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The super edge-connectivity λ′ of a connected graph G
is the minimum cardinality of an edge-cut F in G such
that every component of G − F contains at least two
vertices. Let Gi be a connected graph with order ni , mini-
mum degree δi and edge-connectivity λi for i = 1, 2. This
article shows that λ′(G1 × G2) ≥ min{n1 λ2, n2 λ1, λ1 +
2λ2, 2λ1+λ2} for n1, n2 ≥ 3 and λ′(K2×G2) = min{n2, 2λ2},
which generalizes the main result of Shieh on the super
edge-connectedness of the Cartesian product of two
regular graphs with maximum edge-connectivity. In par-
ticular, this article determines λ′(G1 × G2) = min{n1 δ2,
n2 δ1, ξ(G1 × G2)} if λ′(Gi ) = ξ(Gi ), where ξ(G) is the min-
imum edge-degree of a graph G. © 2006 Wiley Periodicals,
Inc. NETWORKS, Vol. 49(2), 152–157 2007
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1. INTRODUCTION

Throughout this article, a graph G = (V , E) always means
a finite undirected graph without self-loops or multiple edges,
where V = V(G) is the vertex-set and E = E(G) is the edge-
set. For any edge uv ∈ E, the parameter ξG(uv) = dG(u) +
dG(v) − 2 is the degree of the edge uv and the parameter
ξ(G) = min{ξG(uv) | uv ∈ E} is the minimum edge-degree
of G. The symbols K1, n−1 and Kn denote a star graph and a
complete graph with n vertices, respectively. For the graph
theoretical terminology and notation not defined here, we
refer the reader to [13].

It is well known that when the underlying topology of an
interconnection network is modeled by a connected graph
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G = (V , E), where V is the set of processors and E is the set
of communication links in the network, the edge-connectivity
λ(G) of G is an important measurement for the fault tolerance
of the network. In general, the larger λ(G) is, the more reliable
the network is. It is well known that λ(G) ≤ δ(G), where δ(G)

is the minimum degree of G. A connected graph G is said to be
maximally edge-connected (in short, max-λ) if λ(G) = δ(G).
Obviously, the set of edges incident with a vertex of degree
δ(G) is certainly a minimum edge-cut and isolates a vertex
when G is max-λ.

A graph G is said to be super edge-connected (in short,
super-λ) if G is max-λ and every minimum edge-cut isolates
a vertex of G.

It has been shown that a super-λ network is the most reli-
able and has the smallest edge failure rate (see, e.g., [17,18]).
Several sufficient conditions for a graph to be max-λ or
super-λ have been given in the literature (see, e.g., [6]).

A quite natural problem is that if a connected graph G
is super-λ then how many edges have to be removed to dis-
connect G such that every component of the resulting graph
contains no isolated vertices. This problem results in the con-
cept of the super edge-connectivity, introduced first by Fiol
et al. in [4].

An edge-cut F is called a super edge-cut of G if G −
F contains no isolated vertices. In general, super edge-cuts
do not always exist. The super edge-connectivity λ′(G) is
the minimum cardinality of a super edge-cut in G if super
edge-cuts exist, and, by convention, is +∞ otherwise.

The new parameter λ′ in conjunction with λ can provide
more accurate measures for the fault tolerance of a large-
scale parallel processing system and, thus, has received the
attention of many researchers in recent years (see, e.g., [3–9,
11, 14–16]). Esfahanian and Hakimi [3] showed that if G is
neither K1,n−1 nor K3, then

λ(G) ≤ λ′(G) ≤ ξ(G). (1)

A connected graph G is called a λ′-graph if G is neither
K1,n−1 nor K3. It is easy to see that if λ′(G) > λ(G) then G
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is super-λ. A super-λ graph G is said to be optimally super
edge-connected (in short, λ′-optimal) if λ′(G) = ξ(G).

Recently, Chiue and Shieh [1] have given some suffi-
cient conditions for the Cartesian product G1 × G2 to be
super-λ; Shieh [10] has proved that G1 × G2 is super-λ if
both G1 and G2 are regular and max-λ except for K2 × Kn,
where n ≥ 2. Ueffing and Volkmann [11] have investigated
the λ′-optimality of G1 × G2 when both G1 and G2 are
λ′-optimal. Li and Xu [7] have determined λ′(K2 × G) =
min{n, 2δ(G), 2λ′(G)} for any connected graph G with n
vertices.

