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Abstract

For a given connected graph G of order n, a routing R in G is a set of n(n − 1) elementary paths specified for every ordered pair
of vertices in G. The vertex (resp. edge) forwarding index of G is the maximum number of paths in R passing through any vertex
(resp. edge) in G. Choudum and Sunitha [S.A. Choudum, V. Sunitha, Augmented cubes, Networks 40 (2002) 71–84] proposed a
variant of the hypercube Qn, called the augmented cube AQn and presented a minimal routing algorithm. This paper determines
the vertex and the edge forwarding indices of AQn as 2n/9 + (−1)n+1/9 + n2n/3 − 2n + 1 and 2n−1, respectively, which shows
that the above algorithm is optimal in view of maximizing the network capacity.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A routing R in a connected graph G of order n is a
set of n(n − 1) elementary paths R(u, v) specified for
every (ordered) pair (u, v) of vertices of G. A routing
R is said to be minimal if every path R(u, v) in R is
a shortest path from u to v in G. To measure the ef-
ficiency of a routing deterministically, Chung et al. [3]
and Heydemann et al. [13] introduced the concept of the
vertex forwarding index and the edge forwarding index
of a routing, respectively.

The load ξ(G,R,x) of a vertex x (resp. the load
π(G,R, e) of an edge e) with respect to R is defined
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as the number of paths specified by R going through x

(resp. e). The parameters

ξ(G,R) = max
v∈V (G)

ξ(G,R,v) and

π(G,R) = max
e∈E(G)

π(G,R, e)

are defined as the vertex forwarding index and the edge
forwarding index of G with respect to R, respectively;
and the parameters

ξ(G) = min
R

ξ(G,R) and π(G) = min
R

π(G,R)

are defined as the vertex forwarding index and the edge
forwarding index of G, respectively.

The original study of forwarding indices is moti-
vated by the problem of maximizing network capacity,
see [3]. Minimizing the forwarding indices of a routing
will result in maximizing the network capacity. Thus,
it becomes very significant to determine the vertex and
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Fig. 1. Augmented cubes AQ1, AQ2 and AQ3.
the edge forwarding indices of a given graph. However,
Saad [21] found that for an arbitrary graph determining
its vertex-forwarding index is NP-complete even if the
diameter of the graph is two. Even so, a number of re-
sults have obtained and the forwarding indices of many
well-known networks have been determined by several
researchers, see, for example, [1,3–23,25–27].

In [2], Choudum and Sunitha proposed a new variant
of the hypercube Qn, called the augmented cube AQn,
and found some properties not shared by the hypercube.
In particular, they presented a minimal routing algo-
rithm, by which they determined the diameter of AQn

to be �n/2�.
In this paper, we use Choudum and Sunitha’s al-

gorithm to determine ξ(AQn) = 2n/9 + (−1)n+1/9 +
n2n/3 − 2n + 1 and π(AQn) = 2n−1, which shows their
algorithm is optimal in view of maximizing the network
capacity.

The proofs of the results are in Section 4. In Sec-
tion 2, we recall the definition and some properties of
AQn. In Section 3, we show a minimal routing of AQn.

2. Definition and properties of augmented cubes

We follow the standard terminology of Xu [24]. As
with hypercubes, there are many ways to describe the
augmented cubes, one of which is follows.

Definition 1. The n-dimensional augmented cube AQn

has 2n vertices, each labeled by an n-bit binary string
a1a2 . . . an. We define AQ1 = K2. For n � 2, AQn is ob-
tained by taking two copies of the (n − 1)-dimensional
augmented cube AQn−1, denoted by AQ0

n−1 and AQ1
n−1,

and adding 2 × 2n−1 edges between the two as follows:
Let V (AQ0

n−1) = {0a2a3 . . . an: ai = 0 or 1} and
V (AQ1

n−1) = {1b2b3 . . . bn: bi = 0 or 1}. A vertex A =
0a2a3 . . . an of AQ0

n−1 is joined to a vertex B = 1b2b3

. . . bn of AQ1
n−1 if and only if for each i = 2,3, . . . , n

either
(1) ai = bi ; in this case, AB is called a hypercube edge,
or

(2) ai = b̄i , in this case, AB is called a complement
edge.

