The Restricted Edge-Connectivity of Kautz Undirected Graphs*

Ying-Mei Fan
College of Mathematics and Information Science
Guangxi University, Nanning, Guangxi, 530004, China
Jun-Ming Xu ${ }^{\dagger} \quad$ Min Lü
Department of Mathematics
University of Science and Technology of China
Hefei, Anhui, 230026, China

Abstract

A connected graph is said to be super edge-connected if every minimum edge-cut isolates a vertex. The restricted edge-connectivity λ^{\prime} of a connected graph is the minimum number of edges whose deletion results in a disconnected graph such that each connected component has at least two vertices. A graph G is called λ^{\prime}-optimal if $\lambda^{\prime}(G)=\min \left\{d_{G}(u)+d_{G}(v)-2\right.$: $u v$ is an edge in $G\}$. This paper proves that for any d and n with $d \geq 2$ and $n \geq 1$ the Kautz undirected graph $U K(d, n)$ is λ^{\prime}-optimal except $U K(2,1)$ and $U K(2,2)$ and, hence, is super edge-connected except $U K(2,2)$.

Keywords: Edge-connectivity, Restricted edge-connectivity, Super edge-connected, Kautz graphs

AMS Subject Classification: 05C40

1 Introduction

Throughout this paper, a graph $G=(V, E)$ always means a simple connected graph with a vertex-set V and an edge-set E. We follow $[5,18]$ for

[^0]graph-theoretical terminology and notation not defined here. A set of edges S of G is called an edge-cut if $G-S$ disconnected. The edge-connectivity $\lambda(G)$ of G is defined as the minimum cardinality of an edge-cut S.

It is well known that when the underlying topology of an interconnection network is modelled by a connected graph $G=(V, E)$, where V is the set of processors and E is the set of communication links in the network, the edge-connectivity $\lambda(G)$ is an important parameter to measure the faulttolerance of the network [17]. This parameter, however, has an obvious deficiency, that it is tacitly assumed that all edges incident with a vertex of G can potentially fail at the same time. In other words, in the definition of $\lambda(G)$, absolutely no conditions or restrictions are imposed either on the minimum edge-cut S or on the components of $G-S$.

To compensate for this shortcoming, in 1981, Bauer et al [1] proposed the concept of super edge-connectedness. A connected graph is said to be super edge-connected if every minimum edge-cut isolates a vertex. The study of super edge-connected graphs has a particular significance in the design of reliable networks, mainly due to the fact that attaining super edge-connectedness implies minimizing the numbers of minimum edge-cuts (see [4]). A quite natural problem is that if G is super edge-connected then how many edges must be removed to disconnect G such that every component of the resulting graph contains no isolated vertices.

In 1988, Esfahanian and Hakimi [8] proposed the concept of the restricted edge-connectivity. The restricted edge-connectivity of G, denoted by $\lambda^{\prime}(G)$, is defined as the minimum number of edges whose deletion results in a disconnected graph and contains no isolated vertices. In general, $\lambda^{\prime}(G)$ does not always exist for a connected graph G. For example, $\lambda^{\prime}(G)$ does not exist if G is a star $K_{1, n}$ or a complete graph K_{3}. We write $\lambda^{\prime}(G)=\infty$ if $\lambda^{\prime}(G)$ does not exist. In [8], Esfahanian and Hakimi showed that if G has at least four vertices then $\lambda^{\prime}(G)$ does not exist if and only if G is a star and that if $\lambda^{\prime}(G)$ exists then

$$
\begin{equation*}
\lambda^{\prime}(G) \leq \xi(G) \tag{1}
\end{equation*}
$$

where the symbol $d_{G}(x)$ denotes the degree of the vertex x in G and $\xi(G)=$ $\min \left\{d_{G}(u)+d_{G}(v)-2: u v\right.$ is an edge in $\left.G\right\}$.

A graph G is called λ^{\prime}-optimal if $\lambda^{\prime}(G)=\xi(G)$. Several sufficient conditions for graphs to be λ^{\prime}-optimal were given for example by Wang and Li [14], Hellwig and Volkmann [9] for graphs with diameter 2, Ueffing and Volkmann [12] for the cartesian product of graphs, Xu and Xu [19] for transitive graphs. It is clear that G is super edge-connected if $\lambda^{\prime}(G)>\lambda(G)$. Recently, Hellwig and Volkmann [10] have showed that a λ^{\prime}-optimal graph G is super edge-connected if its minimum degree $\delta(G) \geq 3$.

This new parameter λ^{\prime} in conjunction with λ can provide more accurate measures for fault tolerance of a large-scale parallel processing system and,
thus, has received much attention of many researchers (see, for example, [6] ~ [17], [19]).

