Article ID：1000－341X（2006）03－0502－07
Document code：A

Diameters of Altered Graphs

WU Ye－zhou，XU Jun－ming
（Dept．of Math．，University of Science and Technology of China，Hefei 230026，China ）
（E－mail：yzwu＠ustc．edu．cn）

Abstract

Let $P(t, n)$ and $C(t, n)$ denote the minimum diameter of a connected graph ob－ tained from a single path and a circle of order n plus t extra edges，respectively，and $f(t, k)$ the maximum diameter of a connected graph obtained by deleting t edges from a graph with diameter k ．This paper shows that for any integers $t \geq 4$ and $n \geq 5, P(t, n) \leq \frac{n-8}{t+1}+3$ ， $C(t, n) \leq \frac{n-8}{t+1}+3$ if t is odd and $C(t, n) \leq \frac{n-7}{t+2}+3$ if t is even；$\left\lceil\frac{n-1}{5}\right\rceil \leq P(4, n) \leq\left\lceil\frac{n+3}{5}\right\rceil$ ， $\left\lceil\frac{n}{4}\right\rceil-1 \leq C(3, n) \leq\left\lceil\frac{n}{4}\right\rceil$ ；and $f(t, k) \geq(t+1) k-2 t+4$ if $k \geq 3$ and is odd，which improves some known results．

Key words：diameter；altered graph；edge addition；edge deletion．
MSC（2000）：05C12
CLC number：O157．5

1．Introduction

We follow［1］for graph－theoretical terminology and notation not defined here．Let $G=$ (V, E) be a simple undirected graph with a vertex－set $V=V(G)$ and an edge－set $E=E(G)$ ． Let $P(t, n)$ and $C(t, n)$ be the minimum diameter of a graph obtained by adding t extra edges to a path and a cycle of order n ，respectively．Let $f(t, k)$ denote the maximum diameter of a connected graph obtained by deleting t edges from a graph with diameter k ．For given integers t, n and k ，the problems determining $P(t, n), C(t, n)$ and $f(t, k)$ ，proposed by Chung et al．${ }^{[2]}$ ， are of important interest in designing and analysis of interconnection networks ${ }^{[5]}$ ．

For some small t and special n ，the values of $P(t, n)$ and $C(t, n)$ have been determined． It is easy to verify that $P(1, n)=C(1, n)=\left\lfloor\frac{n}{2}\right\rfloor$ for $n \geq 3$ ；Schoone et al．${ }^{[4]}$ determined $P(2, n)=\left\lceil\frac{n}{3}\right\rceil$ and $C(2, n)=\left\lceil\frac{n+2}{4}\right\rceil$ for $n \geq 4$ ，and $P(3, n)=\left\lceil\frac{n+1}{4}\right\rceil$ for $n \geq 5$ ；For general $t \geq 3$ ， $n \geq 5$ ，Chung and Garey et al．${ }^{[2]}$ obtained the following results：$\frac{n}{t+1}-1 \leq P(t, n)<\frac{n}{t+1}+3$ ， $\frac{n}{t+1}-1 \leq C(t, n)<\frac{n}{t+1}+3$ if t is odd and $\frac{n}{t+2}-1 \leq C(t, n)<\frac{n}{t+2}+3$ if t is even；Deng and Xu et al．${ }^{[3]}$ determined $P(t,(2 k-1)(t+1)+2)=2 k$ for any positive integer $k,\left\lceil\frac{n-1}{t+1}\right\rceil \leq P(t, n) \leq$ $\left\lceil\frac{n-1}{t+1}\right\rceil+1$ for $t=4,5$ and $n \geq 5$ ，and，in general，$\left\lceil\frac{n-1}{t+1}\right\rceil \leq P(t, n) \leq\left\lfloor\frac{n-3}{t+1}\right\rfloor+3$ ．As to $f(t, k)$ Schoone et al．${ }^{[4]}$ determined：

$$
(t+1) k \geq f(t, k) \geq \begin{cases}(t+1) k-t, & \text { if } k \text { is even; } \\ (t+1) k-2 t+2, & \text { if } k \geq 3 \text { and is odd }\end{cases}
$$

Received date：2004－12－29
Foundation item：the National Natural Science Foundation of China（10271114）

In this paper, we improve these upper bounds by proving that $P(t, n) \leq \frac{n-8}{t+1}+3$ and $C(t, n) \leq \frac{n-8}{t+1}+3$ if t is odd and $C(t, n) \leq \frac{n-7}{t+2}+3$ if t is even for any integers $t \geq 4$ and $n \geq 5$. For special cases, we have $\left\lceil\frac{n-1}{5}\right\rceil \leq P(4, n) \leq\left\lceil\frac{n+3}{5}\right\rceil$ and $\left\lceil\frac{n}{4}\right\rceil-1 \leq C(3, n) \leq\left\lceil\frac{n}{4}\right\rceil$ for $n \geq 5$. Finally we give $f(t, k) \geq(t+1) k-2 t+4$ if $k \geq 3$ and is odd.

