DOI: 10.1007/s10910-006-9017-9

# On the Randić index of unicyclic conjugated molecules

# Huiqing Liu\*

School of Mathematics and Computer Science, Hubei University, Wuhan 430062, China E-mail: hqliu@nankai.edu.cn

# Xiangfeng Pan and Jun-Ming Xu

Department of Mathematics, University of Science and Technology of China, Hefei 230026, China

Received 12 May 2005; revised 6 June 2005; published online 13 March 2006

The Randić index R(G) of a graph G is the sum of the weights  $(d(u)d(v))^{-\frac{1}{2}}$  of all edges uv of G, where d(u) denotes the degree of the vertex u. In this paper, we first present a sharp lower bound on the Randić index of conjugated unicyclic graphs (unicyclic graphs with perfect matching). Also a sharp lower bound on the Randić index of unicyclic graphs is given in terms of the order and given size of matching.

KEY WORDS: Randić index, unicyclic graph, given size of matching

AMS subject classification: 05C35

# 1. Introduction

For a (molecular) graph G = (V, E), the Randić index R(G) is defined in [12] as

$$R(G) = \sum_{uv \in E} [d(u)d(v)]^{-\frac{1}{2}}.$$

It is well known that Randić [12] introduced the index, which he called the branching index or molecular connectivity index, in his study of alkanes. The Randić index has been closely correlated with many chemical properties (see [7,8]). Recently, the Randić index attracted the attention of many researchers and many results are obtained (see [1, 4–6, 9–11, 14]). In particular, Gao and Lu [6] gave sharp lower and upper bounds for R(G) of unicyclic graphs. In [10], Lu, et al. obtain sharp lower bounds on R(G) of trees with a given size of matching. Here, we consider a type graph, namely that of conjugated unicyclic graphs (unicyclic graphs with perfect matching), and give sharp lower bounds on the Randić index of unicyclic graph with a given size of matching.

<sup>\*</sup> Corresponding author.

We first introduce some terminologies and notations of graphs. Other undefined terminologies and notations may refer to [2]. We only consider finite, undirected and simple graphs. Denote by  $C_n$  the cycle of n vertices. For a vertex x of a graph G, we denote the neighborhood and the degree of x by N(x) and d(x), respectively. A pendant vertex is a vertex of degree 1. Denote by PV the set of pendant vertices of G. Let  $d_G(x, y)$  denote the length of a shortest (x, y)-path in G. We will use G - x to denote the graph that arises from G by deleting the vertex  $x \in V(G)$  together with its incident edges. An edge e of G is said to be contracted if it is deleted and its ends are identified; the resulting graph is denoted by  $G \cdot e$ . A subset  $M \subseteq E$  is called a matching in G if its elements are edges and no two are adjacent in G. A matching M saturates a vertex v, and v is said to be M-saturated, if some edge of M is incident with v. If every vertex of G is M-saturated, the matching M is perfect. A matching M is said to be an m-matching, if |M| = m and for every matching M' in G,  $|M'| \leq m$ .

Let n and m be positive integers with  $n \ge 2m$ . Let  $U_{n,m}$  be a graph with n vertices obtained from  $C_3$  by attaching n-2m+1 pendent edges and m-2 paths of length 2 to one vertex of  $C_3$  (see figure 1).

Unicyclic graphs are connected graphs with n vertices and n edges. Denote  $\mathcal{U}_{n,m} = \{G : G \text{ is a unicyclic graph with } n \text{ vertices and } an m\text{-matching}\}.$ 

#### 2. Lemmas and results

We first give some lemmas that will be used in the proof of our results.

**Lemma 1** [3]. Let  $G \in \mathcal{U}_{2m,m}$ ,  $m \ge 3$ , and let T be a tree in G attached to a root r. If  $v \in V(T)$  is a vertex furthest from the root r with  $d_G(v, r) \ge 2$ , then v is a pendant vertex and adjacent to a vertex u of degree 2.

