On the Randić index of unicyclic conjugated molecules

Huiqing Liu*
School of Mathematics and Computer Science, Hubei University, Wuhan 430062, China
E-mail: hqliu@nankai.edu.cn
Xiangfeng Pan and Jun-Ming Xu
Department of Mathematics, University of Science and Technology of China, Hefei 230026, China

Received 12 May 2005; revised 6 June 2005; published online 13 March 2006

Abstract

The Randić index $R(G)$ of a graph G is the sum of the weights $(d(u) d(v))^{-\frac{1}{2}}$ of all edges $u v$ of G, where $d(u)$ denotes the degree of the vertex u. In this paper, we first present a sharp lower bound on the Randić index of conjugated unicyclic graphs (unicyclic graphs with perfect matching). Also a sharp lower bound on the Randić index of unicyclic graphs is given in terms of the order and given size of matching.

KEY WORDS: Randić index, unicyclic graph, given size of matching
AMS subject classification: 05C35

1. Introduction

For a (molecular) graph $G=(V, E)$, the Randić index $R(G)$ is defined in [12] as

$$
R(G)=\sum_{u v \in E}[d(u) d(v)]^{-\frac{1}{2}}
$$

It is well known that Randic [12] introduced the index, which he called the branching index or molecular connectivity index, in his study of alkanes. The Randić index has been closely correlated with many chemical properties (see $[7,8]$). Recently, the Randić index attracted the attention of many researchers and many results are obtained (see [1, 4-6, 9-11, 14]). In particular, Gao and Lu [6] gave sharp lower and upper bounds for $R(G)$ of unicyclic graphs. In [10], Lu, et al. obtain sharp lower bounds on $R(G)$ of trees with a given size of matching. Here, we consider a type graph, namely that of conjugated unicyclic graphs (unicyclic graphs with perfect matching), and give sharp lower bounds on the Randić index of unicyclic graph with a given size of matching.

[^0]We first introduce some terminologies and notations of graphs. Other undefined terminologies and notations may refer to [2]. We only consider finite, undirected and simple graphs. Denote by C_{n} the cycle of n vertices. For a vertex x of a graph G, we denote the neighborhood and the degree of x by $N(x)$ and $d(x)$, respectively. A pendant vertex is a vertex of degree 1. Denote by $P V$ the set of pendant vertices of G. Let $d_{G}(x, y)$ denote the length of a shortest (x, y)-path in G. We will use $G-x$ to denote the graph that arises from G by deleting the vertex $x \in V(G)$ together with its incident edges. An edge e of G is said to be contracted if it is deleted and its ends are identified; the resulting graph is denoted by $G \cdot e$. A subset $M \subseteq E$ is called a matching in G if its elements are edges and no two are adjacent in G. A matching M saturates a vertex v, and v is said to be M-saturated, if some edge of M is incident with v. If every vertex of G is M saturated, the matching M is perfect. A matching M is said to be an m-matching, if $|M|=m$ and for every matching M^{\prime} in $G,\left|M^{\prime}\right| \leqslant m$.

Let n and m be positive integers with $n \geqslant 2 m$. Let $U_{n, m}$ be a graph with n vertices obtained from C_{3} by attaching $n-2 m+1$ pendent edges and $m-2$ paths of length 2 to one vertex of C_{3} (see figure 1).

Unicyclic graphs are connected graphs with n vertices and n edges. Denote $\mathscr{U}_{n, m}=\{G: G$ is a unicyclic graph with n vertices and an m-matching $\}$.

2. Lemmas and results

We first give some lemmas that will be used in the proof of our results.

Lemma 1 [3]. Let $G \in \mathscr{U}_{2 m, m}, m \geqslant 3$, and let T be a tree in G attached to a root r. If $v \in V(T)$ is a vertex furthest from the root r with $d_{G}(v, r) \geqslant 2$, then v is a pendant vertex and adjacent to a vertex u of degree 2 .

Lemma 2 [13]. Let $G \in \mathscr{U}_{n, m}(n>2 m)$ and $G \not \equiv C_{n}$. Then there is an m-matching M and a pendant vertex v such that M does not saturate v.

