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On Super Edge-Connectivity of Cartesian Product Graphs
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The super edge-connectivity \’ of a connected graph G
is the minimum cardinality of an edge-cut F in G such
that every component of G — F contains at least two
vertices. Let G; be a connected graph with order n;, mini-
mum degree §; and edge-connectivity \; for i = 1,2. This
article shows that \'(Gy x G2) > min{ng N2, N2 N1, N1 +
2%\2,20\1+N2} for ny, n; > 3and \'(Kz x G2) = min{n,, 2\,},
which generalizes the main result of Shieh on the super
edge-connectedness of the Cartesian product of two
regular graphs with maximum edge-connectivity. In par-
ticular, this article determines \'(Gy x G2) = min{n, 8,
N 81,8(Gy x Gp))} if M (Gj) = £(G;), where £(G) is the min-
imum edge-degree of a graph G. © 2006 Wiley Periodicals,
Inc. NETWORKS, Vol. 49(2), 152—-157 2007
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1. INTRODUCTION

Throughout this article, a graph G = (V, E) always means
afinite undirected graph without self-loops or multiple edges,
where V = V(G) is the vertex-set and E = E(G) is the edge-
set. For any edge uv € E, the parameter £g(uv) = dg(u) +
dg(v) — 2 is the degree of the edge uv and the parameter
&£(G) = min{ég(uv) |uv € E} is the minimum edge-degree
of G. The symbols K; ,—1 and K,, denote a star graph and a
complete graph with n vertices, respectively. For the graph
theoretical terminology and notation not defined here, we
refer the reader to [13].

It is well known that when the underlying topology of an
interconnection network is modeled by a connected graph
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G = (V,E), where V is the set of processors and E is the set
of communication links in the network, the edge-connectivity
A(G) of G is an important measurement for the fault tolerance
of the network. In general, the larger A (G) is, the more reliable
the network is. Itis well known that A (G) < §(G), where §(G)
is the minimum degree of G. A connected graph G is said to be
maximally edge-connected (in short, max-1) if L(G) = §(G).
Obviously, the set of edges incident with a vertex of degree
8(G) is certainly a minimum edge-cut and isolates a vertex
when G is max-A.

A graph G is said to be super edge-connected (in short,
super-)) if G is max-A and every minimum edge-cut isolates
a vertex of G.

It has been shown that a super-A network is the most reli-
able and has the smallest edge failure rate (see, e.g., [17,18]).
Several sufficient conditions for a graph to be max-A or
super-A have been given in the literature (see, e.g., [6]).

A quite natural problem is that if a connected graph G
is super-A then how many edges have to be removed to dis-
connect G such that every component of the resulting graph
contains no isolated vertices. This problem results in the con-
cept of the super edge-connectivity, introduced first by Fiol
et al. in [4].

An edge-cut F is called a super edge-cut of G if G —
F contains no isolated vertices. In general, super edge-cuts
do not always exist. The super edge-connectivity 1'(G) is
the minimum cardinality of a super edge-cut in G if super
edge-cuts exist, and, by convention, is +o00 otherwise.

The new parameter A’ in conjunction with A can provide
more accurate measures for the fault tolerance of a large-
scale parallel processing system and, thus, has received the
attention of many researchers in recent years (see, e.g., [3-9,
11, 14-16]). Esfahanian and Hakimi [3] showed that if G is
neither K ,—1 nor K3, then

AM(G) = M(G) = §(G). (D

A connected graph G is called a A'-graph if G is neither
K1 -1 nor K3. It is easy to see that if A'(G) > A(G) then G



is super-A. A super-A graph G is said to be optimally super
edge-connected (in short, A'-optimal) if 1/ (G) = £(G).

Recently, Chiue and Shieh [1] have given some suffi-
cient conditions for the Cartesian product G; x G2 to be
super-A; Shieh [10] has proved that G; x G; is super-A if
both G and G; are regular and max-A except for K» x K,
where n > 2. Ueffing and Volkmann [11] have investigated
the A’-optimality of G; x G, when both G| and G, are
A’-optimal. Li and Xu [7] have determined A (K, x G) =
min{n, 28(G),2)/(G)} for any connected graph G with n
vertices.