2. Several lemmas

Lemma 2.1 $P(t, n) \leq k$ if $n \leq k(t+1)-2 t+5$ for integers $k \geq 1$ and $t \geq 4$.
Proof It is clear that $P(t, n) \leq P(t, k(t+1)-2 t+5)$ for $n \leq k(t+1)-2 t+5$. To prove the lemma, we only need to construct an altered graph G from a single path P of order $k(t+1)-2 t+5$ by adding t extra edges such that the diameter of G is at most k.

Let $P=\left(x_{1}, x_{2}, \ldots, x_{k(t+1)-2 t+5}\right)$ be a single path. We construct G from P by adding t edges as follows:

$$
\begin{aligned}
& e_{1}=\left(x_{2 k}, x_{1}\right) \\
& e_{2}=\left(x_{k}, x_{3 k}\right) \\
& e_{j}=\left(x_{2 k}, x_{k(j+1)-2 j+5}\right), j=3,5, \ldots, 2\left\lceil\frac{t}{2}\right\rceil-1 \\
& e_{i}=\left(x_{k}, x_{k(i+1)-2 i+5}\right), i=4,6, \ldots, 2\left\lfloor\frac{t}{2}\right\rfloor
\end{aligned}
$$

See Fig. 1 for an example, where $k=5, t=8$ and $n=34$.

Fig. 1 Illustration of Lemma 2.1 for $k=5, t=8$ and $n=34$.

Let $P^{\prime}=\left(x_{2 k}, x_{2 k+1}, \cdots, x_{4 k-1}\right)$ and $H=P^{\prime}+e_{3}$. It is easy to see that H is a cycle of length $2 k$, and so $d(H)=k$.

Thus, let $P^{\prime \prime}=\left(x_{2 k+1}, x_{2 k+2}, \cdots, x_{4 k-2}\right)$, where $P^{\prime \prime} \subset P^{\prime}$. We have

$$
d_{G}\left(x_{i}, x_{k}\right)+d_{G}\left(x_{i}, x_{2 k}\right)= \begin{cases}k+1, & \text { if } x_{i} \in V\left(P^{\prime \prime}\right) \\ k, & \text { if } x_{i} \notin V\left(P^{\prime \prime}\right)\end{cases}
$$

So, for any two distinct vertices x_{a} and x_{b} in G, if $x_{a}, x_{b} \in V\left(P^{\prime}\right)$, then $d_{G}\left(x_{a}, x_{b}\right) \leq d_{H}\left(x_{a}, x_{b}\right) \leq$ k; Otherwise,

$$
d_{G}\left(x_{a}, x_{k}\right)+d_{G}\left(x_{a}, x_{2 k}\right)+d_{G}\left(x_{b}, x_{k}\right)+d_{G}\left(x_{b}, x_{2 k}\right) \leq(k+1)+k=2 k+1
$$

which implies

$$
2\left(d_{G}\left(x_{a}, x_{b}\right)\right) \leq d_{G}\left(x_{a}, x_{k}\right)+d_{G}\left(x_{b}, x_{k}\right)+d_{G}\left(x_{a}, x_{2 k}\right)+d_{G}\left(x_{b}, x_{2 k}\right) \leq 2 k+1
$$

that is, $d_{G}\left(x_{a}, x_{b}\right) \leq k$. Thus, we get $d(G) \leq k$.
Lemma 2.2 $P(t, n) \leq 2 k$ if $n \leq 2 k(t+1)-t+1$ for integers $k \geq 1$ and $t \geq 4$.
Proof Similar to the proof of Lemma 2.1, we construct an altered graph G from a single path $P=\left(x_{1}, x_{2}, \ldots, x_{2 k(t+1)-t+1}\right)$ by adding t extra edges:

$$
e_{i}=\left(x_{k+1}, x_{(2 i+1) k-i+2}\right), i=1,2, \ldots, t .
$$

See Fig. 2 for an example, where $k=3, t=6$ and $n=37$.