Let Gi be a connected graph of order ni, minimum degree
δi and edge-connectivity λi for i = 1, 2. In this article, we
show thatλ′(G1×G2) ≥ min{n1 λ2, n2 λ1, λ1+2λ2, 2λ1+λ2}
for n1, n2 ≥ 3 by refining the technique of Chiue and Shieh
in [1] and determine that λ′(K2 ×G2) = min{n2, 2λ2}, which
generalizes the result of Shieh [10]. In particular, similar to
the proof of Theorem 4.1 in [11], we determine that λ′(G1 ×
G2) = min{n1 δ2, n2 δ1, ξ(G1 × G2)} if both G1 and G2 are
λ′-optimal.

The proofs of these results are given in Section 3.

2. PRELIMINARIES

Let G1 = (V1, E1) and G2 = (V2, E2). The union of two
graphs (not necessarily disjoint) G1 and G2, denoted by G1 ∪
G2, is the graph with the vertex-set V(G1∪G2) = V1∪V2 and
the edge-set E(G1 ∪ G2) = E1 ∪ E2. The Cartesian product
of G1 and G2, denoted by G1 × G2, is the graph with the
vertex-set V1 × V2 such that two vertices (x1, y1) and (x2, y2)

are adjacent if and only if either x1 = x2 ∈ V1 with y1y2 ∈ E2

or y1 = y2 ∈ V2 with x1x2 ∈ E1.
By the definition of the Cartesian product G = G1 × G2,

for any vertex (x, y) ∈ V(G),

dG(x, y) = dG1(x) + dG2(y),

and if x1x2 ∈ E1 or y1y2 ∈ E2, then

ξG((x1, y1)(x2, y1)) = ξG1(x1x2) + 2dG2(y1),

ξG((x1, y1)(x1, y2)) = ξG2(y1y2) + 2dG1(x1),

respectively, and consequently,

ξ(G) = min{ξ(G1) + 2δ(G2), ξ(G2) + 2δ(G1)}.
For convenience, we define two kinds of subgraphs G1y

and G2x of G1 × G2 as follows.

V(G1y) = {(x, y) | x ∈ V1} and

E(G1y) = {(x1, y)(x2, y) | x1x2 ∈ E1} for any y ∈ V2;

V(G2x) = {(x, y) | y ∈ V2} and

E(G2x) = {(x, y1)(x, y2) | y1y2 ∈ E2} for any x ∈ V1.

It is clear that G1y is isomorphic to G1 for any y ∈ V2 and
G2x is isomorphic to G2 for any x ∈ V1. Let

V1y = V(G1y), E1y = E(G1y), V2x = V(G2x), E2x = E(G2x).

Then

E1y ∩ E1y′ = ∅, for any y, y′ ∈ V2, y 	= y′;
E2x ∩ E2x′ = ∅, for any x, x′ ∈ V1, x 	= x′;

V1y ∩ V2x = {(x, y)}, E1y ∩ E2x = ∅
for any x ∈ V1, y ∈ V2;

E(G1 × G2) = (∪y∈V2 E1y) ∪ (∪x∈V1 E2x).

To check whether a union graph is connected or not, the
following concept and results, due to Chiue and Shieh [1],
are useful.

Definition (Separability). For G = G1 ∪ G2 ∪ · · · ∪ Gk,
V(G) is called separable if and only if V(G) can be parti-
tioned into two disjoint nonempty sets A and A′ such that
A ∪ A′ = V(G) and each V(Gi) is a subset of either A or A′
for i = 1, 2, . . . , k.

Lemma 1. Suppose G = ∪k
i=1Gi, where Gi is connected for

i = 1, 2, . . . , k. If V(G) is nonseparable, then G is connected.

Remark 1. Because V1y ∩ V2x = {(x, y)}, V1y ∪ V2x is
nonseparable for any x ∈ V1 and y ∈ V2.

3. MAIN RESULTS

We first introduce some notation used in this section. Let
G = (V , E) be a graph. For two disjoint nonempty subsets
X and Y of V , denote (X, Y)G = {xy ∈ E |x ∈ X, y ∈ Y}.
If Y = V\ X, then we write EG(X) = (X, Y)G and dG(X) =
|EG(X)|.

