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Abstract

A connected graph is said to be super edge-connected if every min-
imum edge-cut isolates a vertex. The restricted edge-connectivity λ′ of a
connected graph is the minimum number of edges whose deletion results in
a disconnected graph such that each connected component has at least two
vertices. A graph G is called λ′-optimal if λ′(G) = min{dG(u)+dG(v)−2 :
uv is an edge in G}. This paper proves that for any d and n with d ≥ 2 and
n ≥ 1 the Kautz undirected graph UK(d, n) is λ′-optimal except UK(2, 1)
and UK(2, 2) and, hence, is super edge-connected except UK(2, 2).
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1 Introduction

Throughout this paper, a graph G = (V, E) always means a simple
connected graph with a vertex-set V and an edge-set E. We follow [5, 18] for
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graph-theoretical terminology and notation not defined here. A set of edges
S of G is called an edge-cut if G− S disconnected. The edge-connectivity
λ(G) of G is defined as the minimum cardinality of an edge-cut S.

It is well known that when the underlying topology of an interconnection
network is modelled by a connected graph G = (V, E), where V is the set
of processors and E is the set of communication links in the network, the
edge-connectivity λ(G) is an important parameter to measure the fault-
tolerance of the network [17]. This parameter, however, has an obvious
deficiency, that it is tacitly assumed that all edges incident with a vertex
of G can potentially fail at the same time. In other words, in the definition
of λ(G), absolutely no conditions or restrictions are imposed either on the
minimum edge-cut S or on the components of G− S.

To compensate for this shortcoming, in 1981, Bauer et al [1] proposed
the concept of super edge-connectedness. A connected graph is said to be
super edge-connected if every minimum edge-cut isolates a vertex. The
study of super edge-connected graphs has a particular significance in the
design of reliable networks, mainly due to the fact that attaining super
edge-connectedness implies minimizing the numbers of minimum edge-cuts
(see [4]). A quite natural problem is that if G is super edge-connected
then how many edges must be removed to disconnect G such that every
component of the resulting graph contains no isolated vertices.

In 1988, Esfahanian and Hakimi [8] proposed the concept of the re-
stricted edge-connectivity. The restricted edge-connectivity of G, denoted
by λ′(G), is defined as the minimum number of edges whose deletion results
in a disconnected graph and contains no isolated vertices. In general, λ′(G)
does not always exist for a connected graph G. For example, λ′(G) does
not exist if G is a star K1,n or a complete graph K3. We write λ′(G) = ∞
if λ′(G) does not exist. In [8], Esfahanian and Hakimi showed that if G
has at least four vertices then λ′(G) does not exist if and only if G is a star
and that if λ′(G) exists then

λ′(G) ≤ ξ(G), (1)

where the symbol dG(x) denotes the degree of the vertex x in G and ξ(G) =
min{dG(u) + dG(v)− 2 : uv is an edge in G}.

A graph G is called λ′-optimal if λ′(G) = ξ(G). Several sufficient con-
ditions for graphs to be λ′-optimal were given for example by Wang and
Li [14], Hellwig and Volkmann [9] for graphs with diameter 2, Ueffing and
Volkmann [12] for the cartesian product of graphs, Xu and Xu [19] for tran-
sitive graphs. It is clear that G is super edge-connected if λ′(G) > λ(G).
Recently, Hellwig and Volkmann [10] have showed that a λ′-optimal graph
G is super edge-connected if its minimum degree δ(G) ≥ 3.

This new parameter λ′ in conjunction with λ can provide more accurate
measures for fault tolerance of a large-scale parallel processing system and,
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thus, has received much attention of many researchers (see, for example,
[6] ∼ [17], [19]).

In this paper, we consider λ′ for the Kautz undirected graph UK(d, n).
The following theorem completely determines λ′(UK(d, n)) for any d and
n with d ≥ 2 and n ≥ 1.

Theorem For the Kautz undirected graph UK(d, n) with d ≥ 2 and
n ≥ 1,

λ′(UK(d, n)) =





∞, for n = 1, d = 2;
3, for n = d = 2;
2d− 2, for n = 1, d ≥ 3;
4d− 4, for n ≥ 2, d ≥ 3

or n ≥ 3, d ≥ 2.