In this paper, we consider λ^{\prime} for the Kautz undirected graph $U K(d, n)$. The following theorem completely determines $\lambda^{\prime}(U K(d, n))$ for any d and n with $d \geq 2$ and $n \geq 1$.

Theorem For the Kautz undirected graph $U K(d, n)$ with $d \geq 2$ and $n \geq 1$,

$$
\lambda^{\prime}(U K(d, n))= \begin{cases}\infty, & \text { for } n=1, d=2 \\ 3, & \text { for } n=d=2 \\ 2 d-2, & \text { for } n=1, d \geq 3 \\ 4 d-4, & \text { for } n \geq 2, d \geq 3 \\ & \text { or } n \geq 3, d \geq 2\end{cases}
$$

Corollary The Kautz undirected graph $U K(d, n)$ is λ^{\prime}-optimal except $U K(2,1)$ and $U K(2,2)$ and, hence, is super edge-connected except $U K(2,2)$.

The proofs of the theorem and the corollary are in Section 3. In Section 2, the definition and some properties of the Kautz undirected graph $U K(d, n)$ are given.

2 Properties of Kautz Graphs

The well-known Kautz digraph is an important class of graphs and widely used in the design and analysis of interconnection networks [3]. Let d and n be two given integers with $n \geq 1$ and $d \geq 2$.

The Kautz digraph, denoted by $K(d, n)$, is a digraph with the vertexset $V=\left\{x_{1} x_{2} \cdots x_{n}: x_{i} \in\{0,1, \ldots, d\}, x_{i+1} \neq x_{i}, i=1,2, \ldots, n-1\right\}$ and the directed edge-set E, where for $x, y \in V$, if $x=x_{1} x_{2} \cdots x_{n}$, then $(x, y) \in E$ if and only if $y=x_{2} x_{3} \cdots x_{n} \alpha$, where $\alpha \in\{0,1, \ldots, d\} \backslash\left\{x_{n}\right\}$.

The Kautz undirected graph, denoted by $U K(d, n)$, is a simple undirected graph obtained from $K(d, n)$ by deleting the orientation of all edges and omitting multiple edges.
¿From definitions, $K(d, 1)$ is a complete digraph of order $d+1$ and $U K(d, 1)$ is a complete undirected graph of order $d+1$. Thus, $\lambda(U K(d, 1))$ $=d$. It has been shown that $K(d, n)$ is d-regular and has connectivity d. It is clear that $U K(d, 2)$ is $(2 d-1)$-regular, and $U K(d, n)$ has the minimum degree $\delta=2 d-1$ and the maximum degree $\Delta=2 d$ for $n \geq 3$. Furthermore, Bermond et al [2] proved that the connectivity of $U K(d, n)$ is $2 d-1$ for $n \geq 2$, which implies that $\lambda(U K(d, n))=2 d-1$ for $n \geq 2$. For more properties of $K(d, n)$ and $U K(d, n)$, the reader is referred to the new book by Xu [17].

A pair of directed edges is said to be symmetric if they have the same end-vertices but different orientations. The Kautz digraph contains symmetric edges. If there is a pair of symmetric edges between two vertices x and y in $K(d, n)$, then it is not difficult to see that the coordinates of x are alternately in two different components a and b. It follows that the Kautz digraph $K(d, n)$ contains exactly $\binom{d+1}{2}$ pairs of symmetric edges. Clearly, directed distance between two end-vertices in different pairs of symmetric edges in $K(d, n)$ is equal to either $n-1$ or n. Moreover, two end-vertices in different pairs of symmetric edges have no vertices in common if and only if $n \geq 2$. An edge in $U K(d, n)$ is said to be singular if it corresponds a pair of symmetric edges in $K(d, n)$.

Let X and Y be two disjoint nonempty subsets of vertices in a digraph G. Use the symbol $E(X, Y)$ to denote the set of directed edges from X to Y in G. The following property on a regular digraph is useful, and the detail proof can be found in Example 1.4.1 in [18].

Lemma 2.1 Let X and Y be two disjoint nonempty subsets of vertices in a connected regular digraph G. Then $|E(X, Y)|=|E(Y, X)|$.