A super edge-cut F of G is called a λ′-cut if |F| = λ′(G).
It is clear that G − F has exactly two components for any
λ′-cut F. A nonempty and proper subset X of V is called a
λ′-fragment of G if EG(X) is a λ′-cut of G. The minimum
λ′-fragment over all λ′-fragments of G is called a λ′-atom
of G.

For F ⊆ E(G1 × G2), let

G′
1y = G1y − F for any y ∈ V2,

G′
2x = G2x − F for any x ∈ V1.

Then, it is clear that

V(G′
1y) = V1y, V(G′

2x) = V2x for any x ∈ V1 and y ∈ V2;

G1 × G2 − F = (∪y∈V2 G′
1y) ∪ (∪x∈V1 G′

2x).

Let C = {x ∈ V1 | G′
2x is connected} and D = {y ∈

V2 | G′
1y is connected}.

Throughout this section, we always assume that G1 and
G2 have m and n vertices, respectively, and λ(Gi) = λi ≥ 1
for i = 1, 2. So δ(Gi) ≥ 1 for i = 1, 2, which implies m ≥ 2
and n ≥ 2.

Lemma 2. G = G1 × G2 is a λ′-graph if m ≥ 2 and n ≥ 2.
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Proof. Because m ≥ 2 and n ≥ 2, the graph G = G1 ×
G2 has |V(G1 × G2)| = mn ≥ 4 vertices, and thus G is not
K3. Moreover, δ(G) = δ(G1)+ δ(G2) ≥ 2, and thus G is not
a star. Therefore, G is a λ′-graph. ■

Theorem 1. λ′(G1 ×G2) ≥ min{mλ2, nλ1, λ1 +2λ2, 2λ1 +
λ2} if m ≥ 3 and n ≥ 3.

Proof. Denote µ = min{mλ2, nλ1, λ1 + 2λ2, 2λ1 +λ2}.
By Lemma 2, G1 × G2 is a λ′-graph, so its super edge-cuts
always exist. Assume F is a minimum super edge-cut with
|F| < µ. We need to show that G1 × G2 − F is connected.
Because |F| < µ ≤ mλ2, there exists some x0 ∈ V1 such
that G′

2x0
is connected. Because |F| < µ ≤ nλ1, there exists

some y0 ∈ V2 such that G′
1y0

is connected. That is to say,
|C| ≥ 1 and |D| ≥ 1. There are three cases to be considered
for us.

Case 1. |C| = 1. This implies that the other m−1 subgraphs
G′

2x are disconnected, where x ∈ V1\{x0}. In this case, G′
1y

is connected for any y ∈ V2. Otherwise, because m ≥ 3, we
have |F| ≥ (m−1)λ2 +λ1 ≥ 2λ2 +λ1 ≥ µ, a contradiction.
Thus, |D| = n. By Remark 1, (∪y∈DV1y) ∪ V2x0 = V1 × V2

is nonseparable and, thus, (∪y∈D G′
1y)∪ G′

2x0
is connected by

Lemma 1 and so is G1 × G2 − F.

Case 2. |C| = m. Because (∪x∈CV2x) ∪ V1y0 = V1 × V2

is nonseparable, we have (∪x∈C G′
2x) ∪ G′

1y0
is connected by

Lemma 1, which means G1 × G2 − F is connected.

Case 3. 2 ≤ |C| ≤ m − 1. When |D| = 1 or |D| = n, the
connectedness of G1×G2−F can be derived in the same way
as Case 1 or Case 2. Now assume 2 ≤ |D| ≤ n − 1. On the
other hand, |D| ≥ n−1 because |C| ≤ m−1, otherwise |F| ≥
2λ1 +λ2 ≥ µ, a contradiction. Thus, |D| = n − 1. Similarly,
|C| = m − 1. Without loss of generality, assume G′

2x′ and
G′

1y′ are disconnected for some x′ ∈ V1 and y′ ∈ V2. That is,
G′

2x is connected for any x 	= x′ and G′
1y is connected for any

y 	= y′. Because (∪y 	=y′V1y)∪(∪x 	=x′V2x) = V1×V2\{(x′, y′)}
is nonseparable, by Lemma 1, (∪y 	=y′ G′

