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Abstract: Let P (t, n) and C(t, n) denote the minimum diameter of a connected graph ob-
tained from a single path and a circle of order n plus t extra edges, respectively, and f(t, k)
the maximum diameter of a connected graph obtained by deleting t edges from a graph with
diameter k. This paper shows that for any integers t ≥ 4 and n ≥ 5, P (t, n) ≤

n−8

t+1
+ 3,

C(t, n) ≤
n−8

t+1
+ 3 if t is odd and C(t, n) ≤

n−7

t+2
+ 3 if t is even;

⌈

n−1

5

⌉

≤ P (4, n) ≤
⌈

n+3

5

⌉

,
⌈

n

4

⌉

− 1 ≤ C(3, n) ≤
⌈

n

4

⌉

; and f(t, k) ≥ (t + 1)k − 2t + 4 if k ≥ 3 and is odd, which improves
some known results.
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1. Introduction

We follow [1] for graph-theoretical terminology and notation not defined here. Let G =

(V, E) be a simple undirected graph with a vertex-set V = V (G) and an edge-set E = E(G).

Let P (t, n) and C(t, n) be the minimum diameter of a graph obtained by adding t extra edges

to a path and a cycle of order n, respectively. Let f(t, k) denote the maximum diameter of a

connected graph obtained by deleting t edges from a graph with diameter k. For given integers

t, n and k, the problems determining P (t, n), C(t, n) and f(t, k), proposed by Chung et al.[2],

are of important interest in designing and analysis of interconnection networks[5].

For some small t and special n, the values of P (t, n) and C(t, n) have been determined.

It is easy to verify that P (1, n) = C(1, n) =
⌊

n
2

⌋

for n ≥ 3; Schoone et al.[4] determined

P (2, n) =
⌈

n
3

⌉

and C(2, n) =
⌈

n+2
4

⌉

for n ≥ 4, and P (3, n) =
⌈

n+1
4

⌉

for n ≥ 5; For general t ≥ 3,

n ≥ 5, Chung and Garey et al.[2] obtained the following results: n
t+1 − 1 ≤ P (t, n) < n

t+1 + 3,
n

t+1 − 1 ≤ C(t, n) < n
t+1 + 3 if t is odd and n

t+2 − 1 ≤ C(t, n) < n
t+2 +3 if t is even; Deng and Xu

et al.[3] determined P (t, (2k − 1)(t + 1) + 2) = 2k for any positive integer k,
⌈

n−1
t+1

⌉

≤ P (t, n) ≤
⌈

n−1
t+1

⌉

+ 1 for t = 4, 5 and n ≥ 5, and, in general,
⌈

n−1
t+1

⌉

≤ P (t, n) ≤
⌊

n−3
t+1

⌋

+ 3. As to f(t, k)

Schoone et al.[4] determined:

(t + 1)k ≥ f(t, k) ≥

{

(t + 1)k − t, if k is even;
(t + 1)k − 2t + 2, if k ≥ 3 and is odd.
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In this paper, we improve these upper bounds by proving that P (t, n) ≤ n−8
t+1 + 3 and

C(t, n) ≤ n−8
t+1 + 3 if t is odd and C(t, n) ≤ n−7

t+2 + 3 if t is even for any integers t ≥ 4 and n ≥ 5.

For special cases, we have
⌈

n−1
5

⌉

≤ P (4, n) ≤
⌈

n+3
5

⌉

and
⌈

n
4

⌉

− 1 ≤ C(3, n) ≤
⌈

n
4

⌉

for n ≥ 5.

Finally we give f(t, k) ≥ (t + 1)k − 2t + 4 if k ≥ 3 and is odd.

2. Several lemmas

Lemma 2.1 P (t, n) ≤ k if n ≤ k(t + 1) − 2t + 5 for integers k ≥ 1 and t ≥ 4.