Let G; be a connected graph of order n;, minimum degree
8; and edge-connectivity A; for i = 1,2. In this article, we
show that A’ (G x G») > min{n| Az, n3 A1, A1+2A2, 201 +A2})
for ny,np > 3 by refining the technique of Chiue and Shieh
in [1] and determine that A’ (K, x G,) = min{n», 2X,}, which
generalizes the result of Shieh [10]. In particular, similar to
the proof of Theorem 4.1 in [11], we determine that A'(G; x
G,) = min{n; &3, n2 81,£(G1 x Gp)} if both G| and G, are
A/-optimal.

The proofs of these results are given in Section 3.

2. PRELIMINARIES

Let G; = (V1,E) and G2 = (V», E»). The union of two
graphs (not necessarily disjoint) G and G, denoted by G; U
G», is the graph with the vertex-set V(G UG,) = VUV, and
the edge-set E(G| U G») = E| U E». The Cartesian product
of G1 and Gy, denoted by G| x G, is the graph with the
vertex-set V1 x V; such that two vertices (x1,y1) and (x2,y2)
are adjacent if and only if either x; = xp € V| withy;y, € E»
ory; =y, € Vo withx1x, € Ej.

By the definition of the Cartesian product G = G| X G,
for any vertex (x,y) € V(G),

dg(x,y) = dg,(x) + dg, (y),

and if x;xp € Ej or y1y2 € E», then

Ec((x1,y1) (x2, 1)) = &g, (x1x2) + 2dg, (1),

§6((x1,y1)(x1,¥2)) = &6, (v1y2) + 2dg, (x1),
respectively, and consequently,

£(G) = min{&(G)) + 28(G2),£(Ga) + 28(Gy)}.
For convenience, we define two kinds of subgraphs Gy,

and G,, of G1 x G> as follows.
V(Giy) = {(x,y) |x € Vi} and

E(G1y) = {(x1,¥)(x2,) | x1x2 € E1} for any y € V»;
V(G2) ={(x,y) |y € V2} and

E(G2y) = {(x,y1)(x,y2) [ y1y2 € Ea} for any x € V.

It is clear that Gy is isomorphic to Gy for any y € V; and
Gy, is isomorphic to G, for any x € V. Let

vly = V(Gly)’ Ely = E(Gly)’ Vox = V(Gax), Eax = E(Goy).

Then

EiyNEy =0,
Exx N Eyy =1,

for any v,y € Vo,y #5/;

for any x,x" € Vi, x # x';

Vly N Vo = {(x, 1)}, Ely NEy =9

for any x € Vi,y € Va;

E(G1 x G2) = (Uyey, Ery) U (Uyey, E2x).

To check whether a union graph is connected or not, the
following concept and results, due to Chiue and Shieh [1],
are useful.

Definition (Separability). For G = G UGy U --- U Gy,
V(G) is called separable if and only if V(G) can be parti-
tioned into two disjoint nonempty sets A and A’ such that
AUA" = V(G) and each V (G;) is a subset of either A or A’
fori=1,2,... k.

Lemmal. SupposeG = U;‘Zl Gi, where G; is connected for
i=1,2,...,k If V(G) is nonseparable, then G is connected.

Remark 1. Because Vi, N Vor = {(x,y)}, Vi, U Vo, is
nonseparable for any x € V; and y € V».

3. MAIN RESULTS

We first introduce some notation used in this section. Let
G = (V,E) be a graph. For two disjoint nonempty subsets
X and Y of V, denote (X,Y)g = {xy € E|x € X,y € Y}.
If Y = V\ X, then we write Eg(X) = (X,Y)g and dg(X) =
|Ec(X)I.

A super edge-cut F of G is called a A'-cut if |F| = A'(G).
It is clear that G — F has exactly two components for any
A’-cut F. A nonempty and proper subset X of V is called a
A'-fragment of G if Eg(X) is a A’-cut of G. The minimum
A'-fragment over all A'-fragments of G is called a A'-atom
of G.

For F C E(G; x Gy), let

’1y = Gjy — Fforanyy € Vs,
G,, = Gy, — F forany x € V.

Then, it is clear that

V(G’ly) = Viy, V(Gy,) = Voy foranyx € Vi and y € Vy;

G X Gy — F = (Uyey, ﬁy) U (Uxev, Ghy)-

Let C = {x € V{|G), is connected} and D = {y €
V2 | G|, is connected}.

