}(x_i, x_k) + d_{G_c}(x_i, x_{2k}) = d_{G_p}(x_i, x_k) + d_{G_p}(x_i, x_{2k})$ for any vertex $x_i \in G_c$. Similar to the proof of Lemma 2.1, we can verify that $d_{G_c}(x_i, x_j) \leq d_{G_p}(x_i, x_j) \leq k$ for any two vertices x_i and x_j in G_c , which implies $d(G_c) \leq k$. And hence $C(t, n) \leq k$ for $n \leq k(t+2) - 2t + 2$ as required.

3. Proof of main results

Theorem 3.1 For any integers $t \ge 4$ and $n \ge 5$, $P(t,n) \le \frac{n-8}{t+1} + 3$; furthermore, $P(t,n) \le \left\lceil \frac{n+t-6}{2t+2} \right\rceil + \left\lceil \frac{n+t-1}{2t+2} \right\rceil$.

Proof Firstly, when t is fixed, for any $n \ge 5$ there exists an integer $k \ge 0$ such that

$$(k-1)(t+1) - 2t + 6 \le n \le k(t+1) - 2t + 5.$$

It follows from Lemma 2.1 that

$$p(t,n) \le k \le \frac{n+2t-6}{t+1} + 1 = \frac{n-8}{t+1} + 3$$

Secondly, let m(k) = 2k(t+1) - t + 1 for any $n \ge 3$. Then there exists an integer $k \ge 0$ such that $m(k) + 1 \le n \le m(k+1)$.

If $m(k) + 1 \le n \le m(k) + 5 = (2k+1)(t+1) - 2t + 5$, then, from Lemma 2.1, we have

$$P(t,n) \le 2k+1 = k + (k+1) = \left\lceil \frac{n+t-6}{2t+2} \right\rceil + \left\lceil \frac{n+t-1}{2t+2} \right\rceil.$$

If $m(k) + 6 \le n \le m(k+1) = 2(k+1)(t+1) - t + 1$, then, from Lemma 2.2, we have

$$P(t,n) \le 2(k+1) = (k+1) + (k+1) = \left\lceil \frac{n+t-6}{2t+2} \right\rceil + \left\lceil \frac{n+t-1}{2t+2} \right\rceil.$$

The theorem follows.

Remarks It is clear that for $t \ge 4$

$$P(t,n) \le \left\lceil \frac{n+t-6}{2t+2} \right\rceil + \left\lceil \frac{n+t-1}{2t+2} \right\rceil \le \frac{n-8}{t+1} + 3.$$

In fact, if let $2m = \left\lceil \frac{n+t-1}{t+1} \right\rceil = \left\lceil \frac{n-2}{t+1} \right\rceil + 1$, just when

$$2m - 2 < \frac{n-2}{t+1} \le 2m - 1 \iff (2m - 2)(t+1) + 3 \le n \le (2m - 1)(t+1) + 2,$$

we have

$$P(t,n) \le \left\lceil \frac{n+t-6}{2t+2} \right\rceil + \left\lceil \frac{n+t-1}{2t+2} \right\rceil \le m+m = 2m \le \frac{n-3}{t+1} + 2.$$

Thus, we get that

$$P(t,n) \le \left\lceil \frac{n+t-6}{2t+2} \right\rceil + \left\lceil \frac{n+t-1}{2t+2} \right\rceil \le \begin{cases} \frac{n-8}{t+1} + 3, & \text{if } \left\lceil \frac{n-2}{t+1} \right\rceil \text{ is even} \\ \frac{n-3}{t+1} + 2, & \text{if } \left\lceil \frac{n-2}{t+1} \right\rceil \text{ is odd} \end{cases}$$

which is a better bound.

Corollary 3.1 $\left\lceil \frac{n-1}{5} \right\rceil \le P(4,n) \le \left\lceil \frac{n+3}{5} \right\rceil$ for any integer $n \ge 5$.

Proof On the one hand, by $P(t,n) \ge \left\lceil \frac{n-1}{t+1} \right\rceil$, due to Deng and Xu^[3] and the statement in Introduction, we have

$$P(4,n) \ge \left\lceil \frac{n-1}{5} \right\rceil.$$

On the other hand, by Theorem 3.1,

$$P(4,n) \le \frac{n-8}{5} + 3 = \frac{n+2}{5} + 1.$$

Since P(4, n) is an integer, we have

$$P(4,n) \le \left\lfloor \frac{n+2}{5} \right\rfloor + 1 = \left\lceil \frac{n-2}{5} \right\rceil + 1 = \left\lceil \frac{n+3}{5} \right\rceil$$

as required.