Lemma 3 [11]. Let $G \in \mathscr{U}_{2 m, m}$. If $P V \neq \emptyset$, then for any vertex $u \in V(G), \mid N(u) \cap$ $P V \mid \leqslant 1$.

$U_{n, m}$

H_{6}

H_{8}

Q_{8}

Figure 1.

Denote

$$
\begin{equation*}
h(x, y)=\frac{y}{\sqrt{x}}+\frac{x-y}{\sqrt{2 x}}, \quad 0 \leqslant y \leqslant x-1 \tag{1}
\end{equation*}
$$

and

$$
f(x)=\frac{1}{\sqrt{x+1}}+\frac{x}{\sqrt{2(x+1)}}, \quad x \geqslant 1
$$

where x and y are integers.
Lemma $4[10,11]$. (i) The function $h(x-1, y)-h(x, y+1)$ are monotonously increasing in $x \geqslant 2$ and $y \geqslant 0$, respectively;
(ii) the function $f(x)-f(x+1)$ is monotonously increasing in $x \geqslant 1$.

Lemma 5. Let $g(x)=\frac{2}{\sqrt{x}}+\frac{x-2}{\sqrt{2 x}}, x \geqslant 3$. Then the function $g(x)-g(x+1)$ is monotonously increasing in $x \geqslant 3$.

Proof. Note that $\frac{d^{2} g(x)}{d x^{2}}=-\frac{1}{2} x^{-\frac{5}{2}}\left(\frac{\sqrt{2}}{4} x+\frac{3 \sqrt{2}}{2}-3\right)<0$, and hence the lemma holds.

Lemma 6 [9]. Let G be a simple connected graph of order n. Then

$$
R(G) \leqslant \frac{n}{2}
$$

with equality if and only if G is a regular graph.
Denote

$$
\psi(n, m)=\frac{n-2 m+1}{\sqrt{n-m+1}}+\frac{m}{\sqrt{2(n-m+1)}}+\frac{m}{\sqrt{2}}+\frac{1-2 \sqrt{2}}{2},
$$

where n and m are positive integers and $n \geqslant 2 m$.
Lemma 7. If $m \geqslant 3$, then $\psi(2 m-1, m-1)+1>\psi(2 m+1, m), \psi(2 m-2, m-1)$ $+\frac{1}{\sqrt{3}}+\frac{2}{\sqrt{6}}-\frac{1}{2}>\psi(2 m, m)$ and $\psi(2 m-2, m-1)+\frac{1}{\sqrt{3}}+\frac{1}{3}>\psi(2 m, m)$.

Proof. First we have

$$
\begin{aligned}
& \psi(2 m-1, m-1)-\psi(2 m+1, m)+1 \\
= & \frac{2}{\sqrt{m+1}}+\frac{m-1}{\sqrt{2(m+1)}}-\frac{2}{\sqrt{m+2}}-\frac{m}{\sqrt{2(m+2)}}-\frac{1}{\sqrt{2}}+1 \\
\geqslant & 1+\frac{2}{\sqrt{8}}-\frac{2}{\sqrt{5}}-\frac{3}{\sqrt{10}}-\frac{1}{\sqrt{2}}+1>0,
\end{aligned}
$$

where the last second inequality follows by lemma 5 .
Similarly,

$$
\begin{aligned}
& \psi(2 m-2, m-1)-\psi(2 m, m)+\frac{1}{\sqrt{3}}+\frac{2}{\sqrt{6}}-\frac{1}{2} \\
= & \frac{m-1}{\sqrt{2 m}}+\frac{1}{\sqrt{m}}-\frac{m}{\sqrt{2(m+1)}}-\frac{1}{\sqrt{m+1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{2}{\sqrt{6}}-\frac{1}{2} \\
\geqslant & \frac{2}{\sqrt{6}}+\frac{1}{\sqrt{3}}-\frac{3}{\sqrt{8}}-\frac{1}{2}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{2}{\sqrt{6}}-\frac{1}{2} \\
= & \frac{4}{\sqrt{6}}+\frac{2}{\sqrt{3}}-\frac{3}{\sqrt{8}}-\frac{1}{\sqrt{2}}-1>0,
\end{aligned}
$$

where the last second inequality follows by lemma 4(ii).
Next note that $\psi(2 m-2, m-1)-\psi(2 m, m)+\frac{1}{\sqrt{3}}+\frac{1}{3}>\psi(2 m-2, m-1)$ $-\psi(2 m, m)+\frac{1}{\sqrt{3}}+\frac{2}{\sqrt{6}}-\frac{1}{2}>0$, and hence the lemma holds.