1y) ∪ (∪x 	=x′ G′
2x) is

connected. Because F is a super edge-cut, the vertex (x′, y′)
is adjacent to (∪y 	=y′ G′

1y) ∪ (∪x 	=x′ G′
2x). So G1 × G2 − F is

connected and the proof is complete. ■

Remark 2. The lower bound given above is tight. For
example, let G1 = Km with the vertex-set {x1, x2, . . . , xm}
and let G2 = K1,n−1 with the vertex-set {y1, y2, . . . , yn},
where m ≥ 3 and n ≥ 3. Then λ1 = m − 1 and λ2 = 1. By
Theorem 1, λ′(G1 × G2) ≥ min{mλ2, nλ1, λ1 + 2λ2, 2λ1 +
λ2} = min{m, n(m − 1), m + 1, 2m − 1} = m. In addition, if
y1y2 ∈ E(G2), the edge-set {(x1, y1)(x1, y2), (x2, y1)(x2, y2),
. . . , (xm, y1)(xm, y2)} is an edge-cut that isolates no vertex
of Km × K1,n−1. So it is a super edge-cut, which implies
λ′(Km ×K1,n−1) ≤ m. Therefore, λ′(Km ×K1,n−1) = m. The
lower bound is attained.

Lemma 3 (Hellwig and Volkmann [5]). If G is a λ′-optimal
graph, then λ(G) = δ(G).

With the proof of Theorem 4.1 in [11], we obtain the super
edge-connectivity of the Cartesian product of two λ′-optimal
graphs.

Theorem 2. λ′(G1 × G2) = min{mδ(G2), nδ(G1), ξ(G1 ×
G2)} if G1 and G2 are both λ′-optimal.

Proof. Denote δ(Gi) = δi, λ(Gi) = λi, ξ(Gi) = ξi,
λ′(Gi) = λ′

i for i = 1, 2 and G = G1 × G2. Because Gi

is λ′-optimal, Gi is a λ′-graph for i = 1, 2, which implies
m ≥ 4, n ≥ 4.

By Lemma 2, λ′(G) is well defined. First, we have λ′(G) ≤
ξ(G) by (1). Because m ≥ 4, EG(V1 × {y}) is a super edge-
cut for a vertex y ∈ V2 with dG2(y) = δ2. So λ′(G) ≤ mδ2.
Analogously, we have λ′(G) ≤ nδ1. Thus,

λ′(G) ≤ min{mδ2, nδ1, ξ(G)}.
Assume λ′(G) < min{mδ2, nδ1, ξ(G)}. Let F be a λ′-cut.

We should show that G1 × G2 − F is connected to deduce a
contradiction. Because |F| < mδ2 = mλ2 by Lemma 3, there
exists some x0 ∈ V1 such that G′

2x0
is connected. Analogously,

there exists some y0 ∈ V2 such that G′
1y0

is connected. That
is to say, |C| ≥ 1 and |D| ≥ 1. There are three cases to be
considered.

Case 1. |C| = m. By Remark 1, (∪y∈DV1y)∪ (∪x∈CV2x) =
V1 × V2 is nonseparable. Then (∪y∈D G′

1y) ∪ (∪x∈C G′
2x) is

connected by Lemma 1, and so is G1 × G2 − F.

Case 2. |C| = m − 1. There is only x1 ∈ V1 such that G′
2x1

is disconnected. By Remark 1, (∪y∈DV1y) ∪ (∪x∈CV2x) =
V1 × V2 − {(x1, y)|y ∈ V2\D} is nonseparable, and thus by
Lemma 1, (∪y∈D G′

1y) ∪ (∪x∈C G′
2x) is connected. To prove

that G1 × G2 − F is connected, we only need to show that
every vertex in V ′ = {(x1, y)| y ∈ V2\D} is connected to
(∪y∈D G′

1y)∪(∪x∈C G′
2x). To this end, let (x1, y) be any vertex

in V2x1 (y /∈ D). Note that F is a super edge-cut. If (x1, y) is
an isolated vertex of G′

2x1
, then it is adjacent to (x′, y) (x′ 	=

x1), which is in (∪y∈D G′
1y) ∪ (∪x∈C G′

2x). In the following,
we suppose that (x1, y) is contained in a component of G′

2x1

with at least two vertices. Denote this component by H. We
only need to consider the case of V(H) ⊆ V ′, otherwise
(x1, y) is connected to (∪y∈D G′

1y) ∪ (∪x∈C G′
2x). There are

two subcases to be considered.