**Lemma 2** [13]. Let  $G \in \mathcal{U}_{n,m}(n > 2m)$  and  $G \ncong C_n$ . Then there is an *m*-matching M and a pendant vertex v such that M does not saturate v.

**Lemma 3** [11]. Let  $G \in \mathcal{U}_{2m,m}$ . If  $PV \neq \emptyset$ , then for any vertex  $u \in V(G)$ ,  $|N(u) \cap PV| \leq 1$ .

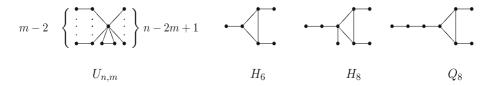


Figure 1.

Denote

$$h(x, y) = \frac{y}{\sqrt{x}} + \frac{x - y}{\sqrt{2x}}, \quad 0 \le y \le x - 1,$$
 (1)

and

$$f(x) = \frac{1}{\sqrt{x+1}} + \frac{x}{\sqrt{2(x+1)}}, \quad x \geqslant 1,$$

where x and y are integers.

**Lemma 4** [10,11]. (i) The function h(x-1, y) - h(x, y+1) are monotonously increasing in  $x \ge 2$  and  $y \ge 0$ , respectively;

(ii) the function f(x) - f(x+1) is monotonously increasing in  $x \ge 1$ .

**Lemma 5.** Let  $g(x) = \frac{2}{\sqrt{x}} + \frac{x-2}{\sqrt{2x}}, x \ge 3$ . Then the function g(x) - g(x+1) is monotonously increasing in  $x \ge 3$ .

*Proof.* Note that  $\frac{d^2g(x)}{dx^2} = -\frac{1}{2}x^{-\frac{5}{2}}\left(\frac{\sqrt{2}}{4}x + \frac{3\sqrt{2}}{2} - 3\right) < 0$ , and hence the lemma holds.

**Lemma 6** [9]. Let G be a simple connected graph of order n. Then

$$R(G) \leqslant \frac{n}{2}$$

with equality if and only if G is a regular graph.

Denote

$$\psi(n,m) = \frac{n-2m+1}{\sqrt{n-m+1}} + \frac{m}{\sqrt{2(n-m+1)}} + \frac{m}{\sqrt{2}} + \frac{1-2\sqrt{2}}{2},$$

where n and m are positive integers and  $n \ge 2m$ .

**Lemma 7.** If  $m \ge 3$ , then  $\psi(2m-1, m-1) + 1 > \psi(2m+1, m)$ ,  $\psi(2m-2, m-1) + \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{6}} - \frac{1}{2} > \psi(2m, m)$  and  $\psi(2m-2, m-1) + \frac{1}{\sqrt{3}} + \frac{1}{3} > \psi(2m, m)$ .

Proof. First we have

$$\begin{split} &\psi(2m-1,m-1)-\psi(2m+1,m)+1\\ &=\frac{2}{\sqrt{m+1}}+\frac{m-1}{\sqrt{2(m+1)}}-\frac{2}{\sqrt{m+2}}-\frac{m}{\sqrt{2(m+2)}}-\frac{1}{\sqrt{2}}+1\\ &\geqslant 1+\frac{2}{\sqrt{8}}-\frac{2}{\sqrt{5}}-\frac{3}{\sqrt{10}}-\frac{1}{\sqrt{2}}+1>0, \end{split}$$

where the last second inequality follows by lemma 5. Similarly,

$$\psi(2m-2, m-1) - \psi(2m, m) + \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{6}} - \frac{1}{2}$$

$$= \frac{m-1}{\sqrt{2m}} + \frac{1}{\sqrt{m}} - \frac{m}{\sqrt{2(m+1)}} - \frac{1}{\sqrt{m+1}} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{6}} - \frac{1}{2}$$

$$\geqslant \frac{2}{\sqrt{6}} + \frac{1}{\sqrt{3}} - \frac{3}{\sqrt{8}} - \frac{1}{2} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{6}} - \frac{1}{2}$$

$$= \frac{4}{\sqrt{6}} + \frac{2}{\sqrt{3}} - \frac{3}{\sqrt{8}} - \frac{1}{\sqrt{2}} - 1 > 0,$$

where the last second inequality follows by lemma 4(ii).