For two end-vertices x and y of a pair of symmetric edges in $K(d, n)$, let

$$
\begin{array}{lll}
A_{x}^{-}=N^{-}(x) \backslash\{y\}, & & A_{x}^{+}=N^{+}(x) \backslash\{y\} \\
A_{y}^{+} & =N^{+}(y) \backslash\{x\}, & \\
A_{y}^{-} & =N^{-}(y) \backslash\{x\}
\end{array}
$$

Lemma 2.2 Let $x y$ be a singular edge in $U K(d, n)$, where $n \geq 2$ and $d \geq 2$.
(i) $E\left(A_{x}^{-}, A_{y}^{+}\right) \cap E\left(A_{y}^{-}, A_{x}^{+}\right)=\emptyset$, and

$$
\left|E\left(A_{x}^{-}, A_{y}^{+}\right)\right|=\left|E\left(A_{y}^{-}, A_{x}^{+}\right)\right|=(d-1)^{2} .
$$

(ii) If $n=2$, then for any $u \in\left(A_{x}^{-} \cup A_{x}^{+}\right)$there is some $v \in\left(A_{y}^{-} \cup A_{y}^{+}\right)$ such that $u v$ is a singular edge in $U K(d, 2)$.
(iii) There exist $2 d-1$ internally disjoint $x y$-paths in $U K(d, n)$ such that one of which is of length one, otherwise of length three.

Proof We may suppose that $x=a b a b \cdots a b$ if n is even and $x=$ $a b a b \cdots a b a$ if n is odd. Without loss of generality, we suppose that n is even. Then $y=b a b \cdots b a$, where $a, b \in\{0,1, \ldots, d\}$ and $a \neq b$.
(i) For any $u \in A_{x}^{-}$and $v \in A_{y}^{+}$, they can be expressed as $u=$ $c a b a b \cdots a b a$ and $v=a b a b \cdots b a e$, where $c, e \in\{0,1, \ldots, d\}$ and $c, e \notin$ $\{a, b\}$. Then $u \neq v$ and (u, v) is a directed edge in $K(d, n)$ for $d \geq 2$. Clearly, $A_{x}^{-} \cap A_{y}^{+}=\emptyset$ and

$$
E\left(A_{x}^{-}, A_{y}^{+}\right)=\{(u, v): c, e \in\{0,1, \ldots, d\} \backslash\{a, b\}\} .
$$

Thus, $\left|E\left(A_{x}^{-}, A_{y}^{+}\right)\right|=(d-1)^{2}$.
Similarly, For any $z \in A_{x}^{+}$and $w \in A_{y}^{-}$, they can be expressed as $z=$ $b a b \cdots a b g$ and $w=h b a b \cdots b a b$, where $g, h \in\{0,1, \ldots, d\}$ and $g, h \notin\{a, b\}$. Then $z \neq w$ and (w, z) is a directed edge in $K(d, n)$ for $d \geq 2$. Clearly, $A_{x}^{+} \cap A_{y}^{-}=\emptyset$ and

$$
E\left(A_{y}^{-}, A_{x}^{+}\right)=\{(z, w): h, g \in\{0,1, \ldots, d\} \backslash\{a, b\}\} .
$$

Thus, $\left|E\left(A_{y}^{-}, A_{x}^{+}\right)\right|=(d-1)^{2}$.
Since $u \neq w$ and $v \neq z, A_{x}^{-} \cap A_{y}^{-}=\emptyset$ and $A_{x}^{+} \cap A_{y}^{+}=\emptyset$. Also since two end-vertices in different pairs of symmetric edges have no vertex in common if $n \geq 2, A_{x}^{-} \cap A_{x}^{+}=\emptyset$ and $A_{y}^{+} \cap A_{y}^{-}=\emptyset$, and so $A_{x}^{-}, A_{x}^{+}, A_{y}^{-}, A_{y}^{+}$ are pairwise disjoint. Thus, $E\left(A_{x}^{-}, A_{y}^{+}\right) \cap E\left(A_{y}^{-}, A_{x}^{+}\right)=\emptyset$.
(ii) Since $n=2$, we may assume $x=a b, y=b a$, where $a, b \in$ $\{0,1, \ldots, d\}$ and $a \neq b$. If $u \in A_{x}^{-}$, then for $d \geq 2$ we may assume $u=c a$ $(c \neq a, b)$, and so $v=a c \in A_{y}^{+}$. If $u \in A_{x}^{+}$, we may assume $u=b c$ $(c \neq a, b)$, and so $v=c b \in A_{y}^{-}$, where $c \in\{0,1, \ldots, d\}$. Thus, (u, v) and (v, u) are a pair of symmetric edges in $K(d, 2)$, and so $u v$ is a singular edge in $U K(d, 2)$.

The assertion (iii) holds clearly from (i).
Two directed walks from $\{x, y\}$ to $\{u, v\}$ in $K(d, n)$ is said internally disjoint, if they have common vertices only in $\{x, y\}$ or $\{u, v\}$.