Corollary The Kautz undirected graph UK(d, n) is λ′-optimal ex-
cept UK(2, 1) and UK(2, 2) and, hence, is super edge-connected except
UK(2, 2).

The proofs of the theorem and the corollary are in Section 3. In Sec-
tion 2, the definition and some properties of the Kautz undirected graph
UK(d, n) are given.

2 Properties of Kautz Graphs

The well-known Kautz digraph is an important class of graphs and
widely used in the design and analysis of interconnection networks [3]. Let
d and n be two given integers with n ≥ 1 and d ≥ 2.

The Kautz digraph, denoted by K(d, n), is a digraph with the vertex-
set V = {x1x2 · · · xn : xi ∈ {0, 1, . . . , d}, xi+1 6= xi, i = 1, 2, . . . , n − 1}
and the directed edge-set E, where for x, y ∈ V , if x = x1x2 · · ·xn, then
(x, y) ∈ E if and only if y = x2x3 · · ·xnα, where α ∈ {0, 1, . . . , d} \ {xn}.

The Kautz undirected graph, denoted by UK(d, n), is a simple undi-
rected graph obtained from K(d, n) by deleting the orientation of all edges
and omitting multiple edges.

¿From definitions, K(d, 1) is a complete digraph of order d + 1 and
UK(d, 1) is a complete undirected graph of order d+1. Thus, λ(UK(d, 1))
= d. It has been shown that K(d, n) is d-regular and has connectivity d. It
is clear that UK(d, 2) is (2d− 1)-regular, and UK(d, n) has the minimum
degree δ = 2d−1 and the maximum degree ∆ = 2d for n ≥ 3. Furthermore,
Bermond et al [2] proved that the connectivity of UK(d, n) is 2d − 1 for
n ≥ 2, which implies that λ(UK(d, n)) = 2d − 1 for n ≥ 2. For more
properties of K(d, n) and UK(d, n), the reader is referred to the new book
by Xu [17].
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A pair of directed edges is said to be symmetric if they have the same
end-vertices but different orientations. The Kautz digraph contains sym-
metric edges. If there is a pair of symmetric edges between two vertices x
and y in K(d, n), then it is not difficult to see that the coordinates of x are
alternately in two different components a and b. It follows that the Kautz
digraph K(d, n) contains exactly

(
d+1
2

)
pairs of symmetric edges. Clearly,

directed distance between two end-vertices in different pairs of symmetric
edges in K(d, n) is equal to either n−1 or n. Moreover, two end-vertices in
different pairs of symmetric edges have no vertices in common if and only
if n ≥ 2. An edge in UK(d, n) is said to be singular if it corresponds a pair
of symmetric edges in K(d, n).

Let X and Y be two disjoint nonempty subsets of vertices in a digraph
G. Use the symbol E(X, Y ) to denote the set of directed edges from X
to Y in G. The following property on a regular digraph is useful, and the
detail proof can be found in Example 1.4.1 in [18].

Lemma 2.1 Let X and Y be two disjoint nonempty subsets of vertices
in a connected regular digraph G. Then |E(X, Y )| = |E(Y, X)|.

For two end-vertices x and y of a pair of symmetric edges in K(d, n),
let

A−x = N−(x)\{y}, A+
x = N+(x)\{y},

A+
y = N+(y)\{x}, A−y = N−(y)\{x}.

Lemma 2.2 Let xy be a singular edge in UK(d, n), where n ≥ 2 and
d ≥ 2.

(i) E(A−x , A+
y ) ∩ E(A−y , A+

x ) = ∅, and

|E(A−x , A+
y )| = |E(A−y , A+

x )| = (d− 1)2.

(ii) If n = 2, then for any u ∈ (A−x ∪ A+
x ) there is some v ∈ (A−y ∪ A+

y )
such that uv is a singular edge in UK(d, 2).

(iii) There exist 2d − 1 internally disjoint xy-paths in UK(d, n) such
that one of which is of length one, otherwise of length three.