Next note that 
$$\psi(2m-2, m-1) - \psi(2m, m) + \frac{1}{\sqrt{3}} + \frac{1}{3} > \psi(2m-2, m-1) - \psi(2m, m) + \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{6}} - \frac{1}{2} > 0$$
, and hence the lemma holds.

We first obtain the following result.

**Theorem 8.** Let  $G \in \mathcal{U}_{2m,m} \setminus \{H_6, H_8\} (m \ge 2)$ . Then

$$R(G) \geqslant \psi(2m, m). \tag{2}$$

Furthermore, equality in (2) holds if and only if  $G \cong U_{2m,m}$ .

*Proof.* First we note that if  $G \cong U_{2m,m}$ , then equality in (2) holds clearly.

Now we prove that if  $G \in \mathcal{U}_{2m,m}$ , then (2) holds and equality in (2) holds only if  $G \cong U_{2m,m}$ .

If m = 2, then either  $G \cong C_4$  or  $G \cong U_{4,2}$ . Note that  $R(C_4) = 2 > R(U_{4,2}) = \frac{1}{2} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{6}} = 1.8939$ . Thus the theorem holds for m = 2.

We now suppose that  $m \ge 3$  and proceed by induction on m. If  $G \cong C_{2m}$ , by the induction hypothesis and lemma 7, then

$$R(G) = R(C_{2(m-1)}) + 1 > \psi(2m - 2, m - 1) + 1 > \psi(2m - 2, m - 1) + \frac{1}{\sqrt{3}} + \frac{1}{3} > \psi(2m, m).$$

So in the following proof, we can assume that  $G \not\cong C_{2m}$ .

By lemmas 1 and 3, we only consider the following two cases.

Case 1. G has a pendant vertex v which is adjacent to a vertex w of degree 2.



Figure 2.

In this case, there is a unique vertex  $u \neq v$  such that  $uw \in E(G)$ . Denote  $N(u) \cap PV = \{v_1, \dots, v_{r-1}, v_r\}$  and  $N(u) \setminus PV = \{x_1, \dots, x_{t-r-1}, x_{t-r} = w\}$ . Then  $t \leq m+1$  and all  $d(x_i) = d_i \geq 2$ .

Let G' = G - v - w. Then  $G' \in \mathcal{U}_{2(m-1),m-1}$ .

If  $G' \cong H_6$ , then  $G \cong Q_8$  and  $R(Q_8) = 3.7701 > \psi(8, 4) = 3.6263$ .

If  $G' \cong H_8$ , then  $G \in \{G_i | 1 \le i \le 6\}$ , where  $G_i$   $(1 \le i \le 6)$  are illustrated in figure 2.

By  $\psi(10, 5) = 4.4729$ , it is easy to verify that  $U_{10,5}$  has the minimum Randić index among all unicyclic graphs in  $\{G_i | 1 \le i \le 6\} \cup \{U_{10,5}\}$  (see figure 2).

Otherwise, if  $G' \notin \{H_6, H_8\}$ , by the induction hypothesis, then

$$R(G) = R(G') + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2t}} + r\left(\frac{1}{\sqrt{t}} - \frac{1}{\sqrt{t-1}}\right) + \sum_{i=1}^{t-r-1} \frac{1}{\sqrt{d_i}} \left(\frac{1}{\sqrt{t}} - \frac{1}{\sqrt{(t-1)}}\right)$$

$$\geqslant R(G') + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2t}} + r\left(\frac{1}{\sqrt{t}} - \frac{1}{\sqrt{t-1}}\right) + (t-r-1)\left(\frac{1}{\sqrt{2t}} - \frac{1}{\sqrt{2(t-1)}}\right)$$