Lemma 2.3 Let $x y$ and $u v$ be nonadjacent edges in $U K(d, n)$ where $d \geq 2$ and $n \geq 2$. If $x y$ is singular, then there are $(2 d-2)$ internally-disjoint directed paths from $\{x, y\}$ to $\{u, v\}$ in $K(d, n)$.

Proof Let $x=x_{1} x_{2} \cdots x_{n}$, where $x_{i} \in\{a, b\} \subseteq\{0,1, \ldots, d\}$ and $a \neq b$. Then $y=x_{2} x_{3} \cdots x_{n} \alpha$, where $\alpha=x_{1}$ if n is even and $\alpha=x_{2}$ if n is odd. Let $u=u_{1} u_{2} \cdots u_{n}$. Then $v=u_{2} u_{3} \cdots u_{n} u_{n+1}$, where $u_{1}, \ldots, u_{n+1} \in$ $\{0,1, \ldots, d\}$ and $u_{i} \neq u_{i+1}, i=1,2, \ldots, n$. Choose $(2 d-2)$ directed walks $W_{1}, W_{2}, \ldots, W_{d-1}, T_{1}, T_{2}, \ldots, T_{d-1}$ from $\{x, y\}$ to $\{u, v\}$ as follows: For $1 \leq i \leq d-1$,

$$
\begin{aligned}
W_{i}= & x_{1} x_{2} x_{3} \cdots x_{n}, x_{2} x_{3} \cdots x_{n} w_{i}, x_{3} \cdots x_{n} w_{i} u_{1}, \ldots, \\
& w_{i} u_{1} u_{2} \cdots u_{n-1}, u_{1} u_{2} \cdots u_{n-1} u_{n} ; \quad \text { if } w_{i} \neq u_{1} ; \\
W_{i}= & x_{1} x_{2} x_{3} \cdots x_{n}, x_{2} x_{3} \cdots x_{n} w_{i}, x_{3} \cdots x_{n} w_{i} u_{2}, \ldots, \\
& w_{i} u_{2} u_{3} \cdots u_{n-1}, u_{1} u_{2} \cdots u_{n-1} u_{n}, \quad \text { if } w_{i}=u_{1},
\end{aligned}
$$

and for $1 \leq j \leq d-1$,

$$
\begin{gathered}
T_{j}=x_{2} x_{3} x_{4} \cdots x_{n} \alpha, x_{3} x_{4} \cdots x_{n} \alpha t_{j}, x_{4} \cdots x_{n} \alpha t_{j} u_{2}, \cdots, \\
t_{j} u_{2} u_{3} \cdots u_{n}, u_{2} u_{3} \cdots u_{n} u_{n+1} \quad \text { if } t_{j} \neq u_{2} ;
\end{gathered}
$$

$$
\begin{gathered}
T_{j}=\quad x_{2} x_{3} x_{4} \cdots x_{n} \alpha, x_{3} x_{4} \cdots x_{n} \alpha t_{j}, x_{4} \cdots x_{n} \alpha t_{j} u_{3}, \ldots, \\
\alpha t_{j} u_{3} u_{4} \cdots u_{n}, t_{j} u_{3} u_{4} \cdots u_{n} u_{n+1} \quad \text { if } t_{j}=u_{2},
\end{gathered}
$$

where $w_{i}, t_{j} \in\{0,1, \ldots, d\} \backslash\{a, b\}$ and $w_{1}, w_{2}, \ldots, w_{d-1}$ are pairwise distinct and $t_{1}, t_{2}, \ldots, t_{d-1}$ are pairwise distinct. We now show that these directed walks are internally disjoint.

Assume that there are i and $j(1 \leq i \neq j \leq d-1)$ such that W_{i} and W_{j} are internally joint. Without loss of generality, we may suppose that $w_{i} \neq u_{1}$ and let z be the first internal vertex of W_{i} and W_{j} in common. Let the length of the section $W_{i}(x, z)$ be k and the length of the section $W_{j}(x, z)$ be t. Then $2 \leq k, t \leq n-1$. Since z can reach x along W_{i} by k steps and along W_{j} by t steps, we can express z as

$$
\begin{aligned}
& z=\quad x_{k+1} \cdots x_{n} w_{i} u_{1} \cdots u_{k-1} \\
& = \begin{cases}x_{t+1} \cdots x_{n} w_{j} u_{1} \cdots u_{t-1}, & w_{j} \neq u_{1}, \\
x_{t+1} \cdots x_{n} w_{j} u_{2} \cdots u_{t}, & w_{j}=u_{1} .\end{cases}
\end{aligned}
$$

Since $w_{i} \neq w_{j}$, we have $k \neq t$. If $k<t$, there is some h with $k+1 \leq$ $h \leq n$ such that $w_{j}=x_{h} \in\{a, b\}$, a contradiction. If $k>t$, there is some l with $t+1 \leq l \leq n$ such that $w_{i}=x_{l} \in\{a, b\}$, a contradiction. Therefore, $W_{1}, W_{2}, \ldots, W_{d-1}$ are internally disjoint.