Throughout this section, we always assume that G; and
G» have m and n vertices, respectively, and A(G;) = X; > 1
fori =1,2.5048(G;) = 1fori = 1,2, which implies m > 2
andn > 2.

Lemma2. G=G| xGyisal-graphifm >2andn > 2.
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Proof. Because m > 2 and n > 2, the graph G = G| X
G; has |V (G x Gy)| = mn > 4 vertices, and thus G is not
K3. Moreover, §(G) = 6(G1) + 8(G2) > 2, and thus G is not
a star. Therefore, G is a A'-graph. n

Theorem 1. ) (Gy x G2) > min{mAy, nAi, A1 +212, 211+
MYifm>3andn > 3.

Proof. Denote u = min{mAy, niy, A1+ 212,211 + A2}
By Lemma 2, G; x G is a A/-graph, so its super edge-cuts
always exist. Assume F is a minimum super edge-cut with
|F| < p. We need to show that G x G, — F is connected.
Because |F| < u < mk,, there exists some x9 € V| such
that G/zx0 is connected. Because |F| < u < n)1, there exists
some yg € V> such that G/lyo is connected. That is to say,
|C|>1 and |D| > 1. There are three cases to be considered
for us.

Casel. |C| = 1.Thisimplies thatthe other m—1 subgraphs
G, are disconnected, where x € Vi\{xo}. In this case, G| y
is connected for any y € V,. Otherwise, because m > 3, we
have |F| > (m— 1) A+ A1 > 2A2 + A1 > W, acontradiction.
Thus, |D| = n. By Remark 1, (UyepViy) U Vo = Vi x V2
is nonseparable and, thus, (Uyep G’ly) U G’sz is connected by
Lemma 1 and sois G; x G, — F.

CASE 2. |C| = m. Because (UyecVax) U Vyy, = Vi x V2
is nonseparable, we have (Uycc G5,) U G’lyo is connected by
Lemma 1, which means G; x G, — F is connected.

CASE3. 2 <|C| <m—1.When |D| = 1or |D| = n, the
connectedness of G| x G — F can be derived in the same way
as Case 1 or Case 2. Now assume 2 < |D| < n — 1. On the
otherhand, [D| > n—1because |C| < m—1, otherwise |F| >
2A1 + A2 > u, acontradiction. Thus, |D| = n — 1. Similarly,
|C| = m — 1. Without loss of generality, assume G}, and
G, are disconnected for some x" € V; and y’ € V,. That is,
G’zx is connected for any x # x” and G| , is connected for any
y # Y. Because (Uysty Viy)U Uy Vo) = Vi X VoM, )}
is nonseparable, by Lemma 1, (Uyzy G} )) U (Urzr G, ) s
connected. Because F is a super edge-cut, the vertex (x’,y")
is adjacent to (Uy-y G’ly) U (Uytr G5,). S0 G| x G — Fis
connected and the proof is complete. "

Remark 2. The lower bound given above is tight. For
example, let G; = K,, with the vertex-set {x1,x2,...,X;}
and let G» = Kj,—1 with the vertex-set {y1,¥2,...,¥n},
where m > 3 andn > 3. Then Ay = m — 1 and 1, = 1. By
Theorem 1, A'(Gy x Gp) > min{mAs,nii, A1 + 212,20 +
A} = min{m,n(m — 1),m + 1,2m — 1} = m. In addition, if
y1y2 € E(Gy), the edge-set {(x1,y1)(x1,y2), (x2,¥1)(x2,¥2),
oy (o y1) (o, y2)} 1s an edge-cut that isolates no vertex
of K,y x Kj,—1. So it is a super edge-cut, which implies
N (K x Ki y—1) < m. Therefore, \' (K, X K| ,—1) = m. The
lower bound is attained.

Lemma 3 (Hellwig and Volkmann [5]). If G isa \'-optimal
graph, then A(G) = 5(G).
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With the proof of Theorem 4.1 in [11], we obtain the super
edge-connectivity of the Cartesian product of two A’-optimal
graphs.

Theorem 2. A'(Gq x G2) = min{mé(G>), nd(G1),&(Gy x
G»)} if Gy and Gy are both )\’ -optimal.

