Information Processing Letters

The forwarding indices of augmented cubes ${ }^{\text {* }}$

Min $\mathrm{Xu}^{\text {a }}$, Jun-Ming Xu ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China
${ }^{\mathrm{b}}$ Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China

Received 9 March 2006; received in revised form 28 September 2006; accepted 28 September 2006
Available online 27 October 2006
Communicated by A.A. Bertossi

Abstract

For a given connected graph G of order n, a routing R in G is a set of $n(n-1)$ elementary paths specified for every ordered pair of vertices in G. The vertex (resp. edge) forwarding index of G is the maximum number of paths in R passing through any vertex (resp. edge) in G. Choudum and Sunitha [S.A. Choudum, V. Sunitha, Augmented cubes, Networks 40 (2002) 71-84] proposed a variant of the hypercube Q_{n}, called the augmented cube $A Q_{n}$ and presented a minimal routing algorithm. This paper determines the vertex and the edge forwarding indices of $A Q_{n}$ as $2^{n} / 9+(-1)^{n+1} / 9+n 2^{n} / 3-2^{n}+1$ and 2^{n-1}, respectively, which shows that the above algorithm is optimal in view of maximizing the network capacity. © 2006 Elsevier B.V. All rights reserved.

Keywords: Combinatorial problems; Augmented cubes; Routings; Forwarding index

1. Introduction

A routing R in a connected graph G of order n is a set of $n(n-1)$ elementary paths $R(u, v)$ specified for every (ordered) pair (u, v) of vertices of G. A routing R is said to be minimal if every path $R(u, v)$ in R is a shortest path from u to v in G. To measure the efficiency of a routing deterministically, Chung et al. [3] and Heydemann et al. [13] introduced the concept of the vertex forwarding index and the edge forwarding index of a routing, respectively.

The load $\xi(G, R, x)$ of a vertex x (resp. the load $\pi(G, R, e)$ of an edge $e)$ with respect to R is defined

[^0]as the number of paths specified by R going through x (resp. e). The parameters
$\xi(G, R)=\max _{v \in V(G)} \xi(G, R, v) \quad$ and
$\pi(G, R)=\max _{e \in E(G)} \pi(G, R, e)$
are defined as the vertex forwarding index and the edge forwarding index of G with respect to R, respectively; and the parameters
$\xi(G)=\min _{R} \xi(G, R) \quad$ and $\quad \pi(G)=\min _{R} \pi(G, R)$
are defined as the vertex forwarding index and the edge forwarding index of G, respectively.

The original study of forwarding indices is motivated by the problem of maximizing network capacity, see [3]. Minimizing the forwarding indices of a routing will result in maximizing the network capacity. Thus, it becomes very significant to determine the vertex and

Fig. 1. Augmented cubes $A Q_{1}, A Q_{2}$ and $A Q_{3}$.
the edge forwarding indices of a given graph. However, Saad [21] found that for an arbitrary graph determining its vertex-forwarding index is NP-complete even if the diameter of the graph is two. Even so, a number of results have obtained and the forwarding indices of many well-known networks have been determined by several researchers, see, for example, [1,3-23,25-27].

In [2], Choudum and Sunitha proposed a new variant of the hypercube Q_{n}, called the augmented cube $A Q_{n}$, and found some properties not shared by the hypercube. In particular, they presented a minimal routing algorithm, by which they determined the diameter of $A Q_{n}$ to be $\lceil n / 2\rceil$.

In this paper, we use Choudum and Sunitha's algorithm to determine $\xi\left(A Q_{n}\right)=2^{n} / 9+(-1)^{n+1} / 9+$ $n 2^{n} / 3-2^{n}+1$ and $\pi\left(A Q_{n}\right)=2^{n-1}$, which shows their algorithm is optimal in view of maximizing the network capacity.