Similarly, we can show that $T_{1}, T_{2}, \ldots, T_{d-1}$ are internally disjoint.
Assume that there are i and $j(1 \leq i, j \leq d-1)$ such that W_{i} and T_{j} are internally joint. Let z be the first internal vertex of W_{i} and T_{j} in common. Let the length of the section $W_{i}(x, z)$ be k and the length of the section $T_{j}(y, z)$ be t. Then $2 \leq k, t \leq n-1$. Thus, we can express z as

$$
z=\left\{\begin{array}{cc}
x_{k+1} \cdots x_{n} w_{i} u_{1} \cdots u_{k-1}= & x_{t+2} \cdots x_{n} \alpha t_{j} u_{2} \cdots u_{t}, \\
& \text { if } w_{i} \neq u_{1}, t_{j} \neq u_{2} ; \\
x_{k+1} \cdots x_{n} w_{i} u_{2} \cdots u_{k}= & x_{t+2} \cdots x_{n} \alpha t_{j} u_{2} \cdots u_{t}, \\
& \text { if } w_{i}=u_{1}, t_{j} \neq u_{2} ; \\
x_{k+1} \cdots x_{n} w_{i} u_{1} \cdots u_{k-1}= & x_{t+2} \cdots x_{n} \alpha u_{2} \cdots u_{t+1}, \\
& \text { if } w_{i} \neq u_{1}, t_{j}=u_{2} ; \\
x_{k+1} \cdots x_{n} w_{i} u_{2} \cdots u_{k}= & x_{t+2} \cdots x_{n} \alpha u_{2} \cdots u_{t+1}, \\
& \text { if } w_{i}=u_{1}, t_{j}=u_{2} .
\end{array}\right.
$$

We can obtain w_{i} or $t_{j} \in\{a, b\}$, a contradiction. Therefore, W_{i} and T_{j} are internally disjoint for any i and j with $1 \leq i, j \leq d-1$. Since any directed walk from $\{x, y\}$ to $\{u, v\}$ contains a directed path from $\{x, y\}$ to $\{u, v\}$, the lemma follows immediately.

Lemma 2.4 Let $x y$ and $u v$ be two distinct singular edges in $U K(d, 2)$ that have no end-vertices in common. Then there are $(4 d-4)$ internally disjoint paths between $\{x, y\}$ and $\{u, v\}$ in $U K(d, 2)$.

Proof Let $x=x_{1} x_{2}$ and $u=u_{1} u_{2}$, where $x_{1}, x_{2}, u_{1}, u_{2} \in\{0,1, \ldots, d\}$, $x_{1} \neq x_{2}, u_{1} \neq u_{2}$. Then $y=x_{2} x_{1}$ and $v=u_{2} u_{1}$. Choose $4 d-4$ directed walks $W_{1}, W_{2}, \ldots, W_{d-1}, T_{1}, T_{2}, \ldots, T_{d-1}, P_{1}, \ldots, P_{d-1}, Q_{1}, Q_{2}, \ldots, Q_{d-1}$ in $K(d, 2)$ from $\{x, y\}$ to $\{u, v\}$ or from $\{u, v\}$ to $\{x, y\}$ as follows.

$$
\begin{aligned}
W_{i} & = \begin{cases}x_{1} x_{2}, x_{2} w_{i}, w_{i} u_{1}, u_{1} u_{2}, & w_{i} \neq u_{1}, \\
x_{1} x_{2}, x_{2} w_{i}, w_{i} u_{2}, & w_{i}=u_{1}\end{cases} \\
T_{j} & = \begin{cases}x_{2} x_{1}, x_{1} t_{j}, t_{j} u_{2}, u_{2} u_{1}, & t_{j} \neq u_{2} \\
x_{2} x_{1}, x_{1} t_{j}, t_{j} u_{1}, & t_{j}=u_{2}\end{cases} \\
P_{i} & = \begin{cases}u_{1} u_{2}, u_{2} p_{i}, p_{i} x_{1}, x_{1} x_{2}, & p_{i} \neq x_{1} \\
u_{1} u_{2}, u_{2} p_{i}, p_{i} x_{2}, & p_{i}=x_{1}\end{cases} \\
Q_{j} & = \begin{cases}u_{2} u_{1}, u_{1} q_{j}, q_{j} x_{2}, x_{2} x_{1}, & q_{j}=x_{2} \\
u_{2} u_{1}, u_{1} q_{j}, g_{j} x_{1}, & q_{j}=x_{2}\end{cases}
\end{aligned}
$$