,

Theorem 3.2 For any integers $t \ge 4$ and $n \ge 5$,

$$C(t,n) \le \begin{cases} \frac{n-7}{t+2} + 3 & \text{if } t \text{ is even}; \\ \left\lceil \frac{n+t-6}{2t+2} \right\rceil + \left\lceil \frac{n+t-1}{2t+2} \right\rceil \le \frac{n-8}{t+1} + 3 & \text{if } t \text{ is odd.} \end{cases}$$

Proof If t is even and fixed, then for any $n \ge 5$ there exists an integer $k \ge 3$ such that

$$(k-1)(t+2) - 2t + 3 \le n \le k(t+2) - 2t + 2.$$

From Lemma 2.4, we have

$$C(t,n) \le k \le \frac{n+2t-3}{t+2} + 1 = \frac{n-7}{t+2} + 3.$$

If t is odd and fixed, then for any $n \ge 5$ there exists an integer $k \ge 3$ such that

$$(k-1)(t+1) - 2t + 6 \le n \le k(t+1) - 2t + 5.$$

From Lemma 2.3, we have

$$C(t,n) \leq k \leq \frac{n+2t-6}{t+1} + 1 = \frac{n-8}{t+1} + 3.$$

Furthermore, similar to the proof of Theorem 3.1, from Lemma 2.3 we have

$$C(t,n) \le \left\lceil \frac{n+t-6}{2t+2} \right\rceil + \left\lceil \frac{n+t-1}{2t+2} \right\rceil,$$

which is a better bound.

Theorem 3.3 $\left\lceil \frac{n}{4} \right\rceil - 1 \le C(3, n) \le \left\lceil \frac{n}{4} \right\rceil$ for any integer $n \ge 5$.

Proof On the one hand, by $C(t,n) \geq \frac{n}{t+1} - 1$ if t is odd, due to Chung and Garey^[2] and statement in Introduction, we have

$$C(3,n) \ge \left\lceil \frac{n}{4} \right\rceil - 1.$$

On the other hand, let $k = \lfloor \frac{n}{4} \rfloor$. It is easy to verify that the diameter of the altered graph obtained from a cycle $C_n = (x_1, x_2, \dots, x_n)$ by adding the three edges

$$e_1 = (x_1, x_{2k+1}), e_2 = (x_3, x_{2k+3}), e_3 = (x_{k+2}, x_{3k+1}),$$

is k. Thus

$$C(3,n) \le k = \left\lceil \frac{n}{4} \right\rceil$$

as required.

Theorem 3.4 $f(t,k) \ge (t+1)k - 2t + 4$ if k is an odd integer and $k \ge 3$.

Proof For any $k \ge 2$, we can delete t edges from the altered graph G constructed in the proof of Lemma 2.1 whose diameter is k to get a path of diameter (t+1)k - 2t + 4. So we have

$$f(t,k) \ge (t+1)k - 2t + 4,$$

which, of course, holds if k is an odd integer and $k \geq 3$.

References:

- [1] BONDY J A, MURTY U S R. Graph Theory with Applications [M], Macmillan Press, London, 1976.
- [2] CHUNG F R K, GAREY M R. Diameter bounds for altered graphs [J]. J. Graph Theory, 1984, 8(4): 511-534.
- [3] DENG Zhi-guo, XU Jun-ming. On diameters of altered graphs [J]. J. Math. Study, 2004, 37(1): 35–41.
- [4] SCHOONE A A, BODLAENDER H L, VAN LEEUWEN J. Diameter increase caused by edge deletion [J]. J. Graph Theory, 1987, 11: 409–427.
- [5] XU Jun-ming. Topological Structure and Analysis of Interonnection Network [M]. Dordecht/ Boston/London: Kluwer Academic Publishers, 2001.

变更图的直径

吴叶舟, 徐俊明

(中国科学技术大学数学系,安徽 合肥 230026)

摘要: P(t,n) 和 C(t,n) 分别表示在阶为 n 的路和圈中添加 t 条边后得到的图的最小直径; f(t,k) 表示从直径为 k 的图中删去 t 条边后得到的连通图的最大直径. 这篇文章证明了当 $t \ge 4 \pm n \ge 5$ 时, $P(t,n) \le \frac{n-8}{t+1} + 3$; 若 t 为奇数,则 $C(t,n) \le \frac{n-8}{t+1} + 3$; 若 t 为禹数,则 $C(t,n) \le \frac{n-7}{t+2} + 3$. 特别地, $\left\lceil \frac{n-1}{5} \right\rceil \le P(4,n) \le \left\lceil \frac{n+3}{5} \right\rceil$, $\left\lceil \frac{n}{4} \right\rceil - 1 \le C(3,n) \le \left\lceil \frac{n}{4} \right\rceil$. 最后,证明了:若 $k \ge 3$ 且为奇数,则 $f(t,k) \ge (t+1)k - 2t + 4$. 这些改进了某些已知结果.

关键词: 直径; 变更图; 边增加; 边减少.