The proofs of the results are in Section 4. In Section 2, we recall the definition and some properties of $A Q_{n}$. In Section 3, we show a minimal routing of $A Q_{n}$.

2. Definition and properties of augmented cubes

We follow the standard terminology of Xu [24]. As with hypercubes, there are many ways to describe the augmented cubes, one of which is follows.

Definition 1. The n-dimensional augmented cube $A Q_{n}$ has 2^{n} vertices, each labeled by an n-bit binary string $a_{1} a_{2} \ldots a_{n}$. We define $A Q_{1}=K_{2}$. For $n \geqslant 2, A Q_{n}$ is obtained by taking two copies of the ($n-1$)-dimensional augmented cube $A Q_{n-1}$, denoted by $A Q_{n-1}^{0}$ and $A Q_{n-1}^{1}$, and adding $2 \times 2^{n-1}$ edges between the two as follows:

Let $V\left(A Q_{n-1}^{0}\right)=\left\{0 a_{2} a_{3} \ldots a_{n}: a_{i}=0\right.$ or 1$\}$ and $V\left(A Q_{n-1}^{1}\right)=\left\{1 b_{2} b_{3} \ldots b_{n}: b_{i}=0\right.$ or 1$\}$. A vertex $A=$ $0 a_{2} a_{3} \ldots a_{n}$ of $A Q_{n-1}^{0}$ is joined to a vertex $B=1 b_{2} b_{3}$ $\ldots b_{n}$ of $A Q_{n-1}^{1}$ if and only if for each $i=2,3, \ldots, n$ either
(1) $a_{i}=b_{i}$; in this case, $A B$ is called a hypercube edge, or
(2) $a_{i}=\bar{b}_{i}$, in this case, $A B$ is called a complement edge.

Fig. 1 shows the augmented cubes $A Q_{1}, A Q_{2}$ and $A Q_{3}$.

We write this recursive construction of $A Q_{n}$ symbolically as $A Q_{n}=A Q_{n-1}^{0} \otimes A Q_{n-1}^{1}$. The edges between $A Q_{n-1}^{0}$ and $A Q_{n-1}^{1}$ are called cross edges. Furthermore, we use $A Q_{n-i}^{s_{1} S_{2} \ldots s_{i}}$ to denote the subgraph of $A Q_{n}$ induced by the vertex with prefix $s_{1} s_{2} \ldots s_{i}$.

The following two lemmas give the desired property of $A Q_{n}$.

Lemma 2. [2] For $n \geqslant 1$, the augmented cubes $A Q_{n}$ are Cayley graphs where $A Q_{n} \cong \operatorname{Cay}\left(Z_{2}^{n},(10 \ldots 000) \cup\right.$ $(01 \ldots 000) \cup \ldots \cup(00 \ldots 001) \cup(00 \ldots 011) \cup(00 \ldots$ 111) $\cup \cdots \cup(11 \ldots 111))$.