where $w_{i}, t_{j} \in\{0,1, \ldots, d\} \backslash\left\{x_{1}, x_{2}\right\}, w_{1}, w_{2}, \ldots, w_{d-1}$ are pairwise different, $t_{1}, t_{2}, \ldots, t_{d-1}$ are pairwise different, $p_{i}, q_{j} \in\{0,1, \ldots, d\} \backslash\left\{u_{1}, u_{2}\right\}, p_{1}$, p_{2}, \ldots, p_{d-1} are pairwise different, $q_{1}, q_{2}, \ldots, q_{d-1}$ are pairwise different. It is easy to check that $W_{1}, W_{2}, \ldots, W_{d-1}, T_{1}, T_{2}, \ldots, T_{d-1}, P_{1}, P_{2}, \ldots, P_{d-1}$, $Q_{1}, Q_{2}, \ldots, Q_{d-1}$ are internally disjoint, and each of them must contain a directed path from $\{x, y\}$ to $\{u, v\}$ or from $\{u, v\}$ to $\{x, y\}$ as its subgraph.

3 Proof of Theorem

In this section, we give the proofs of the theorem and the corollary stated in Introduction.

A set of edges F in G is called a nontrivial edge-cut if $G-F$ is disconnected and contains no isolated vertices. A nontrivial edge-cut F is called a λ^{\prime}-cut if $|F|=\lambda^{\prime}(G)$.

Proof of Theorem It is clear that $\lambda^{\prime}(U K(d, 1))$ does not exist for $d=2$ and $\lambda^{\prime}(U K(d, 1))=2 d-2$ for $d \geq 3$ since $U K(d, 1)=K_{d+1}$. Clearly $\lambda^{\prime}(U K(2,2))=3$, we only consider $n=2, d \geq 3$ or $n \geq 3, d \geq 2$. Under this hypothesis, $U K(d, n)$ has vertices more than four and, hence, by (1) we have

$$
\left.\lambda^{\prime}(U K(d, n)) \leq \xi(U K d, n)\right)=2 \delta(U K(d, n))-2=4 d-4 .
$$

In order to complete the proof of the theorem, we only need to prove $\lambda^{\prime}(U K(d, n)) \geq 4 d-4$.

Let F be a λ^{\prime}-cut of $U K(d, n)$. Then $U K(d, n)-F$ has exactly two connected components, say G_{1} and G_{2}. Let $X=V\left(G_{1}\right)$ and $Y=V\left(G_{2}\right)$. Then

$$
|F|=|E(X, Y) \cup E(Y, X)|=\lambda^{\prime}(U K(d, n))
$$

We now show that $|F| \geq 4 d-4$ by considering two case according to the values of n and d.

Case $1 \quad n=2$ and $d \geq 3$.
If G_{1} and G_{2} both contain singular edges then $|F| \geq 4 d-4$ by Lemma 2.4. Without loss of generality, assume that G_{1} contains no singular edges. Since every vertex in $U K(d, 2)$ is incident with a singular edge, every vertex in G_{1} is incident with a singular edge in F.

If there is some vertex $x \in X$ such that $\left(A_{x}^{-} \cup A_{x}^{+}\right) \subset X$, where $x y$ is a singular edge in F and $y \in Y$, then $\left(A_{y}^{+} \cup A_{y}^{-}\right) \subset Y$, for otherwise, there is a singular edge in G_{1} by Lemma 2.2 (ii), which contradicts the hypothesis that G_{1} contains no singular edges. It follows from Lemma 2.2 (i) that, for $d \geq 3$,

$$
\begin{aligned}
|F| & \geq\left|E\left(A_{x}^{-}, A_{y}^{+}\right)\right|+\left|E\left(A_{y}^{-}, A_{x}^{+}\right)\right|+1 \\
& \geq 2(d-1)^{2}+1>4 d-4
\end{aligned}
$$

If $\left(A_{x}^{-} \cup A_{x}^{+}\right) \nsubseteq X$ for any $x \in X$, then $\left(A_{x}^{-} \cup A_{x}^{+}\right) \cap Y \neq \emptyset$, which implies that every vertex in X is incident with at least two edges in F. Thus, if $|X| \geq 2 d-1$ then

$$
|F| \geq 2|X| \geq 2(2 d-1)=4 d-2>4 d-4
$$

Assume $t=|X| \leq 2 d-2$ below. Noting that $U K(d, 2)$ is $(2 d-1)$-regular and $\left|E\left(G_{1}\right)\right| \leq \frac{1}{2} t(t-1)$, we have

$$
|F| \geq(2 d-1) t-t(t-1)=2 d t-t^{2} \geq 4 d-4
$$

since the function $f(t)=2 d t-t^{2}$ is convex on the interval [$2,2 d-2$] and $f(t) \geq f(2)=f(2 d-2)=4 d-4$.