We first obtain the following result.
Theorem 8. Let $G \in \mathscr{U} 2 m, m \backslash\left\{H_{6}, H_{8}\right\}(m \geqslant 2)$. Then

$$
\begin{equation*}
R(G) \geqslant \psi(2 m, m) . \tag{2}
\end{equation*}
$$

Furthermore, equality in (2) holds if and only if $G \cong U_{2 m, m}$.
Proof. First we note that if $G \cong U_{2 m, m}$, then equality in (2) holds clearly.
Now we prove that if $G \in \mathscr{U}_{2 m, m}$, then (2) holds and equality in (2) holds only if $G \cong U_{2 m, m}$.

If $m=2$, then either $G \cong C_{4}$ or $G \cong U_{4,2}$. Note that $R\left(C_{4}\right)=2>R\left(U_{4,2}\right)=$ $\frac{1}{2}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{6}}=1.8939$. Thus the theorem holds for $m=2$.

We now suppose that $m \geqslant 3$ and proceed by induction on m.
If $G \cong C_{2 m}$, by the induction hypothesis and lemma 7, then

$$
\begin{aligned}
R(G)= & R\left(C_{2(m-1)}\right)+1>\psi(2 m-2, m-1)+1>\psi(2 m-2, m-1)+\frac{1}{\sqrt{3}} \\
& +\frac{1}{3}>\psi(2 m, m) .
\end{aligned}
$$

So in the following proof, we can assume that $G \not \not C_{2 m}$.
By lemmas 1 and 3, we only consider the following two cases.
Case 1. G has a pendant vertex v which is adjacent to a vertex w of degree 2 .

Figure 2.
In this case, there is a unique vertex $u \neq v$ such that $u w \in E(G)$. Denote $N(u) \cap P V=\left\{v_{1}, \ldots, v_{r-1}, v_{r}\right\}$ and $N(u) \backslash P V=\left\{x_{1}, \ldots, x_{t-r-1}, x_{t-r}=w\right\}$. Then $t \leqslant m+1$ and all $d\left(x_{j}\right)=d_{j} \geqslant 2$.

Let $G^{\prime}=G-v-w$. Then $G^{\prime} \in \mathscr{U}_{2(m-1), m-1}$.
If $G^{\prime} \cong H_{6}$, then $G \cong Q_{8}$ and $R\left(Q_{8}\right)=3.7701>\psi(8,4)=3.6263$.
If $G^{\prime} \cong H_{8}$, then $G \in\left\{G_{i} \mid 1 \leqslant i \leqslant 6\right\}$, where $G_{i}(1 \leqslant i \leqslant 6)$ are illustrated in figure 2.
By $\psi(10,5)=4.4729$, it is easy to verify that $U_{10,5}$ has the minimum Randić index among all unicyclic graphs in $\left\{G_{i} \mid 1 \leqslant i \leqslant 6\right\} \cup\left\{U_{10,5}\right\}$ (see figure 2).

Otherwise, if $G^{\prime} \notin\left\{H_{6}, H_{8}\right\}$, by the induction hypothesis, then