$$\geqslant \psi(2m-2, m-1) + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2t}} + r\left(\frac{1}{\sqrt{t}} - \frac{1}{\sqrt{t-1}}\right)$$

$$+ (t-r-1)\left(\frac{1}{\sqrt{2t}} - \frac{1}{\sqrt{2(t-1)}}\right)$$

$$= \psi(2m, m) + \frac{m-1}{\sqrt{2m}} + \frac{1}{\sqrt{m}} - \frac{m}{\sqrt{2(m+1)}} - \frac{1}{\sqrt{m+1}}$$

$$+ \frac{1}{\sqrt{2t}} + r\left(\frac{1}{\sqrt{t}} - \frac{1}{\sqrt{t-1}}\right) + (t-r-1)\left(\frac{1}{\sqrt{2t}} - \frac{1}{\sqrt{2(t-1)}}\right). \tag{3}$$

Note that  $r \leq 1$  by lemma 3. If r = 1, by (3), then

$$\begin{split} R(G) \geqslant & \ \psi(2m,m) + \frac{m-1}{\sqrt{2m}} + \frac{1}{\sqrt{m}} - \frac{m}{\sqrt{2(m+1)}} - \frac{1}{\sqrt{m+1}} \\ & + \frac{t-1}{\sqrt{2t}} + \frac{1}{\sqrt{t}} - \frac{t-2}{\sqrt{2(t-1)}} - \frac{1}{\sqrt{t-1}} \\ & = \ \psi(2m,m) + [f(m-1) - f(m)] - [f(t-2) - f(t-1)] \\ \geqslant & \ \psi(2m,m), \end{split}$$

where f(x) is defined in (1) and the last inequality follows by lemma 4 as  $m-1 \ge t-2$ . In order for the equality to hold, all inequalities in the above argument should be equalities. Thus we have

$$R(G') = \psi(2m-2, m-1), \quad m = t-1, \quad r = 1 \text{ and } d_1 = \dots = d_{t-1} = 2.$$

By the induction hypothesis,  $G' \cong U_{2m-2,m-1}$ . Note that  $U_{2m-2,m-1}$  has a unique vertex of degree greater than 2, and hence  $G \cong U_{2m,m}$ .

If r = 0, by (3), then

$$\begin{split} R(G) \geqslant \ \psi(2m,m) + \left(\frac{1}{\sqrt{2}} - 1\right) \left(\frac{1}{\sqrt{t}} - \frac{1}{\sqrt{t-1}}\right) \\ + [f(m-1) - f(m)] - [f(t-2) - f(t-1)] \\ > \ \psi(2m,m). \end{split}$$

Case 2. G is a cycle C together with some pendant edges attached to some vertices on C. For convenience, we label the vertices of C with  $u_1, u_2, \ldots, u_p$  one by one clockwise.

If each vertex of C is attached by a pendant edges, then  $m \ge 4$  as  $G \ncong H_6$ . If m = 4, then  $R(G) = 4 \cdot \left(\frac{1}{3} + \frac{1}{\sqrt{3}}\right) = 3.6427 > \psi(8, 4) = 3.6263$ . If  $m \ge 5$ , by the induction hypothesis and lemma 7, then

$$R(G) = (m-1) \cdot \left(\frac{1}{3} + \frac{1}{\sqrt{3}}\right) + \frac{1}{3} + \frac{1}{\sqrt{3}} > \psi(2m-2, m-1) + \frac{1}{3} + \frac{1}{\sqrt{3}} > \psi(2m, m).$$

Otherwise, there is at least a vertex of degree two on C. Since  $G \ncong C_n$ , there exists some  $i \in \{1, 2, ..., n\}$  such that  $d_G(u_i) = 3$  and  $d_G(u_{i+1}) = 2$ , where  $u_{n+1} = u_1$ . Without loss of generality, assume  $d_G(u_2) = 3$  and  $d_G(u_3) = 2$ . Denote by  $v_2$  the pendant vertex adjacent to  $u_2$ . Obviously, every pair of vertices of degree three can not be adjacent to a common vertex of degree two (since G has a perfect matching). Then each vertex of degree two on C must be adjacent to another vertex of degree two. Thus  $d_G(u_4) = 2$ .