Proof We may suppose that x = abab · · · ab if n is even and x =
abab · · · aba if n is odd. Without loss of generality, we suppose that n is
even. Then y = bab · · · ba, where a, b ∈ {0, 1, . . . , d} and a 6= b.

(i) For any u ∈ A−x and v ∈ A+
y , they can be expressed as u =

cabab · · · aba and v = abab · · · bae, where c, e ∈ {0, 1, . . . , d} and c, e /∈
{a, b}. Then u 6= v and (u, v) is a directed edge in K(d, n) for d ≥ 2.
Clearly, A−x ∩A+

y = ∅ and

E(A−x , A+
y ) = {(u, v) : c, e ∈ {0, 1, . . . , d} \ {a, b}}.
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Thus, |E(A−x , A+
y )| = (d− 1)2.

Similarly, For any z ∈ A+
x and w ∈ A−y , they can be expressed as z =

bab · · · abg and w = hbab · · · bab, where g, h ∈ {0, 1, . . . , d} and g, h /∈ {a, b}.
Then z 6= w and (w, z) is a directed edge in K(d, n) for d ≥ 2. Clearly,
A+

x ∩A−y = ∅ and

E(A−y , A+
x ) = {(z, w) : h, g ∈ {0, 1, . . . , d} \ {a, b}}.

Thus, |E(A−y , A+
x )| = (d− 1)2.

Since u 6= w and v 6= z, A−x ∩ A−y = ∅ and A+
x ∩ A+

y = ∅. Also since
two end-vertices in different pairs of symmetric edges have no vertex in
common if n ≥ 2, A−x ∩A+

x = ∅ and A+
y ∩A−y = ∅, and so A−x , A+

x , A−y , A+
y

are pairwise disjoint. Thus, E(A−x , A+
y ) ∩ E(A−y , A+

x ) = ∅.
(ii) Since n = 2, we may assume x = ab, y = ba, where a, b ∈

{0, 1, . . . , d} and a 6= b. If u ∈ A−x , then for d ≥ 2 we may assume u = ca
(c 6= a, b), and so v = ac ∈ A+

y . If u ∈ A+
x , we may assume u = bc

(c 6= a, b), and so v = cb ∈ A−y , where c ∈ {0, 1, . . . , d}. Thus, (u, v) and
(v, u) are a pair of symmetric edges in K(d, 2), and so uv is a singular edge
in UK(d, 2).

The assertion (iii) holds clearly from (i).

Two directed walks from {x, y} to {u, v} in K(d, n) is said internally
disjoint, if they have common vertices only in {x, y} or {u, v}.

Lemma 2.3 Let xy and uv be nonadjacent edges in UK(d, n) where
d ≥ 2 and n ≥ 2. If xy is singular, then there are (2d−2) internally-disjoint
directed paths from {x, y} to {u, v} in K(d, n).

Proof Let x = x1x2 · · ·xn, where xi ∈ {a, b} ⊆ {0, 1, . . . , d} and a 6= b.
Then y = x2x3 · · ·xnα, where α = x1 if n is even and α = x2 if n is
odd. Let u = u1u2 · · ·un. Then v = u2u3 · · ·unun+1, where u1, . . . , un+1 ∈
{0, 1, . . . , d} and ui 6= ui+1, i = 1, 2, . . . , n. Choose (2d− 2) directed walks
W1,W2, . . . , Wd−1, T1, T2, . . . , Td−1 from {x, y} to {u, v} as follows: For
1 ≤ i ≤ d− 1,

Wi = x1x2x3 · · ·xn, x2x3 · · ·xnwi, x3 · · ·xnwiu1, . . . ,

wiu1u2 · · ·un−1, u1u2 · · ·un−1un; if wi 6= u1;
Wi = x1x2x3 · · ·xn, x2x3 · · ·xnwi, x3 · · ·xnwiu2, . . . ,

wiu2u3 · · ·un−1, u1u2 · · ·un−1un, if wi = u1,

and for 1 ≤ j ≤ d− 1,

Tj = x2x3x4 · · ·xnα, x3x4 · · ·xnαtj , x4 · · ·xnαtju2, . . . ,

tju2u3 · · ·un, u2u3 · · ·unun+1 if tj 6= u2;
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Tj = x2x3x4 · · ·xnα, x3x4 · · ·xnαtj , x4 · · ·xnαtju3, . . . ,

αtju3u4 · · ·un, tju3u4 · · ·unun+1 if tj = u2,

where wi, tj ∈ {0, 1, . . . , d}\{a, b} and w1, w2, . . . , wd−1 are pairwise dis-
tinct and t1, t2, . . . , td−1 are pairwise distinct. We now show that these
directed walks are internally disjoint.