Subcase 2.1. G2x1 − V(H) contains a component with at
least two vertices, denoted by H ′. Because G2x1 is connected,
all the components of G2x1 − V(H) different from H ′, if any,
are connected to H and not connected to H ′. So G2x1 −
V(H ′) is connected with |V(G2x1 − V(H ′))| ≥ |V(H)| ≥
2, which implies that EG2x1

(V(H ′)) is a super edge-cut.
Hence, we conclude that |F ∩ E(G2x1)| ≥ |EG2x1

(V(H))| ≥
|EG2x1

(V(H ′))| ≥ λ′
2. There is at least one vertex in V(H)

with neighbors in (∪y∈D G′
1y) ∪ (∪x∈C G′

2x). Otherwise, we
obtain the following contradiction

|F| ≥ λ′
2 + |V(H)|δ1 ≥ λ′

2 + 2δ1 = ξ2 + 2δ1 ≥ ξ(G).

So the vertex (x1, y) is connected to (∪y∈D G′
1y)∪(∪x∈C G′

2x).
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Subcase 2.2. G2x1 − V(H) contains only isolated vertices.
Then |F ∩ E(G2x1)| ≥ |EG2x1

(V(H))| ≥ (n − |V(H)|)δ2. Let
�2 be the maximum degree of G2. Obviously, �2 ≤ n − 1
and ξ2 ≤ �2 + δ2 − 2. We claim that there is at least one
vertex in V(H) with neighbors in (∪y∈D G′

1y) ∪ (∪x∈C G′
2x).

Otherwise,

|F| ≥ (n − |V(H)|)δ2 + |V(H)|δ1

= δ2 + (n − |V(H)| − 1)δ2 + (|V(H)| − 2)δ1 + 2δ1

≥ δ2 + (n − |V(H)| − 1) + |V(H)| − 2 + 2δ1

= δ2 + (n − 3) + 2δ1

≥ δ2 + �2 − 2 + 2δ1

≥ ξ2 + 2δ1

≥ ξ(G),

a contradiction. Therefore, the vertex (x1, y) is connected to
(∪y∈D G′

1y) ∪ (∪x∈C G′
2x).

In a word, G1 × G2 − F is connected in this case.

Case 3. |C| ≤ m − 2. Similarly, (∪y∈D G′
1y) ∪ (∪x∈C G′

2x)

is connected. In this case, to prove that G1 × G2 − F is con-
nected, we only need to show that every vertex of G′

2x is
connected to (∪y∈D G′

1y) ∪ (∪x∈C G′
2x) for x /∈ C.

Suppose that G′
2x contains a component with at least

two vertices, denoted by Hx, which has no vertices in
(∪y∈D G′

1y)∪ (∪x∈C G′
2x) for x /∈ C. If G2x − V(Hx) contains

a component with at least two vertices, similar to Subcase
2.1, we have |F ∩ E(G2x)| ≥ |EG2x (V(Hx))| ≥ λ′

2. Hence,
|D| ≥ n − 1, otherwise, noting that G1 is λ′-optimal, by
Lemma 3,

|F| ≥ |F ∩ E(G2x)| + 2λ1 ≥ λ′
2 + 2δ1 = ξ2 + 2δ1 ≥ ξ(G),

a contradiction. The case |D| ≥ n − 1 can be handled in the
same way as Case 1 and Case 2.

If G2x − V(Hx) contains only isolated vertices, then |F ∩
E(G2x)| ≥ |EG2x (V(Hx))| ≥ (n − |V(Hx)|)δ2. Because Hx

has no vertices in (∪y∈D G′
1y)∪(∪x∈C G′

2x)by our assumption,

|F| ≥ (n − |V(Hx)|)δ2 + |V(Hx)|λ1

= (n − |V(Hx)|)δ2 + |V(Hx)|δ1 (by Lemma 3)

= δ2 + (n − |V(Hx)| − 1)δ2 + (|V(Hx)| − 2)δ1 + 2δ1

≥ δ2 + (n − |V(Hx)| − 1) + |V(Hx)| − 2 + 2δ1

= δ2 + (n − 3) + 2δ1

≥ δ2 + �2 − 2 + 2δ1

≥ ξ2 + 2δ1

≥ ξ(G),

where �2 is the maximum degree of G2, a contradiction.
So, every vertex of Hx is in or connected to (∪y∈D G′

1y) ∪
(∪x∈C G′

2x).