Proof. Denote §(G;) = 8;, AM(G;)) = A;, £E(Gy) = &,
M (G)) = A;fori = 1,2 and G = Gy x G. Because G;
is A'-optimal, G; is a A’-graph for i = 1,2, which implies
m>4,n>4.

By Lemma 2, 1/ (G) is well defined. First, we have A’ (G) <
&(G) by (1). Because m > 4, Eg(V x {y}) is a super edge-
cut for a vertex y € V with dg, (y) = 82. So A'(G) < md,.
Analogously, we have A'(G) < né;. Thus,

A(G) < min{méy, né1,£(G)}.

Assume A'(G) < min{md,,nd1,£(G)}. Let F be a A'-cut.
‘We should show that G| x G, — F is connected to deduce a
contradiction. Because |F| < md, = mh, by Lemma 3, there
exists some xy € V1 suchthat G’zx(] is connected. Analogously,
there exists some yg € V> such that G’ly0 is connected. That
is to say, |C| > 1 and |D| > 1. There are three cases to be
considered.

Casgl. |C| =m.ByRemark 1, (UyepViy) U (UrecVox) =
Vi x V, is nonseparable. Then (Uyep G’ly) U (Urec Gy,) s
connected by Lemma 1, and sois G| x G, — F.

CASE2. |C| =m — 1. Thereis only x; € V| such that G/le
is disconnected. By Remark 1, (UyepViy) U (UrecVox) =
Vi x Vo — {(x1,y)|y € V2\D} is nonseparable, and thus by
Lemma 1, (Uyep G’ly) U (Ugec G’2x) is connected. To prove
that G x G, — F is connected, we only need to show that
every vertex in V' = {(x1,y)|y € V»2\D} is connected to
(Uyep G’ly) U(Urec Gj,)- To this end, let (x1,y) be any vertex
in Vo, (v ¢ D). Note that F is a super edge-cut. If (x1,y) is
an isolated vertex of G, , then it is adjacent to (x',y) (x" #
x1), which is in (Uyep G/ly) U (Uyec G5,). In the following,
we suppose that (x1,y) is contained in a component of G’zxl
with at least two vertices. Denote this component by H. We
only need to consider the case of V(H) C V’, otherwise
(x1,) is connected to (Uyep G’ly) U (Urec G5,). There are
two subcases to be considered.

SUBCASE 2.1. Gy, — V(H) contains a component with at
least two vertices, denoted by H'. Because Gy, is connected,
all the components of Gy, — V(H) different from H’, if any,
are connected to A and not connected to H'. So Gay, —
V(H') is connected with |V(Gay, — V(H'))| > |V(H)| >
2, which implies that Eg,, (V(H')) is a super edge-cut.
Hence, we conclude that |F N E(Gay,)| > |EG2n (V(H))| =
|EG,,, (V(H"))| = M. There is at least one vertex in V (H)
with neighbors in (Uyep G’ly) U (Urec G),). Otherwise, we
obtain the following contradiction

|F| > A, + |VH)I8) > A + 281 = & + 281 > £(G).

So the vertex (x1, y) is connected to (Uyep G’ly) U(Uxec GY,)-



SUBCASE 2.2. G2y, — V(H) contains only isolated vertices.
Then |[F N E(Gax,)| = |Eg,,, (VH))| = (n— [V(H)])é,. Let
A, be the maximum degree of G;. Obviously, Ay < n — 1
and & < A 4+ 8, — 2. We claim that there is at least one
vertex in V(H) with neighbors in (Uyep G’ly) U (Urec G5,)-
Otherwise,
IF| = (n— |V(H))82 + |V (H)|81

=&+ m—|VH)| - 1D+ (VH)| —2)8 + 25

>&h+n—|VH) -+ IVH)| —2+24

=8+ (n—3)+ 25

>+ Ay —2+4+ 28

> & + 26

> §(6),

a contradiction. Therefore, the vertex (x,y) is connected to
(Uyen Gl,) U (Usec Gh).

In a word, G| x G, — F is connected in this case.

Case3. |C| <m — 2. Similarly, (Uyep G’ly) U (Urec G5,)
is connected. In this case, to prove that G; x G, — F is con-
nected, we only need to show that every vertex of G}, is
connected to (Uyep G’ly) U (Uxec Gj,) forx ¢ C.