Fig. 1 shows the augmented cubes AQ1, AQ2 and
AQ3.

We write this recursive construction of AQn symbol-
ically as AQn = AQ0

n−1 ⊗ AQ1
n−1. The edges between

AQ0
n−1 and AQ1

n−1 are called cross edges. Furthermore,
we use AQs1s2...si

n−i to denote the subgraph of AQn induced
by the vertex with prefix s1s2 . . . si .

The following two lemmas give the desired property
of AQn.

Lemma 2. [2] For n � 1, the augmented cubes AQn

are Cayley graphs where AQn
∼= Cay(Zn

2 , (10 . . .000)∪
(01 . . .000) ∪ · · · ∪ (00 . . .001) ∪ (00 . . .011) ∪ (00 . . .

111) ∪ · · · ∪ (11 . . .111)).

Lemma 3. [2] Let AQn = AQ0
n−1 ⊗ AQ1

n−1, X = x1x2
. . . xn and Y = y1y2 . . . yn be two vertices in AQn.

(1) If X,Y ∈ AQ0
n−1 (or AQ1

n−1), then there exists a
shortest (X,Y )-path in AQn with all its vertices in
AQ0

n−1 (respectively, AQ1
n−1).

(2) Let X ∈ AQ0
n−1 and Y ∈ AQ1

n−1.
(a) There exists a shortest (X,Y )-path T in AQn

with all its vertices (except X) in AQ1
n−1. More-

over, the second vertex of T (i.e., the neighbor
of X in T ) is either 1x2x3 . . . xn or 1x̄2x̄3 . . . x̄n

according to whether d(x2x3 . . . xn, y2y3 . . . yn)

� d(x̄2x̄3 · · · x̄n, y2y3 . . . yn) holds or not.
(b) There exists a shortest (X, Y )-path T in AQn

with all its vertices (except Y ) in AQ0
n−1. More-

over, the penultimate vertex of T (i.e., neighbor
of Y in T ) is either 0y2y3 . . . yn or 0ȳ2ȳ3 . . . ȳn.

(3) d(X,Y ;AQn)

{
� d(X, Ȳ ;AQn) if x1 = y1,

� d(X, Ȳ ;AQn) if x1 	= y1.
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Fig. 2. Routing path (a) from 000000 to 101011 in AQ6, and (b) from 1010010110 to 1000100011 in AQ10.
3. Routing of AQn

In this section, we show a minimal routing which
proposed by Choudum and Sunitha in [2].

We recall the logical OR operation ⊕2 on {0,1}
which means 0 ⊕2 0 = 0, 0 ⊕2 1 = 1 ⊕2 0 = 1 and
1 ⊕2 1 = 1.

A message from a vertex S (source) to another ver-
tex D (destination) along this shortest (S,D)-path, any
“current” vertex B performs three tasks:

(1) Compute its tag(B ⊕2 D) = (b1 ⊕2 d1, b2 ⊕2
d2, · · · , bn ⊕2 dn).

(2) Scans tag(B ⊕2 D) for the least i such that bi ⊕2
di = 1.

(3) (a) If bi+1 ⊕2 di+1 = 0, it changes the ith entry
of B to di and routes the message to the next
current vertex B ′ = (d1d2 . . . dibi+1bi+2 . . . bn)

along the hypercube edge of weight 2i − 1.
(b) If ci+1 ⊕2 di+1 = 1, it changes the ith entry

of B to di and routes the message to the next
current vertex B ′ = (d1d2 . . . di b̄i+1b̄i+2 . . . b̄n)

along the complement edge of weight 2i.

They also give two illustrations as shown in Fig. 2.
We use Rn to denote the routing of AQn defined

above. By Lemma 3, we can verify that Rn is a mini-
mum routing in AQn.

4. Main results

In this section, we will give the vertex and the edge
forwarding indices of the augmented cube of AQn. The
proofs of our results depend on the following lemma
strongly, which is due to Heydemann et al. [13].

Lemma 4.

(1) If G = (V ,E) is a Cayley graph of order n, then for
any u we have,

ξ(G) =
∑
v∈V

d(u, v) − (n − 1).
(2) Let G = (V ,E) be a simple connected graph of or-
der n. Then

1

|E(G)|
∑

(u,v)∈V ×V

d(u, v) � π(G) � πm(G).