Assume that there are i and j (1 ≤ i 6= j ≤ d − 1) such that Wi and
Wj are internally joint. Without loss of generality, we may suppose that
wi 6= u1 and let z be the first internal vertex of Wi and Wj in common.
Let the length of the section Wi(x, z) be k and the length of the section
Wj(x, z) be t. Then 2 ≤ k, t ≤ n− 1. Since z can reach x along Wi by k
steps and along Wj by t steps, we can express z as

z = xk+1 · · ·xnwiu1 · · ·uk−1

=
{

xt+1 · · ·xnwju1 · · ·ut−1, wj 6= u1,
xt+1 · · ·xnwju2 · · ·ut, wj = u1.

Since wi 6= wj , we have k 6= t. If k < t, there is some h with k + 1 ≤
h ≤ n such that wj = xh ∈ {a, b}, a contradiction. If k > t, there is some l
with t + 1 ≤ l ≤ n such that wi = xl ∈ {a, b}, a contradiction. Therefore,
W1,W2, . . . , Wd−1 are internally disjoint.

Similarly, we can show that T1, T2, . . . , Td−1 are internally disjoint.
Assume that there are i and j (1 ≤ i, j ≤ d−1) such that Wi and Tj are

internally joint. Let z be the first internal vertex of Wi and Tj in common.
Let the length of the section Wi(x, z) be k and the length of the section
Tj(y, z) be t. Then 2 ≤ k, t ≤ n− 1. Thus, we can express z as

z =





xk+1 · · ·xnwiu1 · · ·uk−1 = xt+2 · · ·xnαtju2 · · ·ut,
if wi 6= u1, tj 6= u2;

xk+1 · · ·xnwiu2 · · ·uk = xt+2 · · ·xnαtju2 · · ·ut,
if wi = u1, tj 6= u2;

xk+1 · · ·xnwiu1 · · ·uk−1 = xt+2 · · ·xnαu2 · · ·ut+1,
if wi 6= u1, tj = u2;

xk+1 · · ·xnwiu2 · · ·uk = xt+2 · · ·xnαu2 · · ·ut+1,
if wi = u1, tj = u2.

We can obtain wi or tj ∈ {a, b}, a contradiction. Therefore, Wi and Tj are
internally disjoint for any i and j with 1 ≤ i, j ≤ d− 1. Since any directed
walk from {x, y} to {u, v} contains a directed path from {x, y} to {u, v},
the lemma follows immediately.

Lemma 2.4 Let xy and uv be two distinct singular edges in UK(d, 2)
that have no end-vertices in common. Then there are (4d − 4) internally
disjoint paths between {x, y} and {u, v} in UK(d, 2).
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Proof Let x = x1x2 and u = u1u2, where x1, x2, u1, u2 ∈ {0, 1, . . . , d},
x1 6= x2, u1 6= u2. Then y = x2x1 and v = u2u1. Choose 4d − 4 directed
walks W1,W2, . . . , Wd−1, T1, T2, . . . , Td−1, P1, . . . , Pd−1, Q1, Q2, . . . , Qd−1

in K(d, 2) from {x, y} to {u, v} or from {u, v} to {x, y} as follows.