Lemma 3. [2] Let $A Q_{n}=A Q_{n-1}^{0} \otimes A Q_{n-1}^{1}, X=x_{1} x_{2}$ $\ldots x_{n}$ and $Y=y_{1} y_{2} \ldots y_{n}$ be two vertices in $A Q_{n}$.
(1) If $X, Y \in A Q_{n-1}^{0}$ (or $A Q_{n-1}^{1}$), then there exists a shortest (X, Y)-path in $A Q_{n}$ with all its vertices in $A Q_{n-1}^{0}\left(\right.$ respectively, $\left.A Q_{n-1}^{1}\right)$.
(2) Let $X \in A Q_{n-1}^{0}$ and $Y \in A Q_{n-1}^{1}$.
(a) There exists a shortest (X, Y)-path T in $A Q_{n}$ with all its vertices (except X) in $A Q_{n-1}^{1}$. Moreover, the second vertex of T (i.e., the neighbor of X in T) is either $1 x_{2} x_{3} \ldots x_{n}$ or $1 \bar{x}_{2} \bar{x}_{3} \ldots \bar{x}_{n}$ according to whether $d\left(x_{2} x_{3} \ldots x_{n}, y_{2} y_{3} \ldots y_{n}\right)$ $\leqslant d\left(\bar{x}_{2} \bar{x}_{3} \cdots \bar{x}_{n}, y_{2} y_{3} \ldots y_{n}\right)$ holds or not.
(b) There exists a shortest (X, Y)-path T in $A Q_{n}$ with all its vertices (except Y) in $A Q_{n-1}^{0}$. Moreover, the penultimate vertex of T (i.e., neighbor of Y in T) is either $0 y_{2} y_{3} \ldots y_{n}$ or $0 \bar{y}_{2} \bar{y}_{3} \ldots \bar{y}_{n}$.
(3) $d\left(X, Y ; A Q_{n}\right) \begin{cases}\leqslant d\left(X, \bar{Y} ; A Q_{n}\right) & \text { if } x_{1}=y_{1}, \\ \geqslant d\left(X, \bar{Y} ; A Q_{n}\right) & \text { if } x_{1} \neq y_{1} .\end{cases}$

Fig. 2. Routing path (a) from 000000 to 101011 in $A Q_{6}$, and (b) from 1010010110 to 1000100011 in $A Q_{10}$.

3. Routing of $A Q_{n}$

In this section, we show a minimal routing which proposed by Choudum and Sunitha in [2].

We recall the logical OR operation \oplus_{2} on $\{0,1\}$ which means $0 \oplus_{2} 0=0,0 \oplus_{2} 1=1 \oplus_{2} 0=1$ and $1 \oplus_{2} 1=1$.

A message from a vertex S (source) to another vertex D (destination) along this shortest (S, D)-path, any "current" vertex B performs three tasks:
(1) Compute its $\operatorname{tag}\left(B \oplus_{2} D\right)=\left(b_{1} \oplus_{2} d_{1}, b_{2} \oplus_{2}\right.$ $\left.d_{2}, \cdots, b_{n} \oplus_{2} d_{n}\right)$.
(2) Scans $\operatorname{tag}\left(B \oplus_{2} D\right)$ for the least i such that $b_{i} \oplus_{2}$ $d_{i}=1$.
(3) (a) If $b_{i+1} \oplus_{2} d_{i+1}=0$, it changes the i th entry of B to d_{i} and routes the message to the next current vertex $B^{\prime}=\left(d_{1} d_{2} \ldots d_{i} b_{i+1} b_{i+2} \ldots b_{n}\right)$ along the hypercube edge of weight $2 i-1$.
(b) If $c_{i+1} \oplus_{2} d_{i+1}=1$, it changes the i th entry of B to d_{i} and routes the message to the next current vertex $B^{\prime}=\left(d_{1} d_{2} \ldots d_{i} \bar{b}_{i+1} \bar{b}_{i+2} \ldots \bar{b}_{n}\right)$ along the complement edge of weight $2 i$.

They also give two illustrations as shown in Fig. 2.
We use R_{n} to denote the routing of $A Q_{n}$ defined above. By Lemma 3, we can verify that R_{n} is a minimum routing in $A Q_{n}$.

4. Main results

In this section, we will give the vertex and the edge forwarding indices of the augmented cube of $A Q_{n}$. The proofs of our results depend on the following lemma strongly, which is due to Heydemann et al. [13].

Lemma 4.

(1) If $G=(V, E)$ is a Cayley graph of order n, then for any u we have,

$$
\xi(G)=\sum_{v \in V} d(u, v)-(n-1)
$$

(2) Let $G=(V, E)$ be a simple connected graph of order n. Then

$$
\frac{1}{|E(G)|} \sum_{(u, v) \in V \times V} d(u, v) \leqslant \pi(G) \leqslant \pi_{m}(G)
$$

The equalities hold if and only if there exists a minimal routing in G for which the load of all edges is the same.