Fig. 2 Illustration of Lemma 2.2 for $k=3, t=6$ and $n=37$.

It is easy to know $d_{G}\left(x_{i}, x_{k}\right) \leq k$ for any $i=1,2, \cdots, 2 k(t+1)-t+1$. Thus

$$
d_{G}\left(x_{i}, x_{j}\right) \leq d\left(x_{i}, x_{k}\right)+d\left(x_{k}, x_{j}\right) \leq 2 k \text { for } 1 \leq i \neq j \leq 2 k(t+1)-t+1 \text {, }
$$

which means that $d(G) \leq 2 k$.
Lemma 2.3 Let both t and k be integers. If $t \geq 4$, then

$$
C(t, n) \leq \begin{cases}k & \text { for } n \leq k(t+1)-2 t+5, k \geq 3 ; \\ 2 k & \text { for } n \leq 2 k(t+1)-t+1, k \geq 1 .\end{cases}
$$

Proof If we add one edge joining two end vertices of the path $P_{k(t+1)-2 t+5}$ and add other t edges in the same way as one used in the proof of Lemma 2.1, then we could get an altered graph G from a single cycle of order $k(t+1)-2 t+5$ by adding t extra edges such that the diameter of G is not more than k. Thus we have

$$
C(t, n) \leq k \text { for } n \leq k(t+1)-2 t+5 \text { and } k \geq 3 .
$$

In a way similar to one used in the proof of Lemma 2.2, we get another altered graph from a single cycle of order $2 k(t+1)-t+1$ by adding t extra edges such that the diameter at most $2 k$. It means that

$$
C(t, n) \leq 2 k \text { for } n \leq 2 k(t+1)-t+1 \text { and } k \geq 1
$$

as required.

Lemma 2.4 Let t and k be integers. If is even and $t \geq 4$, then $C(t, n) \leq k$ for $n \leq k(t+2)-2 t+2$ and $k \geq 3$.

Proof Again we need to construct an altered graph G from a single cycle $C_{n}=\left(x_{1}, x_{2}, \cdots, x_{n}, x_{1}\right)$ by adding t extra edges, where $n=k(t+2)-2 t+2$.

Now we let G_{p} be the altered graph of diameter k in the proof of Lemma 2.1 obtained from a single path of order $k(t+2)-2(t+1)+5$ by adding $t+1$ extra edges. Assume the $t+1$ added edges are $e_{1}, e_{2}, \cdots, e_{t}, e_{t+1}$.

Notices that $k(t+2)-2(t+1)+5=n+1$ and if t is even, $e_{t+1}=\left(x_{2 k}, x_{n+1}\right)$. So if we alter the graph G_{p} by deleting the vertex x_{n+1} and the edge e_{t+1} and adjoining the vertices x_{1} and x_{n}, we get another graph G_{c}, which is an altered graph obtained from a single cycle of order n by adding t extra edges.

See Fig. 3 for an example, where $k=5, n=30$ and $t=6$.

Fig. 3 Illustration of Lemma 2.4 for $k=5, t=6$ and $n=30$.

It is clear that $d_{G_{c}}\left(x_{i}, x_{k}\right)+d_{G_{c}}\left(x_{i}, x_{2 k}\right)=d_{G_{p}}\left(x_{i}, x_{k}\right)+d_{G_{p}}\left(x_{i}, x_{2 k}\right)$ for any vertex $x_{i} \in G_{c}$. Similar to the proof of Lemma 2.1, we can verify that $d_{G_{c}}\left(x_{i}, x_{j}\right) \leq d_{G_{p}}\left(x_{i}, x_{j}\right) \leq k$ for any two vertices x_{i} and x_{j} in G_{c}, which implies $d\left(G_{c}\right) \leq k$. And hence $C(t, n) \leq k$ for $n \leq k(t+2)-2 t+2$ as required.