Suppose that vertex (x, y)(y /∈ D) is isolated in G′
2x. Then

it is not isolated in G′
1y, otherwise, it is isolated in G1×G2−F,

contradicting our hypothesis that F is a super edge-cut. So
the vertex (x, y) is contained in a component with at least two
vertices of G′

1y. We can show that vertex (x, y) is connected
to (∪y∈D G′

1y) ∪ (∪x∈C G′
2x) in the same way as above.

Because all possible cases lead to a contradiction, λ′(G) =
min{mδ2, nδ1, ξ(G)} and the proof is complete. ■

From Theorem 2, we can easily obtain the following
corollary.

Corollary 1 (Ueffing and Volkmann [11]). Let G1 and G2

be two disjoint λ′-optimal graphs and let G = G1 ×G2. Then
G is λ′-optimal or the λ′-atoms of G have the form {x} × V2

for a vertex x ∈ V1 with dG1(x) = δ(G1) or V1 × {y} for a
vertex y ∈ V2 with dG2(y) = δ(G2).

The n-dimensional toroidal mesh C(d1, d2, . . . , dn) ([12])
can be expressed as the Cartesian product Cd1 × Cd2 × · · · ×
Cdn , where Cdi is a cycle of length di for i = 1, 2, . . . , n.

Corollary 2 (Xu and Xu [16]). Let C(d1, d2, . . . , dn) be the
n-dimensional toroidal mesh. Then λ′(C(d1, d2, . . . , dn)) =
4n − 2 and, thus, C(d1, d2, . . . , dn) is λ′-optimal if di ≥ 4 for
each i = 1, 2, . . . , n.

Proof. We prove the corollary by induction on n. It is
easy to see that a cycle Cdi is λ′-optimal for di ≥ 4. Now we
assume n ≥ 2. Suppose Gn−1 = C(d1, d2, . . . , dn−1) is λ′-
optimal, which implies λ′(Gn−1) = 4(n−1)−2 = 4n−6 =
ξ(Gn−1). |V(Gn−1)| = d1 + d2 + · · · + dn−1 and λ(Gn−1) =
2(n − 1). Denote G = C(d1, d2, . . . , dn) = Gn−1 × Cdn .
Noting di ≥ 4 for each i = 1, 2, . . . , n, by Theorem 2, we
have

λ′(G) = min{|V(Gn−1)|δ(Cdn), |V(Cdn)|δ(Gn−1), ξ(G)}
= min{2(d1 + d2 + · · · + dn−1), 2dn(n − 1), 4n − 2}
= 4n − 2 = ξ(G).

Thus, G is λ′-optimal. ■

Theorem 3. Let G0 be a connected graph with n vertices
and λ(G0) = λ. Then λ′(K2 × G0) = min{n, 2λ}.

Proof. Let V(G0) = {v1, v2, . . . , vn} and G = K2 ×
G0. By the definition of the Cartesian product, K2 × G0 is
obtained from two copies of G0 by connecting (via a new
edge) vertex vi in one copy to the vertex vi in the other copy
of G0, 1 ≤ i ≤ n. These new edges are called cross edges.
Denote the two copies by G1 and G2, respectively, and let
V1 = V(G1), V2 = V(G2).

If |V(G0)| ≥ 2, then EG(V1) is a super edge-cut of G, and
hence, λ′(G) ≤ |EG(V1)| = |V1| = n. Suppose X1 ⊆ V1

with dG1(X1) = λ and let X2 ⊆ V2 be the set of those vertices
adjacent to X1. It is easy to see EG(X1∪X2) is a super edge-cut
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of G, and hence, λ′(G) ≤ |EG(X1 ∪X2)| = 2|EG1(X1)| = 2λ.
It follows that

λ′(G) ≤ min{n, 2λ}. (2)

We will show that the equality in (2) holds. Suppose to
the contrary that λ′(G) < min{n, 2λ}. We will show G − F
is connected for any λ′-cut F of G.