Proof It is clear that P (t, n) ≤ P (t, k(t + 1) − 2t + 5) for n ≤ k(t + 1) − 2t + 5. To prove the

lemma, we only need to construct an altered graph G from a single path P of order k(t+1)−2t+5

by adding t extra edges such that the diameter of G is at most k.

Let P = (x1, x2, . . . , xk(t+1)−2t+5) be a single path. We construct G from P by adding t

edges as follows:
e1 = (x2k , x1)
e2 = (xk , x3k)
ej = (x2k , xk(j+1)−2j+5), j = 3, 5, . . . , 2d t

2e − 1
ei = (xk, xk(i+1)−2i+5), i = 4, 6, . . . , 2b t

2c

See Fig.1 for an example, where k = 5, t = 8 and n = 34.

r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r

x1 x5 x10 x15 x19 x22 x25 x28 x31 x34

e8

e7

e6

e5

e4

e3

e2

e1

Fig.1 Illustration of Lemma 2.1 for k = 5, t = 8 and n = 34.

Let P ′ = (x2k , x2k+1, · · · , x4k−1) and H = P ′ + e3. It is easy to see that H is a cycle of

length 2k, and so d(H) = k.

Thus, let P ′′ = (x2k+1, x2k+2, · · · , x4k−2), where P ′′ ⊂ P ′. We have

dG(xi, xk) + dG(xi, x2k) =

{

k + 1, if xi ∈ V (P ′′);
k, if xi /∈ V (P ′′).

So, for any two distinct vertices xa and xb in G, if xa, xb ∈ V (P ′), then dG(xa, xb) ≤ dH(xa, xb) ≤

k; Otherwise,

dG(xa, xk) + dG(xa, x2k) + dG(xb, xk) + dG(xb, x2k) ≤ (k + 1) + k = 2k + 1,

which implies

2(dG(xa, xb)) ≤ dG(xa, xk) + dG(xb, xk) + dG(xa, x2k) + dG(xb, x2k) ≤ 2k + 1,
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that is, dG(xa, xb) ≤ k. Thus, we get d(G) ≤ k.

Lemma 2.2 P (t, n) ≤ 2k if n ≤ 2k(t + 1) − t + 1 for integers k ≥ 1 and t ≥ 4.

Proof Similar to the proof of Lemma 2.1, we construct an altered graph G from a single path

P = (x1, x2, . . . , x2k(t+1)−t+1) by adding t extra edges:

ei = (xk+1, x(2i+1)k−i+2), i = 1, 2, . . . , t.

See Fig.2 for an example, where k = 3,t = 6 and n = 37.

r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r

x1 x4 x10 x15 x20 x25 x30 x35 x37

Fig.2 Illustration of Lemma 2.2 for k = 3, t = 6 and n = 37.

It is easy to know dG(xi, xk) ≤ k for any i = 1, 2, · · · , 2k(t + 1) − t + 1. Thus

dG(xi, xj) ≤ d(xi, xk) + d(xk, xj) ≤ 2k for 1 ≤ i 6= j ≤ 2k(t + 1) − t + 1,

which means that d(G) ≤ 2k. 2

Lemma 2.3 Let both t and k be integers. If t ≥ 4, then

C(t, n) ≤

{

k for n ≤ k(t + 1) − 2t + 5, k ≥ 3;
2k for n ≤ 2k(t + 1) − t + 1, k ≥ 1.

Proof If we add one edge joining two end vertices of the path Pk(t+1)−2t+5 and add other t

edges in the same way as one used in the proof of Lemma 2.1, then we could get an altered graph

G from a single cycle of order k(t + 1) − 2t + 5 by adding t extra edges such that the diameter

of G is not more than k. Thus we have

C(t, n) ≤ k for n ≤ k(t + 1) − 2t + 5 and k ≥ 3.

In a way similar to one used in the proof of Lemma 2.2, we get another altered graph from a

single cycle of order 2k(t + 1)− t + 1 by adding t extra edges such that the diameter at most 2k.