$$
\begin{align*}
R(G)= & R\left(G^{\prime}\right)+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2 t}}+r\left(\frac{1}{\sqrt{t}}-\frac{1}{\sqrt{t-1}}\right)+\sum_{i=1}^{t-r-1} \frac{1}{\sqrt{d_{i}}}\left(\frac{1}{\sqrt{t}}-\frac{1}{\sqrt{(t-1)}}\right) \\
\geqslant & R\left(G^{\prime}\right)+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2 t}}+r\left(\frac{1}{\sqrt{t}}-\frac{1}{\sqrt{t-1}}\right)+(t-r-1)\left(\frac{1}{\sqrt{2 t}}-\frac{1}{\sqrt{2(t-1)}}\right) \\
\geqslant & \psi(2 m-2, m-1)+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2 t}}+r\left(\frac{1}{\sqrt{t}}-\frac{1}{\sqrt{t-1}}\right) \\
& +(t-r-1)\left(\frac{1}{\sqrt{2 t}}-\frac{1}{\sqrt{2(t-1)}}\right) \\
= & \psi(2 m, m)+\frac{m-1}{\sqrt{2 m}}+\frac{1}{\sqrt{m}}-\frac{m}{\sqrt{2(m+1)}}-\frac{1}{\sqrt{m+1}} \\
& +\frac{1}{\sqrt{2 t}}+r\left(\frac{1}{\sqrt{t}}-\frac{1}{\sqrt{t-1}}\right)+(t-r-1)\left(\frac{1}{\sqrt{2 t}}-\frac{1}{\sqrt{2(t-1)}}\right) . \tag{3}
\end{align*}
$$

Note that $r \leqslant 1$ by lemma 3. If $r=1$, by (3), then

$$
\begin{aligned}
R(G) \geqslant & \psi(2 m, m)+\frac{m-1}{\sqrt{2 m}}+\frac{1}{\sqrt{m}}-\frac{m}{\sqrt{2(m+1)}}-\frac{1}{\sqrt{m+1}} \\
& +\frac{t-1}{\sqrt{2 t}}+\frac{1}{\sqrt{t}}-\frac{t-2}{\sqrt{2(t-1)}}-\frac{1}{\sqrt{t-1}} \\
= & \psi(2 m, m)+[f(m-1)-f(m)]-[f(t-2)-f(t-1)] \\
\geqslant & \psi(2 m, m)
\end{aligned}
$$

where $f(x)$ is defined in (1) and the last inequality follows by lemma 4 as $m-1 \geqslant$ $t-2$. In order for the equality to hold, all inequalities in the above argument should be equalities. Thus we have

$$
R\left(G^{\prime}\right)=\psi(2 m-2, m-1), \quad m=t-1, \quad r=1 \text { and } d_{1}=\cdots=d_{t-1}=2
$$

By the induction hypothesis, $G^{\prime} \cong U_{2 m-2, m-1}$. Note that $U_{2 m-2, m-1}$ has a unique vertex of degree greater than 2 , and hence $G \cong U_{2 m, m}$.

If $r=0$, by (3), then

$$
\begin{aligned}
R(G) \geqslant & \psi(2 m, m)+\left(\frac{1}{\sqrt{2}}-1\right)\left(\frac{1}{\sqrt{t}}-\frac{1}{\sqrt{t-1}}\right) \\
& +[f(m-1)-f(m)]-[f(t-2)-f(t-1)] \\
> & \psi(2 m, m)
\end{aligned}
$$

Case 2. G is a cycle C together with some pendant edges attached to some vertices on C. For convenience, we label the vertices of C with $u_{1}, u_{2}, \ldots, u_{p}$ one by one clockwise.

If each vertex of C is attached by a pendant edges, then $m \geqslant 4$ as $G \not \equiv H_{6}$. If $m=4$, then $R(G)=4 \cdot\left(\frac{1}{3}+\frac{1}{\sqrt{3}}\right)=3.6427>\psi(8,4)=3.6263$. If $m \geqslant 5$, by the induction hypothesis and lemma 7 , then

$$
\begin{aligned}
R(G)= & (m-1) \cdot\left(\frac{1}{3}+\frac{1}{\sqrt{3}}\right)+\frac{1}{3}+\frac{1}{\sqrt{3}}>\psi(2 m-2, m-1)+\frac{1}{3} \\
& +\frac{1}{\sqrt{3}}>\psi(2 m, m) .
\end{aligned}
$$

Otherwise, there is at least a vertex of degree two on C. Since $G \not \not C_{n}$, there exists some $i \in\{1,2, \ldots, n\}$ such that $d_{G}\left(u_{i}\right)=3$ and $d_{G}\left(u_{i+1}\right)=2$, where $u_{n+1}=u_{1}$. Without loss of generality, assume $d_{G}\left(u_{2}\right)=3$ and $d_{G}\left(u_{3}\right)=2$. Denote by v_{2} the pendant vertex adjacent to u_{2}. Obviously, every pair of vertices of degree three can not be adjacent to a common vertex of degree two (since G has a perfect matching). Then each vertex of degree two on C must be adjacent to another vertex of degree two. Thus $d_{G}\left(u_{4}\right)=2$.