Theorem 5. The vertex forwarding index of $A Q_{n}$ is
$\xi\left(A Q_{n}\right)=\frac{2^{n}}{9}+\frac{(-1)^{n+1}}{9}+\frac{n 2^{n}}{3}-2^{n}+1$.
Proof. By Lemma 4, in order to prove the theorem, we only need to compute the sum D_{n} of all distances from the fixed vertex $u=(00 \ldots 00)$ to any other vertex v since $A Q_{n}$ is a Cayley graph.

The distances between $u=(\overbrace{00 \ldots 00}^{n})$ and the vertex $0 v_{2} v_{3} \ldots v_{n}$ in $A Q_{n-1}^{0}$ is
$d(u, v)=d(\overbrace{0 \ldots 0}^{n-1}, v_{2} v_{3} \ldots v_{n})$.
Then the sum of all distances from vertex $u=(\overbrace{00 \ldots 00}^{n})$ to the vertices in $A Q_{n-1}^{0}$ is D_{n-1}. The vertex set of $A Q_{n-1}^{1}$ can be partitioned into $V\left(A Q_{n-2}^{10}\right)$ and $V\left(A Q_{n-2}^{11}\right)$. The distance between $u=(\overbrace{00 \ldots 00}^{n})$ and the vertex $10 v_{3} \ldots v_{n}$ in $A Q_{n-2}^{10}$ is

$$
\begin{aligned}
d(u, v) & =d(u, 1 \overbrace{0 \ldots 0}^{n-1})+d(\overbrace{0 \ldots 0}^{n-2}, v_{3} \ldots v_{n}) \\
& =1+d(\overbrace{0 \ldots 0}^{n-2}, v_{3} \ldots v_{n})
\end{aligned}
$$

Then the sum of all distances from vertex $u=(\overbrace{00 \ldots 00}^{n})$ to the vertices in $A Q_{n-2}^{10}$ is $2^{n-2}+D_{n-2}$. The distance between $u=(\overbrace{00 \cdots 00}^{n})$ and the vertex $11 v_{3} \ldots v_{n}$ in $A Q_{n-2}^{11}$ is

$$
\begin{aligned}
d(u, v) & =d(u, 11 \overbrace{1 \ldots 1}^{n-2})+d(\overbrace{1 \ldots 1}^{n-2}, v_{3} \ldots v_{n}) \\
& =1+d(\overbrace{1 \ldots 1}^{n-2}, v_{3} \ldots v_{n}) .
\end{aligned}
$$

Then the sum of all distances from vertex $u=(\overbrace{00 \ldots 00}^{n})$ to the vertices in $A Q_{n-2}^{11}$ is $2^{n-2}+D_{n-2}$. So we have $D_{n}=D_{n-1}+2 \times\left(2^{n-2}+D_{n-2}\right)$. Since $D_{1}=1$, $D_{2}=3$, we have
$D_{n}=\frac{2^{n}}{9}+\frac{(-1)^{n+1}}{9}+\frac{n 2^{n}}{3}$.
By Lemma 4, we have $\xi\left(A Q_{n}\right)=2^{n} / 9+(-1)^{n+1} / 9+$ $n 2^{n} / 3-2^{n}+1$. The theorem follows.

Theorem 6. The edge forwarding index of $A Q_{n}$ is $\pi\left(A Q_{n}\right)=2^{n-1}$.

Proof. We prove the theorem by induction. Since $\pi\left(A Q_{2}\right)=2=2^{2-1}$, the theorem is true when $n=2$. Assume that the theorem is true for every k with $2 \leqslant$ $k<n$.