Suppose that G, contains a component with at least
two vertices, denoted by H,, which has no vertices in
(Uyep G’ly) U (Uxec G/zx) forx ¢ C.If Go, — V(H,) contains
a component with at least two vertices, similar to Subcase
2.1, we have |F N E(G2y)| > |Eg, (V(Hy))| = 1}. Hence,
|ID| > n — 1, otherwise, noting that Gy is A'-optimal, by
Lemma 3,

|F| > |[F NE(Ga)| + 241 > Ay + 281 = & + 281 > £(G),

a contradiction. The case |D| > n — 1 can be handled in the
same way as Case 1 and Case 2.

If Gox — V(H,) contains only isolated vertices, then |F N
E(Ga)| = |Eg, (V(Hy))| = (n — |V(Hy)|)d2. Because H,
has no vertices in (Uyep G’I},)U(Uxec G, ) by our assumption,

[F| = (n— |V(Hx))d2 + |V (Hy) |1
= (n— |V(Hx))d2 + |V (Hy)[61 (by Lemma 3)
=68+ (n—|VH)| — D2+ (|V(Hy)| — 2)81 + 25
>+ n—|VHI -1 +I|V(H)| —2+25
=8 + (n—3)+ 24
>0+ Ax— 2428
> & + 261
> £(G),

where A, is the maximum degree of G, a contradiction.
So, every vertex of Hy is in or connected to (Uyep G’ly) U

(Uxec G/QX)

Suppose that vertex (x,y)(y ¢ D) is isolated in G),. Then
itisnotisolated in G’1 ,otherwise, itisisolatedin G| x G, —F,
contradicting our hypothesis that F' is a super edge-cut. So
the vertex (x, y) is contained in a component with at least two
vertices of G’ly. We can show that vertex (x,y) is connected
to (Uyep G,) U (Urec G5,) in the same way as above.

Because all possible cases lead to a contradiction, A'(G) =
min{mé,, nd1, £(G)} and the proof is complete. .

From Theorem 2, we can easily obtain the following
corollary.

Corollary 1 (Ueffing and Volkmann [11]). Let G| and G»
be two disjoint \'-optimal graphs and let G = G| x G,. Then
G is M -optimal or the )'-atoms of G have the form {x} x V,
for a vertex x € Vi with dg,(x) = §(G1) or Vi x {y} for a
vertexy € Vy with dg,(y) = 8(G2).

The n-dimensional toroidal mesh C(dy,d>, . ..,d,) ([12])
can be expressed as the Cartesian product Cy, x Cyg, X -+ X
Cy,, where Cy, is acycle of length d; fori = 1,2,...,n.

. 7dn) be the
S dp)) =
., dy) is M -optimal if d; > 4 for

Corollary 2 (Xuand Xu [16]). Let C(d;,d>, ..
n-dimensional toroidal mesh. Then X' (C(dy, da, . .
4n — 2 and, thus, C(dy,d,, . .

eachi=1,2,...,n.

Proof. We prove the corollary by induction on n. It is
easy to see that a cycle Cy. is A’-optimal for d; > 4. Now we
assume n > 2. Suppose G, = C(d;,da,...,d,_1) is \'-
optimal, which implies A'(G,,—1) =4(n—1)—2 =4n—6 =
§Gu-1). V(G- =d1+dr + -+ dy—1 and A(G—1) =
2(n — 1). Denote G = C(dy,da,...,dy) = Gu—1 x Cy,.
Noting d; > 4 for each i = 1,2,...,n, by Theorem 2, we
have

A (G) = min{|V(G,-1)18(Cy,), IV(Cy)18(Gu-1), £(G)}
=min{2(di +dz + -+ + dn-1),2dy(n — 1), 4n — 2}
—4n—2=£(G).

Thus, G is A'-optimal. "

Theorem 3. Let Gy be a connected graph with n vertices
and M(Gg) = A. Then ) (K> x Ggy) = min{n, 21}.

Proof. Let V(Gy) = {vi,v2,...,vy} and G = K, X
Go. By the definition of the Cartesian product, K> x Gy is
obtained from two copies of Gy by connecting (via a new
edge) vertex v; in one copy to the vertex v; in the other copy
of Go, | < i < n. These new edges are called cross edges.
Denote the two copies by G and G», respectively, and let
Vi = V(Gy), V2 = V(Gy).