Let $G^{\prime}=\left(G \cdot u_{2} v_{2}\right) \cdot u_{2} u_{3}$ be a graph obtained from G by contracting $u_{2} v_{2}$ and $u_{2} u_{3}$ consecutively. Then $G^{\prime} \in \mathscr{U}_{n-2, m-1} \backslash\left\{H_{6}, H_{8}\right\}$. By the induction hypothesis and lemma 7 , if $d_{G}\left(u_{1}\right)=3$, then

$$
R(G)=R\left(G^{\prime}\right)+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{6}}+\frac{1}{3}-\frac{1}{\sqrt{6}} \geqslant \psi(2 m-2, m-1)+\frac{1}{\sqrt{3}}+\frac{1}{3}>\psi(2 m, m)
$$

and if $d_{G}\left(u_{1}\right)=2$, then

$$
R(G)=R\left(G^{\prime}\right)+\frac{1}{\sqrt{3}}+\frac{2}{\sqrt{6}}-\frac{1}{2} \geqslant \psi(2 m-2, m-1)+\frac{1}{\sqrt{3}}+\frac{2}{\sqrt{6}}-\frac{1}{2}>\psi(2 m, m)
$$

Hence the proof of theorem 8 is complete.

Note 9. It is easy to calculate that $R\left(H_{6}\right)=2.7321<\psi(6,3)=2.7678$ and $R\left(H_{8}\right)=3.6260<\psi(8,4)=3.6263$, where H_{6} and H_{8} are shown in figure 1. Thus, by theorem $8, H_{6}$ has the minimum Randić index in $\mathscr{U}_{6,3}$ and H_{8} has the minimum Randić index in $\mathscr{U}_{8,4}$.

Theorem 10. Let $G \in \mathscr{U}_{n, m}(n \geqslant 2 m, m \geqslant 5)$, then

$$
\begin{equation*}
R(G) \geqslant \psi(n, m) \tag{4}
\end{equation*}
$$

and equality in (4) holds if and only if $G \cong U_{n, m}$.

Proof. First we note that if $G \cong U_{n, m}$, then the equality in (4) holds clearly.
Now applying induction on n, we prove that if $G \in \mathscr{U}_{n, m}$, then (4) holds and the equality in (4) holds only if $G \cong U_{n, m}$.

If $n=2 m$, then the theorem holds by theorem 8 .
Therefore we assume that $n>2 m$ and the result holds for smaller values of n.

If $G \cong C_{n}$, then $n=2 m+1$, since G has an m-matching. If $m=5$, then $R(G)=\frac{11}{2}>\psi(11,5)=4.7136$. If $m \geqslant 6$, by the induction hypothesis and lemma 7, then

$$
R(G)=R\left(C_{2(m-1)+1}\right)+1>\psi(2 m-1, m-1)+1>\psi(2 m+1, m)
$$

So in the following proof, we can assume $G \nsubseteq C_{n}$.
By lemma 2, G has an m-matching M and a pendant vertex v such that M does not saturate v. Let $u v \in E(G)$ with $d(u)=t$. Denote $N(u) \cap P V=$ $\left\{v_{1}, \ldots, v_{r-1}, v_{r}=v\right\}$ and $N(u) \backslash P V=\left\{x_{1}, \ldots, x_{t-r}\right\}$. Then all $d\left(x_{j}\right)=d_{j} \geqslant 2$.

Let $G^{\prime}=G-v$. Then $G^{\prime} \in \mathscr{U}_{n-1, m}$. By the induction hypothesis, we have