Let $A Q_{n}=A Q_{n-1}^{0} \otimes A Q_{n-1}^{1}$ and $C R_{n}$ denote the paths between the $V\left(A Q_{n-1}^{0}\right)$ and $V\left(A Q_{n-1}^{1}\right)$ in R_{n}. Then $\left|C R_{n}\right|=2 \times 2^{n-1} \times 2^{n-1}$. Since there are 2^{n} cross edges between $A Q_{n-1}^{0}$ and $A Q_{n-1}^{1}$ and every path in $C R_{n}$ uses at least one cross edge, we have $\pi\left(A Q_{n}\right) \geqslant$ $\left|C R_{n}\right| / 2^{n}=2^{n-1}$.

On the other hand, since $\pi\left(A Q_{n}\right) \leqslant \pi\left(A Q_{n}, R_{n}\right)$ clearly, we only need to show that $\pi\left(A Q_{n}, R_{n}\right) \leqslant 2^{n-1}$.

Let $e=\left(u_{1} u_{2} \ldots u_{n}, v_{1} v_{2} \ldots v_{n}\right)$ be any edge in $A Q_{n}$. If e is a cross edge then, by the definition of R_{n}, the path $R_{n}(x, y)$ passes through the edge e if and only if $x_{i}=u_{i}$ for $1 \leqslant i \leqslant n, y_{j}=v_{j}$ for $1 \leqslant j \leqslant 2$ or $x_{i}=v_{i}$ for $1 \leqslant$ $i \leqslant n, y_{j}=u_{j}$ for $1 \leqslant j \leqslant 2$. Because each path passes through the edge e only once, we have $\pi\left(A Q_{n}, R_{n}, e\right)=$ 2^{n-1}.

We now assume that the edge e is in $A Q_{n-1}^{0}$ or $A Q_{n-1}^{1}$. If the path $R_{n-1}(x, y)$ passes through the edge $\left(u_{2} \ldots u_{n}, v_{2} \ldots v_{n}\right)$, then the path $R_{n}\left(u_{1} x, u_{1} y\right)$ must pass through the edge e. When $u_{2}=v_{2}$, if the path $R_{n-2}(x, y)$ passes through the edge $\left(u_{3} \ldots u_{n}, v_{3} \ldots v_{n}\right)$, then the path $R_{n}\left(\bar{u}_{1} u_{2} x, u_{1} u_{2} y\right)$ and the path $R_{n}\left(\bar{u}_{1} \bar{u}_{2} \bar{x}\right.$, $u_{1} u_{2} y$) passes through the edge e. And there are all the path which pass through the edge e. Then by induction hypothesis, we have

$$
\begin{aligned}
\pi\left(A Q_{n}, R_{n}, e\right) & \leqslant \pi\left(A Q_{n-1}, R_{n-1}\right)+2 \pi\left(A Q_{n-2}, R_{n-2}\right) \\
& =2^{n-2}+2 \times 2^{n-3}=2^{n-1} .
\end{aligned}
$$

So, we have $\pi\left(A Q_{n}, R\right) \leqslant 2^{n-1}$. Based on the above discussion, we get the result.