Case $2 \quad n \geq 3$ and $d \geq 2$.
If F contains no singular edges, then either G_{1} or G_{2} must contain a singular edge. By Lemma 2.1 and Lemma 2.3, we have that

$$
\begin{aligned}
|F| & =|E(X, Y)|+|E(Y, X)|=2|E(X, Y)| \\
& \geq 2(2 d-2)=4 d-4 .
\end{aligned}
$$

If F contains at least two singular edges, then it is easy to see that the end-vertices of any two singular edges have no common neighbors if $n \geq 4$ and have at most two common neighbors if $n=3$. It follows from Lemma 2.2 (iii) that $|F| \geq 2(2 d-1)-2=4 d-4$.

We now assume that $x y$ is the only singular edge in F, where $x \in X$ and $y \in Y$. If we can show that

$$
\begin{equation*}
|E(Y, X)| \geq 2 d-1 \tag{2}
\end{equation*}
$$

then, by Lemma 2.1 and (2), we have

$$
\begin{aligned}
|F| & =|E(X, Y) \cup E(Y, X)|=2|E(Y, X)|-1 \\
& \geq 2(2 d-1)-1=4 d-3>4 d-4,
\end{aligned}
$$

as required. We now show the inequality (2).
Since $d \geq 2, K(d, n)$ contains at least three symmetric edges, and so G_{1} or G_{2} contains a singular edge. Without loss of generality, assume that G_{2} contains a singular edge $u v$.

If $|X|=2$, then the only edge in G_{1} is not singular, and so $|E(Y, X)|=$ $2 d-1$ clearly. Assume now that $|X| \geq 3$. If any two distinct vertices $w, t \in X \backslash\{x\}$ are not adjacent in G_{1}, then

$$
\begin{aligned}
|E(Y, X)| & \geq|E(Y, X \backslash\{x\})|+1 \\
& \geq(d-1)|X \backslash\{x\}|+1 \\
& \geq 2(d-1)+1=2 d-1 .
\end{aligned}
$$

Now, let us suppose that there exist $w, t \in X \backslash\{x\}$ such that they are adjacent in G_{1}. By Lemma 2.3, there are $2 d-2$ internally disjoint directed paths from $\{u, v\}$ to $\{w, t\}$ in $K(d, n)$. Let B be the set of edges of these paths that are in (Y, X). Then $|B|=2 d-2$.

Clearly, $|E(Y, X)| \geq|B|+|(y, x)|=2 d-1$ if $(y, x) \notin B$. Assume $(y, x) \in B$ below.

If $A_{y}^{+} \cap X \neq \emptyset$ then, since $\left\{(y, z): z \in A_{y}^{+} \cap X\right\}$ is not in B, we have

$$
|E(Y, X)| \geq|B|+\left|A_{y}^{+} \cap X\right| \geq 2 d-2+1=2 d-1
$$

Assume $A_{y}^{+} \cap X=\emptyset$. If $A_{x}^{-} \cap Y=\emptyset$, then $E\left(A_{x}^{-}, A_{y}^{+}\right) \subseteq E(X, Y)$. If $d \geq 3$, by Lemma 2.2 (i), we have

$$
\begin{aligned}
|E(Y, X)| & =|E(X, Y)| \geq\left|E\left(A_{x}^{-}, A_{y}^{+}\right)\right|+1 \\
& =(d-1)^{2}+1 \geq 2 d-1 .
\end{aligned}
$$

If $d=2$, noting that $E\left(A_{y}^{-}, A_{x}^{+}\right)$has only one edge e and $d^{-}(y)=2$. If $e \in E(Y, X)$ then $e \notin B$, we have

$$
|E(Y, X)| \geq|B|+1=(2 d-2)+1=2 d-1 .
$$

If $e \notin E(Y, X)$ then $\left(A_{x}^{+} \cup A_{y}^{-}\right) \subset X$ or $\left(A_{x}^{+} \cup A_{y}^{-}\right) \subset Y$. By Lemma 2.2 (i), we have that

$$
\begin{aligned}
|E(Y, X)| & =|E(X, Y)| \geq\left|E\left(A_{x}^{-}, A_{y}^{+}\right)\right|+2 \\
& \geq(d-1)^{2}+2 \geq 2 d-1
\end{aligned}
$$

If $A_{x}^{-} \cap Y \neq \emptyset$ then, since $\left\{(w, x): w \in A_{x}^{-} \cap Y\right\}$ is not in B, we have

$$
|E(Y, X)| \geq|B|+\left|A_{x}^{-} \cap Y\right| \geq 2 d-2+1=2 d-1
$$

Thus, all cases imply that $|E(Y, X)| \geq 2 d-1$ and so the proof of the theorem is complete.