Let  $G' = (G \cdot u_2v_2) \cdot u_2u_3$  be a graph obtained from G by contracting  $u_2v_2$  and  $u_2u_3$  consecutively. Then  $G' \in \mathcal{U}_{n-2,m-1} \setminus \{H_6, H_8\}$ . By the induction hypothesis and lemma 7, if  $d_G(u_1) = 3$ , then

$$R(G) = R(G') + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{6}} + \frac{1}{3} - \frac{1}{\sqrt{6}} \geqslant \psi(2m - 2, m - 1) + \frac{1}{\sqrt{3}} + \frac{1}{3} > \psi(2m, m);$$

and if  $d_G(u_1) = 2$ , then

$$R(G) = R(G') + \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{6}} - \frac{1}{2} \geqslant \psi(2m - 2, m - 1) + \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{6}} - \frac{1}{2} > \psi(2m, m).$$

Hence the proof of theorem 8 is complete.

**Note 9.** It is easy to calculate that  $R(H_6) = 2.7321 < \psi(6,3) = 2.7678$  and  $R(H_8) = 3.6260 < \psi(8,4) = 3.6263$ , where  $H_6$  and  $H_8$  are shown in figure 1. Thus, by theorem 8,  $H_6$  has the minimum Randić index in  $\mathcal{U}_{6,3}$  and  $H_8$  has the minimum Randić index in  $\mathcal{U}_{8,4}$ .

**Theorem 10.** Let  $G \in \mathcal{U}_{n,m}$   $(n \ge 2m, m \ge 5)$ , then

$$R(G) \geqslant \psi(n, m)$$
 (4)

and equality in (4) holds if and only if  $G \cong U_{n,m}$ .

*Proof.* First we note that if  $G \cong U_{n,m}$ , then the equality in (4) holds clearly.

Now applying induction on n, we prove that if  $G \in \mathcal{U}_{n,m}$ , then (4) holds and the equality in (4) holds only if  $G \cong U_{n,m}$ .

If n = 2m, then the theorem holds by theorem 8.

Therefore we assume that n > 2m and the result holds for smaller values of n.

If  $G \cong C_n$ , then n = 2m + 1, since G has an m-matching. If m = 5, then  $R(G) = \frac{11}{2} > \psi(11, 5) = 4.7136$ . If  $m \ge 6$ , by the induction hypothesis and lemma 7, then

$$R(G) = R(C_{2(m-1)+1}) + 1 > \psi(2m-1, m-1) + 1 > \psi(2m+1, m).$$

So in the following proof, we can assume  $G \ncong C_n$ .

By lemma 2, G has an m-matching M and a pendant vertex v such that M does not saturate v. Let  $uv \in E(G)$  with d(u) = t. Denote  $N(u) \cap PV = \{v_1, \ldots, v_{r-1}, v_r = v\}$  and  $N(u) \setminus PV = \{x_1, \ldots, x_{t-r}\}$ . Then all  $d(x_j) = d_j \ge 2$ . Let G' = G - v. Then  $G' \in \mathcal{U}_{n-1,m}$ . By the induction hypothesis, we have

$$R(G) = R(G') + \frac{r}{\sqrt{t}} - \frac{r-1}{\sqrt{t-1}} + \sum_{i=1}^{t-r} \left( \frac{1}{\sqrt{d_i t}} - \frac{1}{\sqrt{d_i (t-1)}} \right)$$

$$\geqslant \psi(n-1,m) + \frac{r}{\sqrt{t}} - \frac{r-1}{\sqrt{t-1}} + (t-r) \cdot \left( \frac{1}{\sqrt{2t}} - \frac{1}{\sqrt{2(t-1)}} \right)$$