3. Proof of main results

Theorem 3.1 For any integers $t \geq 4$ and $n \geq 5, P(t, n) \leq \frac{n-8}{t+1}+3$; furthermore, $P(t, n) \leq$ $\left\lceil\frac{n+t-6}{2 t+2}\right\rceil+\left\lceil\frac{n+t-1}{2 t+2}\right\rceil$.
Proof Firstly, when t is fixed, for any $n \geq 5$ there exists an integer $k \geq 0$ such that

$$
(k-1)(t+1)-2 t+6 \leq n \leq k(t+1)-2 t+5
$$

It follows from Lemma 2.1 that

$$
p(t, n) \leq k \leq \frac{n+2 t-6}{t+1}+1=\frac{n-8}{t+1}+3
$$

Secondly, let $m(k)=2 k(t+1)-t+1$ for any $n \geq 3$. Then there exists an integer $k \geq 0$ such that $m(k)+1 \leq n \leq m(k+1)$.

If $m(k)+1 \leq n \leq m(k)+5=(2 k+1)(t+1)-2 t+5$, then, from Lemma 2.1, we have

$$
P(t, n) \leq 2 k+1=k+(k+1)=\left\lceil\frac{n+t-6}{2 t+2}\right\rceil+\left\lceil\frac{n+t-1}{2 t+2}\right\rceil .
$$

If $m(k)+6 \leq n \leq m(k+1)=2(k+1)(t+1)-t+1$, then, from Lemma 2.2, we have

$$
P(t, n) \leq 2(k+1)=(k+1)+(k+1)=\left\lceil\frac{n+t-6}{2 t+2}\right\rceil+\left\lceil\frac{n+t-1}{2 t+2}\right\rceil .
$$

The theorem follows.
Remarks It is clear that for $t \geq 4$

$$
P(t, n) \leq\left\lceil\frac{n+t-6}{2 t+2}\right\rceil+\left\lceil\frac{n+t-1}{2 t+2}\right\rceil \leq \frac{n-8}{t+1}+3
$$

In fact, if let $2 m=\left\lceil\frac{n+t-1}{t+1}\right\rceil=\left\lceil\frac{n-2}{t+1}\right\rceil+1$, just when

$$
2 m-2<\frac{n-2}{t+1} \leq 2 m-1 \Longleftrightarrow(2 m-2)(t+1)+3 \leq n \leq(2 m-1)(t+1)+2
$$

we have

$$
P(t, n) \leq\left\lceil\frac{n+t-6}{2 t+2}\right\rceil+\left\lceil\frac{n+t-1}{2 t+2}\right\rceil \leq m+m=2 m \leq \frac{n-3}{t+1}+2 .
$$

Thus, we get that

$$
P(t, n) \leq\left\lceil\frac{n+t-6}{2 t+2}\right\rceil+\left\lceil\frac{n+t-1}{2 t+2}\right\rceil \leq \begin{cases}\frac{n-8}{t+1}+3, & \text { if }\left\lceil\frac{n-2}{t+1}\right\rceil \text { is even } \\ \frac{n-3}{t+1}+2, & \text { if }\left\lceil\frac{n-2}{t+1}\right\rceil \text { is odd }\end{cases}
$$

which is a better bound.
Corollary $3.1\left\lceil\frac{n-1}{5}\right\rceil \leq P(4, n) \leq\left\lceil\frac{n+3}{5}\right\rceil$ for any integer $n \geq 5$.
Proof On the one hand, by $P(t, n) \geq\left\lceil\frac{n-1}{t+1}\right\rceil$, due to Deng and $\mathrm{Xu}^{[3]}$ and the statement in Introduction, we have

$$
P(4, n) \geq\left\lceil\frac{n-1}{5}\right\rceil .
$$

On the other hand, by Theorem 3.1,

$$
P(4, n) \leq \frac{n-8}{5}+3=\frac{n+2}{5}+1
$$

Since $P(4, n)$ is an integer, we have

$$
P(4, n) \leq\left\lfloor\frac{n+2}{5}\right\rfloor+1=\left\lceil\frac{n-2}{5}\right\rceil+1=\left\lceil\frac{n+3}{5}\right\rceil
$$

as required.