$$
\begin{align*}
R(G)= & R\left(G^{\prime}\right)+\frac{r}{\sqrt{t}}-\frac{r-1}{\sqrt{t-1}}+\sum_{i=1}^{t-r}\left(\frac{1}{\sqrt{d_{i} t}}-\frac{1}{\sqrt{d_{i}(t-1)}}\right) \\
\geqslant & \psi(n-1, m)+\frac{r}{\sqrt{t}}-\frac{r-1}{\sqrt{t-1}}+(t-r) \cdot\left(\frac{1}{\sqrt{2 t}}-\frac{1}{\sqrt{2(t-1)}}\right) \\
= & \psi(n, m)+\frac{m}{\sqrt{2(n-m)}}+\frac{n-2 m}{\sqrt{n-m}}-\frac{m}{\sqrt{2(n-m+1)}}-\frac{n-2 m+1}{\sqrt{n-m+1}} \\
& +\frac{t-r}{\sqrt{2 t}}+\frac{r}{\sqrt{t}}-\frac{t-r}{\sqrt{2(t-1)}}-\frac{r-1}{\sqrt{t-1}} \\
= & \psi(n, m)+[h(n-m, n-2 m)-h(n-m+1, n-2 m+1)] \\
& -[h(t-1, r-1)-h(t, r)] \tag{5}
\end{align*}
$$

where $h(x, y)$ is defined in (1). Since G has an m-matching, $n-m+1 \geqslant t$ and $n-2 m \geqslant r-1$. Thus, by (5) and lemma 4(i), we have

$$
\begin{aligned}
R(G) \geqslant & \psi(n, m)+h(n-m, n-2 m)-h(n-m+1, n-2 m+1) \\
& -[h(n-m, r-1)-h(n-m+1, r)] \\
\geqslant & \psi(n, m)
\end{aligned}
$$

In order for the equality to hold, all inequalities in the above argument should be equalities. Thus we have
$R\left(G^{\prime}\right)=\psi(n-1, m), \quad n-m+1=t, \quad r-1=n-2 m$ and $d_{1}=\cdots=d_{t-r}=2$.
By the induction hypothesis, $G^{\prime} \cong U_{n-1, m}$. Then it is not difficult to see $G \cong$ $U_{n, m}$.

Hence the proof of theorem 10 is complete.

3. Remarks

If $G \in \mathscr{U}_{2 m, m}$, by Lemma 6, then $R(G) \leqslant m$ with equality if and only if $G \cong C_{2 m}$, since $C_{2 m}$ is the only regular graph in $\mathscr{U}_{2 m, m}$. Similarly, if $G \in \mathscr{U}_{2 m+1, m}$, then $R(G) \leqslant(2 m+1) / 2$ with equality if and only if $G \cong C_{2 m+1}$.

As to $G \in \mathscr{U}_{n, m}(n \geqslant 2 m+2)$, we do not know the sharp upper bounds on $R(G)$. The case maybe much more complicated.

Acknowledgments

Huiqing Liu was partially supported by the fund of Hubei University and NNSFC (No.10571105) Xiangfeng Pan was partially supported by NNSFC. Jun-Ming was partially supported by NNSFC (No. 10271114).

References

[1] B. Bollobás and P. Erdös, Ars Combin. 50 (1998) 225.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan Press, London, 1976).
[3] A. Chang and F. Tian, Linear Algebra Appl. 370 (2003) 237.
[4] L.H. Clark and J.W. Moon, Ars Combin. 54 (2000) 223.
[5] C. Delorme, O. Favaron and D. Rautenbach, Discrete Math. 257 (2002) 29.
[6] J. Gao and M. Lu, MATCH Commun. Math. Comput. Chem. 53 (2005) 377.
[7] L.B. Kier and L.H. Hall, Molecular Connectivity in Chemistry and Drug Research (Academic Press, San Francisco, 1976).
[8] L.B. Kier and L.H. Hall, Molecular Connectivity in Structure-Activity Analysis (Wiley, 1986).
[9] M. Lu, H.Q. Liu and F. Tian, MATCH Commun. Math. Comput. Chem. 51 (2004) 149.
[10] M. Lu, L.Z. Zhang and F. Tian, J. Math. Chem. 38 (2005) 677.
[11] X.F. Pan, H.Q. Liu and J.-M. Xu, MATCH Commun. Math. Comput. Chem. 54 (2005) 465. [12] M. Randić, J. Am. Chem. Soc. 97 (1975) 6609.
[13] A. Yu and F. Tian, MATCH Commun. Math. Comput. Chem. 51 (2004) 97.
[14] P. Yu, J. Math. Study (Chinese) 31 (1998) 225.

[^0]: * Corresponding author.