It means that

C(t, n) ≤ 2k for n ≤ 2k(t + 1) − t + 1 and k ≥ 1

as required.
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Lemma 2.4 Let t and k be integers. If t is even and t ≥ 4, then C(t, n) ≤ k for n ≤ k(t+2)−2t+2

and k ≥ 3.

Proof Again we need to construct an altered graph G from a single cycle Cn = (x1, x2, · · · , xn, x1)

by adding t extra edges, where n = k(t + 2) − 2t + 2.

Now we let Gp be the altered graph of diameter k in the proof of Lemma 2.1 obtained from

a single path of order k(t+2)− 2(t+1)+5 by adding t+1 extra edges. Assume the t+1 added

edges are e1, e2, · · · , et, et+1.

Notices that k(t+2)−2(t+1)+5 = n+1 and if t is even, et+1 = (x2k , xn+1). So if we alter

the graph Gp by deleting the vertex xn+1 and the edge et+1 and adjoining the vertices x1 and

xn, we get another graph Gc, which is an altered graph obtained from a single cycle of order n

by adding t extra edges.

See Fig.3 for an example, where k = 5, n = 30 and t = 6.

r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r

x1 x5 x10 x15 x19 x22 x25 x28 x30

e6

e5

e4

e3

e2

e1

Fig.3 Illustration of Lemma 2.4 for k = 5, t = 6 and n = 30.

It is clear that dGc
(xi, xk)+dGc

(xi, x2k) = dGp
(xi, xk)+dGp

(xi, x2k) for any vertex xi ∈ Gc.

Similar to the proof of Lemma 2.1, we can verify that dGc
(xi, xj) ≤ dGp

(xi, xj) ≤ k for any two

vertices xi and xj in Gc, which implies d(Gc) ≤ k. And hence C(t, n) ≤ k for n ≤ k(t+2)−2t+2

as required.

3. Proof of main results

Theorem 3.1 For any integers t ≥ 4 and n ≥ 5, P (t, n) ≤ n−8
t+1 + 3; furthermore, P (t, n) ≤

⌈

n+t−6
2t+2

⌉

+
⌈

n+t−1
2t+2

⌉

.

Proof Firstly, when t is fixed, for any n ≥ 5 there exists an integer k ≥ 0 such that

(k − 1)(t + 1) − 2t + 6 ≤ n ≤ k(t + 1) − 2t + 5.

It follows from Lemma 2.1 that

p(t, n) ≤ k ≤
n + 2t− 6

t + 1
+ 1 =

n − 8

t + 1
+ 3.

Secondly, let m(k) = 2k(t + 1) − t + 1 for any n ≥ 3. Then there exists an integer k ≥ 0

such that m(k) + 1 ≤ n ≤ m(k + 1).
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If m(k) + 1 ≤ n ≤ m(k) + 5 = (2k + 1)(t + 1) − 2t + 5, then, from Lemma 2.1, we have

P (t, n) ≤ 2k + 1 = k + (k + 1) =

⌈

n + t − 6

2t + 2

⌉

+

⌈

n + t − 1

2t + 2

⌉

.

If m(k) + 6 ≤ n ≤ m(k + 1) = 2(k + 1)(t + 1) − t + 1, then, from Lemma 2.2, we have

P (t, n) ≤ 2(k + 1) = (k + 1) + (k + 1) =

⌈

n + t − 6

2t + 2

⌉

+

⌈

n + t − 1

2t + 2

⌉

.

The theorem follows.

Remarks It is clear that for t ≥ 4

P (t, n) ≤

⌈

n + t − 6

2t + 2

⌉

+

⌈

n + t − 1

2t + 2

⌉

≤
n − 8

t + 1
+ 3.

In fact, if let 2m =
⌈

n+t−1
t+1

⌉

=
⌈

n−2
t+1

⌉

+ 1, just when

2m − 2 <
n − 2

t + 1
≤ 2m− 1 ⇐⇒ (2m − 2)(t + 1) + 3 ≤ n ≤ (2m − 1)(t + 1) + 2,

we have

P (t, n) ≤

⌈

n + t − 6

2t + 2

⌉

+

⌈

n + t − 1

2t + 2

⌉

≤ m + m = 2m ≤
n − 3

t + 1
+ 2.