Let F be aλ′-cut of G. Denote G′
1 = G1−F and G′

2 = G2−
F. Since |F| < 2λ, at least one of G′

1 and G′
2 is connected.

Without loss of generality, assume G′
2 is connected. If G′

1 is
also connected, then G′

1 is connected to G′
2 by one cross edge

because |F| < n. Hence, G − F is connected.
In the following we suppose that G′

1 is not connected. For
any vertex vi of G′

1, denote the crossedge incident with it
by e. If e /∈ F, then vi is connected to G′

2. If e ∈ F, then
vi is adjacent to other vertices of G′

1 as F is a super edge-
cut. Denote the component of G′

1 containing vi by G11 and
X = V(G11). Let t = |X|. Clearly, t ≥ 2. If some vertex of
G11 is connected to G′

2 in G − F, then the vertex vi is also
connected to G′

2. Otherwise, |F| ≥ dG1(X) + |X| ≥ λ + t.
Because |F| < 2λ, we have t < 2λ − λ = λ ≤ δ. That is
to say, t ≤ δ − 1 and δ ≥ 3. Every vertex in X has at least
δ − (t − 1) neighbors in V1\ X , so

|F| ≥ dG1(X) + t ≥ (δ − (t − 1))t + t = −t2 + (δ + 2)t.

Define a function f (t) = −t2 + (δ + 2)t. It is easy to see the
function f (t) reaches the minimum value at an end-point of
the interval [2, δ − 1]. Because f (2) = 2δ and f (δ − 1) =
3δ − 3 = 2δ + (δ − 3) ≥ 2δ, we obtain a contradiction that
|F| ≥ 2δ ≥ 2λ. Therefore, the equality in (2) follows. ■

Corollary 3 (Li and Xu [7]). Let G0 be a connected graph
of order n (≥ 2). Then

λ′(K2 × G0) = min{n, 2δ(G0), 2λ′(G0)}.
Proof. If G0 is super edge-connected, λ(G0) = δ(G0) <

λ′(G0). If G0 is not super edge-connected, then λ(G0) =
λ′(G0). Noting that λ(G0) ≤ δ(G0), we have min{δ(G0),
λ′(G0)} = λ(G0). Thus, min{δ(G0), λ′(G0)} = λ(G0) for
any connected graph G0, and thus the corollary holds by
Theorem 3. ■

Corollary 4 (Esfahanian [2]). Let Qn be an n-dimensional
cube. Then λ′(Qn) = 2n − 2 and, thus, Qn is λ′-optimal for
n ≥ 2, and is super-λ for n ≥ 3.

Proof. Because Qn = K2 × Qn−1 (see Section 3.1 in
[12]), by Theorem 3,λ′(Qn) = min{|V(Qn−1)|, 2λ(Qn−1)} =
min{2n−1, 2n − 2} = 2n − 2 = ξ(Qn) and thus Qn is λ′-
optimal for n ≥ 2. In addition, λ′(Qn) = 2n−2 > λ(Qn) = n
for n ≥ 3, so Qn is super-λ. ■

Combining Theorem 1 with Theorem 3, we obtain the
main result in [1, 10].

Corollary 5. Assume G1 × G2 	∼= K2 × Kn for n ≥ 2. If Gi

are regular and max-λ for i = 1, 2, then G1 × G2 is super-λ.

Proof. Note that λ(G1 × G2) ≤ δ(G1 × G2) = d1 + d2,
where di is the regular degree of Gi for i = 1, 2. Let m =
|V(G1)|, n = |V(G2)| and λi = λ(Gi) for i = 1, 2.

When m ≥ 3 and n ≥ 3, we have di > 1 for i = 1, 2 and

mλ2 ≥ (d1 + 1)λ2 = (d1 + 1)d2 = d1d2 + d2 > d1 + d2

nλ1 ≥ (d2 + 1)λ1 = (d2 + 1)d1 = d1d2 + d1 > d1 + d2

λ1 + 2λ2 = d1 + 2d2 > d1 + d2

2λ1 + λ2 = 2d1 + d2 > d1 + d2

When m = 2, we have d1 = 1 and 1 < d2 < n − 1
(because G1 × G2 	∼= K2 × Kn), and

n > 1 + d2 = d1 + d2

2λ2 = 2d2 > d1 + d2.

By Theorem 1 and Theorem 3, the corollary holds. ■
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