Theorem 3.2 For any integers $t \geq 4$ and $n \geq 5$,

$$
C(t, n) \leq \begin{cases}\frac{n-7}{t+2}+3 & \text { if } t \text { is even } \\ \left\lceil\frac{n+t-6}{2 t+2}\right\rceil+\left\lceil\frac{n+t-1}{2 t+2}\right\rceil \leq \frac{n-8}{t+1}+3 & \text { if } t \text { is odd }\end{cases}
$$

Proof If t is even and fixed, then for any $n \geq 5$ there exists am integer $k \geq 3$ such that

$$
(k-1)(t+2)-2 t+3 \leq n \leq k(t+2)-2 t+2
$$

From Lemma 2.4, we have

$$
C(t, n) \leq k \leq \frac{n+2 t-3}{t+2}+1=\frac{n-7}{t+2}+3
$$

If t is odd and fixed, then for any $n \geq 5$ there exists an integer $k \geq 3$ such that

$$
(k-1)(t+1)-2 t+6 \leq n \leq k(t+1)-2 t+5
$$

From Lemma 2.3, we have

$$
C(t, n) \leq k \leq \frac{n+2 t-6}{t+1}+1=\frac{n-8}{t+1}+3
$$

Furthermore, similar to the proof of Theorem 3.1, from Lemma 2.3 we have

$$
C(t, n) \leq\left\lceil\frac{n+t-6}{2 t+2}\right\rceil+\left\lceil\frac{n+t-1}{2 t+2}\right\rceil
$$

which is a better bound.
Theorem $3.3\left\lceil\frac{n}{4}\right\rceil-1 \leq C(3, n) \leq\left\lceil\frac{n}{4}\right\rceil$ for any integer $n \geq 5$.
Proof On the one hand, by $C(t, n) \geq \frac{n}{t+1}-1$ if t is odd, due to Chung and Garey ${ }^{[2]}$ and statement in Introduction, we have

$$
C(3, n) \geq\left\lceil\frac{n}{4}\right\rceil-1
$$

On the other hand, let $k=\left\lceil\frac{n}{4}\right\rceil$. It is easy to verify that the diameter of the altered graph obtained from a cycle $C_{n}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ by adding the three edges

$$
e_{1}=\left(x_{1}, x_{2 k+1}\right), e_{2}=\left(x_{3}, x_{2 k+3}\right), e_{3}=\left(x_{k+2}, x_{3 k+1}\right)
$$

is k. Thus

$$
C(3, n) \leq k=\left\lceil\frac{n}{4}\right\rceil
$$

as required.
Theorem $3.4 f(t, k) \geq(t+1) k-2 t+4$ if k is an odd integer and $k \geq 3$.

Proof For any $k \geq 2$ ，we can delete t edges from the altered graph G constructed in the proof of Lemma 2.1 whose diameter is k to get a path of diameter $(t+1) k-2 t+4$ ．So we have

$$
f(t, k) \geq(t+1) k-2 t+4
$$

which，of course，holds if k is an odd integer and $k \geq 3$ ．

References：

［1］BONDY J A，MURTY U S R．Graph Theory with Applications［M］，Macmillan Press，London， 1976.
［2］CHUNG F R K，GAREY M R．Diameter bounds for altered graphs［J］．J．Graph Theory，1984，8（4）：511－534．
［3］DENG Zhi－guo，XU Jun－ming．On diameters of altered graphs［J］．J．Math．Study，2004，37（1）：35－41．
［4］SCHOONE A A，BODLAENDER H L，VAN LEEUWEN J．Diameter increase caused by edge deletion［J］．J． Graph Theory，1987，11：409－427
［5］XU Jun－ming．Topological Structure and Analysis of Interonnection Network［M］．Dordecht／Boston／London： Kluwer Academic Publishers， 2001.

变更图的直径

吴叶舟，徐俊明
（中国科学技术大学数学系，安徽 合肥 230026 ）
摘要：$P(t, n)$ 和 $C(t, n)$ 分别表示在阶为 n 的路和圈中添加 t 条边后得到的图的最小直径；$f(t, k)$表示从直径为 k 的图中删去 t 条边后得到的连通图的最大直径。这篇文章证明了当 $t \geq 4$ 且 $n \geq 5$时，$P(t, n) \leq \frac{n-8}{t+1}+3$ ；若 t 为奇数，则 $C(t, n) \leq \frac{n-8}{t+1}+3$ ；若 t 为偶数，则 $C(t, n) \leq \frac{n-7}{t+2}+3$ ．特别地，$\left\lceil\frac{n-1}{5}\right\rceil \leq P(4, n) \leq\left\lceil\frac{n+3}{5}\right\rceil,\left\lceil\frac{n}{4}\right\rceil-1 \leq C(3, n) \leq\left\lceil\frac{n}{4}\right\rceil$ 。最后，证明了：若 $k \geq 3$ 且为奇数，则 $f(t, k) \geq(t+1) k-2 t+4$ ．这些改进了某些已知结果．

关键词：直径；变更图；边增加；边减少．