References

[1] A. Bouabdallah, D. Sotteau, On the edge forwarding index problem for small graphs, Networks 23 (1993) 249-255.
[2] S.A. Choudum, V. Sunitha, Augmented cubes, Networks 40 (2002) 71-84.
[3] F.R.K. Chung, E.G. Coffman, M.I. Reiman, B. Simon, The forwarding index of communication networks, IEEE Transactions on Information Theory 33 (1987) 224-232.
[4] C.-P. Chang, T.-Y. Sung, L.-H. Hsu, Edge congestion and topological properties of crossed cubes, IEEE Transactions on Parallel and Distributed Systems 11 (1) (2000) 64-80.
[5] F.K. Chung, E.G. Coffman, M.I. Reiman, B. Simon, The forwarding index of communication networks, IEEE Transactions on Information Theory 33 (2) (1987) 224-232.
[6] W.F. de la Vega, L.M. Gordones, The forwarding indices of random graphs, Random Structures Algorithms 3 (1) (1992) 107116.
[7] W.F. de la Vega, Y. Manoussakis, The forwarding index of communication networks with given connectivity, Discrete Applied Mathematics 37/38 (1992) 147-155.
[8] W.F. de la Vega, Y. Manoussakis, Computation of the forwarding index via flows: a note, Networks 24 (5) (1994) 273-276.
[9] G. Gauyacq, Edge-forwarding index of star graphs and other Cayley graphs, Discrete Applied Mathematics 80 (1997) 149160.
[10] G. Gauyacq, C. Micheneau, A. Raspaud, Routing in recursive circulant graphs: edge forwarding index and Hamiltonian decomposition, in: Graph-Theoretic Concepts in Computer Science, Smolenice Castle, 1998, in: Lecture Notes in Comput. Sci., vol. 1517, Springer, Berlin, 1998, pp. 227-241.
[11] M.C. Heydemann, Cayley graphs and interconnection networks, in: Graph Symmetry: Algebraic Methods and Applications, Kluwer Academic Publishers, 1997, pp. 167-226.
[12] M.C. Heydemann, J.C. Meyer, D. Sotteau, On the forwarding index problem for small graphs, Ars Combinatoria 25 (1988) 253-266.
[13] M.C. Heydemann, J.C. Meyer, D. Sotteau, On forwarding indices of networks, Discrete Applied Mathematics 23 (1989) 103123.
[14] M.C. Heydemann, J.C. Meyer, D. Sotteau, On forwarding indices of networks, Discrete Applied Mathematics 23 (1989) 103123.
[15] M.C. Heydemann, J.C. Meyer, J. Opatrný, D. Sotteau, Forwarding indices of k-connected graphs, Discrete Applied Mathematics 37-38 (1992) 287-296.
[16] M.C. Heydemann, J.-C. Meyer, J. Opatrný, D. Sotteau, Realizable values of the forwarding index, in: Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, FL, 1989, Congressus Numerantium 74 (1990) 163-172.
[17] M.C. Heydemann, J.C. Meyer, D. Sotteau, J. Opatrny, Forwarding indices of consistent routings and their complexity, Networks 24 (1994) 75-82.
[18] X. Hou, M. Xu, J.-M. Xu, Forwarding indices of folded n-cubes, Discrete Applied Mathematics 145 (3) (2005) 490-492.
[19] Y. Manoussakis, Z. Tuza, Optimal routings in communication networks with linearly bounded forwarding index, Networks 28 (4) (1996) 177-180.
[20] Y. Manoussakis, Z. Tuza, The forwarding index of directed networks, Discrete Applied Mathematics 68 (1996) 279-291.
[21] R. Saad, Complexity of the forwarding index problem, SIAM Journal on Discrete Mathematics 6 (1993) 418-427.
[22] F. Shahrokhi, L.A. Székely, Constructing integral uniform flows in symmetric networks with application to the edge-forwarding index problem, Discrete Applied Mathematics 108 (2001) 175191.
[23] P. Solé, The edge-forwarding index of orbital regular graphs, Discrete Mathematics 130 (1994) 171-176.
[24] J.-M. Xu, Theory and Application of Graphs, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.
[25] J.-M. Xu, M. Xu, X. Hou, Forwarding indices of Cartesian product graphs, Taiwanese Journal Mathematics 10 (3) (2006).
[26] M. Xu, X. Hou, J.-M. Xu, The proof of a conjecture of Bouabdallah and Sotteau, Networks 44 (4) (2004) 292-296.
[27] M. Xu, J.-M. Xu, X. Hou, On edge-forwarding index of graphs with degree restriction, Journal of China University of Science and Technology 35 (6) (2005) 732-737.

[^0]: त The work was supported by NNSF of China (Nos. 10671191, 10626053, 10301031, 70221001, and 60373012) and China Postdoctoral Science Foundation.

 * Corresponding author.

 E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