Proof of Corollary It is a simple observation from the theorem and the definition of $U K(d, n)$ that $\lambda^{\prime}(U K(d, n))=\xi(U K(d, n))$ except $U K(2,1)$ and $U K(2,2)$ and, hence, $U K(d, n)$ is λ^{\prime}-optimal.

Note $\lambda(U K(d, n))=\delta(U K(d, n)), \delta(U K(d, 1))=d, \delta(U K(d, n))=$ $2 d-1$ for $n \geq 2$. By the theorem, $\lambda^{\prime}(U K(d, n))>\lambda(U K(d, n))$ except $U K(2,2)$ and, hence, $U K(d, n)$ is super edge-connected.

Acknowledgement

The authors would like to thank A. Hellwig and L. Volkmann for providing the manuscript of [10] and the anonymous referees for their valuable suggestions in order to improve the revised version of this paper.

References

[1] D. Bauer, F. Boesch, C. Suffel and R. Tindell, Connectivity extremal problems and the design of reliable probabilistic networks. The Theory and Application of Graphs, Wiley, New York, 1981, 89-98.
[2] J. C. Bermond, N. Homobono and C. Peyrat, Connectivity of Kautz networks, Discrete Math., 114 (1993), 51-61.
[3] J. C. Bermond and C. Peyrat, De Bruijn and Kautz networks: a competitor for the hypercube? In Hypercube and Distributed Computers (F. Andre and J. P. Verjus eds.). Horth-Holland: Elsevier Science Publishers, 1989, 278-293.
[4] F. Boesch, On unreliability polynomials and graph connectivity in reliable network synthesis. J. Graph Theory, 10 (1986), 339-352.
[5] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. London and Basingstoke, MacMillan Press LTD, 1976.
[6] P. Bonsma, N. Ueffing and L. Volkmann, Edge-cuts leaving components of order at least three. Discrete Math., 256 (2002), 431-439.
[7] A. H. Esfahanian, Generalized measures of fault tolerance with application to n-cube networks. IEEE Trans. Comput., 38(11) (1989), 1586-1591.
[8] A. H. Esfahanina and S. L. Hakimi, On computing a edge- connectivity of a graph, Information Processing Letters, 27(1988), 195-199.
[9] A. Hellwig and L. Volkmann, Sufficient conditions for λ^{\prime}-optimality in graphs of diameter 2. Discrete Math., 283(2004), 113-120.
[10] A. Hellwig and L. Volkmann, Sufficient conditions for graphs to be λ^{\prime}-optimal, super-edge-connected and maximally edge-connected. J. Graph Theory, to appear.
[11] J.-X. Meng and Y.-H. Ji, On a kind of restricted connectivity of graphs. Discrete Applied Math., 117(2002), 183-193.
[12] N. Ueffing and L. Volkmann, Restricted edge-connectivity and minimum edge-degree. Ars Combin. 66(2003), 193-203.
[13] M. Wang and Q. Li, Conditional edge connectivity properties, reliability comparisons and transitivity of graphs. Discrete Math., 258(1-3) (2002), 205-214.
[14] Y. Wang and Q. Li, Super-edge-connectivity properties of graphs with diameter 2. J. Shanghai Jiaotong Univ., 33(6) (1999), 646-649.
[15] J.-M. Xu, Restricted edge-connectivity of vertex-transitive graphs. Chinese Journal of Contemporary Math. 21 (4) (2000), 369-374; a version of Chinese in Chin. Ann. Math. 21A (5) (2000), 605-608.
[16] J.-M. Xu, On conditional edge-connectivity of graphs. Acta Math. Applied Scinica, 16B(4) (2000), 414-419.
[17] J.-M. Xu, Toplogical Structure and Analysis of Interconnection Networks. Kluwer Academic Publishers, Dordrecht/Boston/ London, 2001.
[18] J.-M. Xu, Theory and Application of Graphs. Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.
[19] J.-M. Xu and K.-L. Xu, On restricted edge-connectivity of graphs. Discrete Math., 243(1-3) (2002), 291-298.

[^0]: *The work was supported by NNSF of China (No. 10271114)
 \dagger Corresponding author: xujm@ustc.edu.cn