Wi =
{

x1x2, x2wi, wiu1, u1u2, wi 6= u1,
x1x2, x2wi, wiu2, wi = u1;

Tj =
{

x2x1, x1tj , tju2, u2u1, tj 6= u2,
x2x1, x1tj , tju1, tj = u2;

Pi =
{

u1u2, u2pi, pix1, x1x2, pi 6= x1,
u1u2, u2pi, pix2, pi = x1;

Qj =
{

u2u1, u1qj , qjx2, x2x1, qj 6= x2,
u2u1, u1qj , gjx1, qj = x2,

where wi, tj ∈ {0, 1, . . . , d}\{x1, x2}, w1, w2, . . . , wd−1 are pairwise differ-
ent, t1, t2, . . ., td−1 are pairwise different, pi, qj ∈ {0, 1, . . . , d}\ {u1, u2}, p1,
p2, . . . , pd−1 are pairwise different, q1, q2, . . . , qd−1 are pairwise different. It
is easy to check that W1,W2, . . ., Wd−1, T1, T2, . . . , Td−1, P1, P2, . . . , Pd−1,
Q1, Q2, . . . , Qd−1 are internally disjoint, and each of them must contain a
directed path from {x, y} to {u, v} or from {u, v} to {x, y} as its subgraph.

3 Proof of Theorem

In this section, we give the proofs of the theorem and the corollary
stated in Introduction.

A set of edges F in G is called a nontrivial edge-cut if G− F is discon-
nected and contains no isolated vertices. A nontrivial edge-cut F is called
a λ′-cut if |F | = λ′(G).

Proof of Theorem It is clear that λ′(UK(d, 1)) does not exist for
d = 2 and λ′(UK(d, 1)) = 2d− 2 for d ≥ 3 since UK(d, 1) = Kd+1. Clearly
λ′(UK(2, 2)) = 3, we only consider n = 2, d ≥ 3 or n ≥ 3, d ≥ 2. Under
this hypothesis, UK(d, n) has vertices more than four and, hence, by (1)
we have

λ′(UK(d, n)) ≤ ξ(UKd, n)) = 2δ(UK(d, n))− 2 = 4d− 4.

In order to complete the proof of the theorem, we only need to prove
λ′(UK(d, n)) ≥ 4d− 4.

Let F be a λ′-cut of UK(d, n). Then UK(d, n) − F has exactly two
connected components, say G1 and G2. Let X = V (G1) and Y = V (G2).
Then

|F | = |E(X, Y ) ∪ E(Y, X)| = λ′(UK(d, n)).
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We now show that |F | ≥ 4d − 4 by considering two case according to the
values of n and d.

Case 1 n = 2 and d ≥ 3.
If G1 and G2 both contain singular edges then |F | ≥ 4d− 4 by Lemma

2.4. Without loss of generality, assume that G1 contains no singular edges.
Since every vertex in UK(d, 2) is incident with a singular edge, every vertex
in G1 is incident with a singular edge in F .

If there is some vertex x ∈ X such that (A−x ∪A+
x ) ⊂ X, where xy is a

singular edge in F and y ∈ Y , then (A+
y ∪A−y ) ⊂ Y , for otherwise, there is

a singular edge in G1 by Lemma 2.2 (ii), which contradicts the hypothesis
that G1 contains no singular edges. It follows from Lemma 2.2 (i) that, for
d ≥ 3,

|F | ≥ |E(A−x , A+
y )|+ |E(A−y , A+

x )|+ 1

≥ 2(d− 1)2 + 1 > 4d− 4.

If (A−x ∪A+
x ) 6⊆ X for any x ∈ X, then (A−x ∪A+

x )∩Y 6= ∅, which implies
that every vertex in X is incident with at least two edges in F . Thus, if
|X| ≥ 2d− 1 then

|F | ≥ 2|X| ≥ 2(2d− 1) = 4d− 2 > 4d− 4.

Assume t = |X| ≤ 2d− 2 below. Noting that UK(d, 2) is (2d− 1)-regular
and |E(G1)| ≤ 1

2 t(t− 1), we have

|F | ≥ (2d− 1)t− t(t− 1) = 2dt− t2 ≥ 4d− 4,

since the function f(t) = 2dt − t2 is convex on the interval [2, 2d − 2] and
f(t) ≥ f(2) = f(2d− 2) = 4d− 4.

Case 2 n ≥ 3 and d ≥ 2.
If F contains no singular edges, then either G1 or G2 must contain a

singular edge. By Lemma 2.1 and Lemma 2.3, we have that

|F | = |E(X, Y )|+ |E(Y, X)| = 2|E(X, Y )|
≥ 2(2d− 2) = 4d− 4.