If |[V(Gp)| = 2, then Eg(V1) is a super edge-cut of G, and
hence, 1 (G) < |Eg(V1)| = |Vi| = n. Suppose X; C V)
with dg, (X1) = A and let X, C V; be the set of those vertices
adjacent to X;. Itis easy to see Eg(X1UX3) is a super edge-cut
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of G,and hence, 1'(G) < |Eg(X1UX2)| = 2|Eg, (X1)| = 2A.
It follows that

A (G) < min{n, 21} 2)

We will show that the equality in (2) holds. Suppose to
the contrary that A'(G) < min{n,21}. We will show G — F
is connected for any A'-cut F of G.

Let FbeaA'-cutof G. Denote G} = Gi—F and G}, = Go—
F. Since |F| < 24, at least one of G| and G is connected.
Without loss of generality, assume G is connected. If G/ is
also connected, then G is connected to G/, by one cross edge
because |F| < n. Hence, G — F is connected.

In the following we suppose that G/ is not connected. For
any vertex v; of G’, denote the crossedge incident with it
by e. If e ¢ F, then v; is connected to G’2. If e € F, then
v; is adjacent to other vertices of G} as F is a super edge-
cut. Denote the component of G/ containing v; by G1; and
X = V(Gyy). Lett = |X|. Clearly, t > 2. If some vertex of
G is connected to G/2 in G — F, then the vertex v; is also
connected to G),. Otherwise, |F| > dg, (X) + |X| = A + 1.
Because |F| < 2A, we have t < 2. — A = A < §. That is
tosay,t <6 — 1 and § > 3. Every vertex in X has at least
8 — (t — 1) neighbors in V1\ X, so

IF| >d,(X)+1> S —(t— D)t +1=—1>+ S +2)r.

Define a function f () = —> + (8 + 2)z. It is easy to see the
function f(¢) reaches the minimum value at an end-point of
the interval [2,6 — 1]. Because f(2) = 26 and f(§ — 1) =
3§ —3 =254+ (6§ — 3) > 26, we obtain a contradiction that
|F| > 28 > 2A. Therefore, the equality in (2) follows. .

Corollary 3 (Li and Xu [7]).
of order n (> 2). Then

Let Gy be a connected graph

V(K2 x Gp) = min{n, 28(Gy), 2)'(Gy)}.

Proof. If Gy is super edge-connected, A(Go) = §(Go) <
A (Go). If Gy is not super edge-connected, then A(Gp) =
A (Gp). Noting that A(Go) < §(Gp), we have min{8(Gp),
A (Go)} = A(Gp). Thus, min{8§(Gy), ' (Go)} = A(Gp) for
any connected graph Gy, and thus the corollary holds by
Theorem 3. "

Corollary 4 (Esfahanian [2]). Let Q, be an n-dimensional
cube. Then )/ (Q,) = 2n — 2 and, thus, Q,, is A -optimal for
n > 2, and is super-A for n > 3.

Proof. Because O, = K; x Q,—1 (see Section 3.1 in
[12]), by Theorem 3, A"(Q,) = min{|V(Qu—1)I, 2A(Qn-1)} =
min{2"~!,2n — 2} = 2n — 2 = £(Q,) and thus Q, is A/-
optimal forn > 2.Inaddition, A'(Q,) = 2n—2 > A(Qy) =n
forn > 3, so Q,, is super-A. n

Combining Theorem 1 with Theorem 3, we obtain the
main result in [1, 10].

Corollary 5. Assume G| x Gy % Ky x K, forn > 2. If G;
are regular and max-\ fori = 1,2, then Gy X Gy is super-A.
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Proof. Note that A(G| x G2) < 8(G| x Gp) =d) +da,
where d; is the regular degree of G; fori = 1,2. Let m =
[V(G1)|,n =|V(G2)| and A; = A(G;) fori =1,2.

Whenm >3 andn > 3, wehaved; > 1 fori=1,2 and

mia > (di + s = (dy + Do = dids +ds > dy + db
nh > (da+Dr =+ Ddy =didr +d1 > di +d>
MA20=d+2d, >d| +d>
i+ ho =2dy +dy > dy + do

Whenm = 2, wehaved; = land 1 < dy < n—1
(because G| x G2 % K x K};), and

n>14+d,=d| +d»
20 =2dp > dy + db.

By Theorem 1 and Theorem 3, the corollary holds. "
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