Thus, we get that

P (t, n) ≤

⌈

n + t − 6

2t + 2

⌉

+

⌈

n + t − 1

2t + 2

⌉

≤











n − 8

t + 1
+ 3, if

⌈

n−2
t+1

⌉

is even

n − 3

t + 1
+ 2, if

⌈

n−2
t+1

⌉

is odd
,

which is a better bound.

Corollary 3.1
⌈

n−1
5

⌉

≤ P (4, n) ≤
⌈

n+3
5

⌉

for any integer n ≥ 5.

Proof On the one hand, by P (t, n) ≥
⌈

n−1
t+1

⌉

, due to Deng and Xu[3] and the statement in

Introduction, we have

P (4, n) ≥

⌈

n − 1

5

⌉

.

On the other hand, by Theorem 3.1,

P (4, n) ≤
n − 8

5
+ 3 =

n + 2

5
+ 1.

Since P (4, n) is an integer, we have

P (4, n) ≤

⌊

n + 2

5

⌋

+ 1 =

⌈

n − 2

5

⌉

+ 1 =

⌈

n + 3

5

⌉

as required.
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Theorem 3.2 For any integers t ≥ 4 and n ≥ 5,

C(t, n) ≤











n − 7

t + 2
+ 3 if t is even;

⌈

n + t − 6

2t + 2

⌉

+

⌈

n + t − 1

2t + 2

⌉

≤
n − 8

t + 1
+ 3 if t is odd.

Proof If t is even and fixed, then for any n ≥ 5 there exists am integer k ≥ 3 such that

(k − 1)(t + 2) − 2t + 3 ≤ n ≤ k(t + 2) − 2t + 2.

From Lemma 2.4, we have

C(t, n) ≤ k ≤
n + 2t − 3

t + 2
+ 1 =

n − 7

t + 2
+ 3.

If t is odd and fixed, then for any n ≥ 5 there exists an integer k ≥ 3 such that

(k − 1)(t + 1) − 2t + 6 ≤ n ≤ k(t + 1) − 2t + 5.

From Lemma 2.3, we have

C(t, n) ≤ k ≤
n + 2t − 6

t + 1
+ 1 =

n − 8

t + 1
+ 3.

Furthermore, similar to the proof of Theorem 3.1, from Lemma 2.3 we have

C(t, n) ≤

⌈

n + t − 6

2t + 2

⌉

+

⌈

n + t − 1

2t + 2

⌉

,

which is a better bound.

Theorem 3.3
⌈

n
4

⌉

− 1 ≤ C(3, n) ≤
⌈

n
4

⌉

for any integer n ≥ 5.

Proof On the one hand, by C(t, n) ≥ n
t+1 − 1 if t is odd, due to Chung and Garey[2] and

statement in Introduction, we have

C(3, n) ≥
⌈n

4

⌉

− 1.

On the other hand, let k =
⌈

n
4

⌉

. It is easy to verify that the diameter of the altered graph

obtained from a cycle Cn = (x1, x2, · · · , xn) by adding the three edges

e1 = (x1, x2k+1), e2 = (x3, x2k+3), e3 = (xk+2, x3k+1),

is k. Thus

C(3, n) ≤ k =
⌈n

4

⌉

as required.

Theorem 3.4 f(t, k) ≥ (t + 1)k − 2t + 4 if k is an odd integer and k ≥ 3.
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Proof For any k ≥ 2, we can delete t edges from the altered graph G constructed in the proof

of Lemma 2.1 whose diameter is k to get a path of diameter (t + 1)k − 2t + 4. So we have

f(t, k) ≥ (t + 1)k − 2t + 4,

which, of course, holds if k is an odd integer and k ≥ 3.
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