If F contains at least two singular edges, then it is easy to see that the
end-vertices of any two singular edges have no common neighbors if n ≥ 4
and have at most two common neighbors if n = 3. It follows from Lemma
2.2 (iii) that |F | ≥ 2(2d− 1)− 2 = 4d− 4.

We now assume that xy is the only singular edge in F , where x ∈ X
and y ∈ Y . If we can show that

|E(Y, X)| ≥ 2d− 1, (2)
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then, by Lemma 2.1 and (2), we have

|F | = |E(X, Y ) ∪ E(Y, X)| = 2|E(Y, X)| − 1
≥ 2(2d− 1)− 1 = 4d− 3 > 4d− 4,

as required. We now show the inequality (2).
Since d ≥ 2, K(d, n) contains at least three symmetric edges, and so G1

or G2 contains a singular edge. Without loss of generality, assume that G2

contains a singular edge uv.
If |X| = 2, then the only edge in G1 is not singular, and so |E(Y, X)| =

2d − 1 clearly. Assume now that |X| ≥ 3. If any two distinct vertices
w, t ∈ X\{x} are not adjacent in G1, then

|E(Y, X)| ≥ |E(Y, X\{x})|+ 1
≥ (d− 1)|X\{x}|+ 1
≥ 2(d− 1) + 1 = 2d− 1.

Now, let us suppose that there exist w, t ∈ X\{x} such that they are
adjacent in G1. By Lemma 2.3, there are 2d−2 internally disjoint directed
paths from {u, v} to {w, t} in K(d, n). Let B be the set of edges of these
paths that are in (Y, X). Then |B| = 2d− 2.

Clearly, |E(Y, X)| ≥ |B| + |(y, x)| = 2d − 1 if (y, x) /∈ B. Assume
(y, x) ∈ B below.

If A+
y ∩X 6= ∅ then, since {(y, z) : z ∈ A+

y ∩X} is not in B, we have

|E(Y, X)| ≥ |B|+ |A+
y ∩X| ≥ 2d− 2 + 1 = 2d− 1.

Assume A+
y ∩X = ∅. If A−x ∩ Y = ∅, then E(A−x , A+

y ) ⊆ E(X, Y ). If
d ≥ 3, by Lemma 2.2 (i), we have

|E(Y, X)| = |E(X, Y )| ≥ |E(A−x , A+
y )|+ 1

= (d− 1)2 + 1 ≥ 2d− 1.

If d = 2, noting that E(A−y , A+
x ) has only one edge e and d−(y) = 2. If

e ∈ E(Y, X) then e /∈ B, we have

|E(Y, X)| ≥ |B|+ 1 = (2d− 2) + 1 = 2d− 1.

If e /∈ E(Y, X) then (A+
x ∪A−y ) ⊂ X or (A+

x ∪A−y ) ⊂ Y . By Lemma 2.2
(i), we have that

|E(Y, X)| = |E(X, Y )| ≥ |E(A−x , A+
y )|+ 2

≥ (d− 1)2 + 2 ≥ 2d− 1.
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If A−x ∩ Y 6= ∅ then, since {(w, x) : w ∈ A−x ∩ Y } is not in B, we have

|E(Y, X)| ≥ |B|+ |A−x ∩ Y | ≥ 2d− 2 + 1 = 2d− 1.

Thus, all cases imply that |E(Y, X)| ≥ 2d − 1 and so the proof of the
theorem is complete.

Proof of Corollary It is a simple observation from the theorem
and the definition of UK(d, n) that λ′(UK(d, n)) = ξ(UK(d, n)) except
UK(2, 1) and UK(2, 2) and, hence, UK(d, n) is λ′-optimal.

Note λ(UK(d, n)) = δ(UK(d, n)), δ(UK(d, 1)) = d, δ(UK(d, n)) =
2d − 1 for n ≥ 2. By the theorem, λ′(UK(d, n)) > λ(UK(d, n)) except
UK(2, 2) and, hence, UK(d, n) is super edge-connected.
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