$$= \psi(n,m) + \frac{m}{\sqrt{2(n-m)}} + \frac{n-2m}{\sqrt{n-m}} - \frac{m}{\sqrt{2(n-m+1)}} - \frac{n-2m+1}{\sqrt{n-m+1}}$$

$$+ \frac{t-r}{\sqrt{2t}} + \frac{r}{\sqrt{t}} - \frac{t-r}{\sqrt{2(t-1)}} - \frac{r-1}{\sqrt{t-1}}$$

$$= \psi(n,m) + [h(n-m,n-2m) - h(n-m+1,n-2m+1)]$$

$$-[h(t-1,r-1) - h(t,r)], \qquad (5)$$

where h(x, y) is defined in (1). Since G has an m-matching,  $n - m + 1 \ge t$  and  $n - 2m \ge r - 1$ . Thus, by (5) and lemma 4(i), we have

$$R(G) \geqslant \psi(n,m) + h(n-m,n-2m) - h(n-m+1,n-2m+1) - [h(n-m,r-1) - h(n-m+1,r)]$$
  
  $\geqslant \psi(n,m).$ 

In order for the equality to hold, all inequalities in the above argument should be equalities. Thus we have

$$R(G') = \psi(n-1, m), \quad n-m+1=t, \quad r-1=n-2m \text{ and } d_1=\cdots=d_{t-r}=2.$$

By the induction hypothesis,  $G' \cong U_{n-1,m}$ . Then it is not difficult to see  $G \cong U_{n,m}$ .

Hence the proof of theorem 10 is complete.

# 3. Remarks

If  $G \in \mathcal{U}_{2m,m}$ , by Lemma 6, then  $R(G) \leq m$  with equality if and only if  $G \cong C_{2m}$ , since  $C_{2m}$  is the only regular graph in  $\mathcal{U}_{2m,m}$ . Similarly, if  $G \in \mathcal{U}_{2m+1,m}$ , then  $R(G) \leq (2m+1)/2$  with equality if and only if  $G \cong C_{2m+1}$ .

As to  $G \in \mathcal{U}_{n,m}$   $(n \ge 2m + 2)$ , we do not know the sharp upper bounds on R(G). The case maybe much more complicated.

# Acknowledgments

Huiqing Liu was partially supported by the fund of Hubei University and NNSFC (No.10571105) Xiangfeng Pan was partially supported by NNSFC. Jun-Ming was partially supported by NNSFC (No. 10271114).

# References

- [1] B. Bollobás and P. Erdös, Ars Combin. 50 (1998) 225.
- [2] J.A. Bondy and U.S.R. Murty, *Graph Theory with Applications* (Macmillan Press, London, 1976).
- [3] A. Chang and F. Tian, Linear Algebra Appl. 370 (2003) 237.
- [4] L.H. Clark and J.W. Moon, Ars Combin. 54 (2000) 223.
- [5] C. Delorme, O. Favaron and D. Rautenbach, Discrete Math. 257 (2002) 29.
- [6] J. Gao and M. Lu, MATCH Commun. Math. Comput. Chem. 53 (2005) 377.
- [7] L.B. Kier and L.H. Hall, *Molecular Connectivity in Chemistry and Drug Research* (Academic Press, San Francisco, 1976).
- [8] L.B. Kier and L.H. Hall, Molecular Connectivity in Structure-Activity Analysis (Wiley, 1986).
- [9] M. Lu, H.Q. Liu and F. Tian, MATCH Commun. Math. Comput. Chem. 51 (2004) 149.
- [10] M. Lu, L.Z. Zhang and F. Tian, J. Math. Chem. 38 (2005) 677.

- [11] X.F. Pan, H.Q. Liu and J.-M. Xu, MATCH Commun. Math. Comput. Chem. 54 (2005) 465.
- [12] M. Randić, J. Am. Chem. Soc. 97 (1975) 6609.
- [13] A. Yu and F. Tian, MATCH Commun. Math. Comput. Chem. 51 (2004) 97.
- [14] P. Yu, J. Math. Study (Chinese) 31 (1998) 225.