The equalities hold if and only if there exists a minimal
routing in G for which the load of all edges is the same.

Theorem 5. The vertex forwarding index of AQn is

ξ(AQn) = 2n

9
+ (−1)n+1

9
+ n2n

3
− 2n + 1.

Proof. By Lemma 4, in order to prove the theorem, we
only need to compute the sum Dn of all distances from
the fixed vertex u = (00 . . .00) to any other vertex v

since AQn is a Cayley graph.

The distances between u = (

n︷ ︸︸ ︷
00 . . .00) and the vertex

0v2v3 . . . vn in AQ0
n−1 is

d(u, v) = d(

n−1︷ ︸︸ ︷
0 . . .0, v2v3 . . . vn).

Then the sum of all distances from vertex u = (

n︷ ︸︸ ︷
00 . . .00)

to the vertices in AQ0
n−1 is Dn−1. The vertex set of

AQ1
n−1 can be partitioned into V (AQ10

n−2) and V (AQ11
n−2).

The distance between u = (

n︷ ︸︸ ︷
00 . . .00) and the vertex

10v3 . . . vn in AQ10
n−2 is

d(u, v) = d(u,1

n−1︷ ︸︸ ︷
0 . . .0) + d(

n−2︷ ︸︸ ︷
0 . . .0, v3 . . . vn)

= 1 + d(

n−2︷ ︸︸ ︷
0 . . .0, v3 . . . vn).

Then the sum of all distances from vertex u = (

n︷ ︸︸ ︷
00 . . .00)

to the vertices in AQ10
n−2 is 2n−2 + Dn−2. The distance

between u = (

n︷ ︸︸ ︷
00 · · ·00) and the vertex 11v3 . . . vn in

AQ11 is
n−2
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d(u, v) = d(u,11

n−2︷ ︸︸ ︷
1 . . .1) + d(

n−2︷ ︸︸ ︷
1 . . .1, v3 . . . vn)

= 1 + d(

n−2︷ ︸︸ ︷
1 . . .1, v3 . . . vn).

Then the sum of all distances from vertex u = (

n︷ ︸︸ ︷
00 . . .00)

to the vertices in AQ11
n−2 is 2n−2 + Dn−2. So we have

Dn = Dn−1 + 2 × (2n−2 + Dn−2). Since D1 = 1,
D2 = 3, we have

Dn = 2n

9
+ (−1)n+1

9
+ n2n

3
.

By Lemma 4, we have ξ(AQn) = 2n/9 + (−1)n+1/9 +
n2n/3 − 2n + 1. The theorem follows. �
Theorem 6. The edge forwarding index of AQn is
π(AQn) = 2n−1.

Proof. We prove the theorem by induction. Since
π(AQ2) = 2 = 22−1, the theorem is true when n = 2.
Assume that the theorem is true for every k with 2 �
k < n.

Let AQn = AQ0
n−1 ⊗ AQ1

n−1 and CRn denote the
paths between the V (AQ0

n−1) and V (AQ1
n−1) in Rn.

Then |CRn| = 2 × 2n−1 × 2n−1. Since there are 2n cross
edges between AQ0

n−1 and AQ1
n−1 and every path in

CRn uses at least one cross edge, we have π(AQn) �
|CRn|/2n = 2n−1.

On the other hand, since π(AQn) � π(AQn,Rn)

clearly, we only need to show that π(AQn,Rn) � 2n−1.
Let e = (u1u2 . . . un, v1v2 . . . vn) be any edge in AQn.

If e is a cross edge then, by the definition of Rn, the path
Rn(x, y) passes through the edge e if and only if xi = ui

for 1 � i � n, yj = vj for 1 � j � 2 or xi = vi for 1 �
i � n, yj = uj for 1 � j � 2. Because each path passes
through the edge e only once, we have π(AQn,Rn, e) =
2n−1.

We now assume that the edge e is in AQ0
n−1 or

AQ1
n−1. If the path Rn−1(x, y) passes through the edge

(u2 . . . un, v2 . . . vn), then the path Rn(u1x,u1y) must
pass through the edge e. When u2 = v2, if the path
Rn−2(x, y) passes through the edge (u3 . . . un, v3 . . . vn),
then the path Rn(ū1u2x,u1u2y) and the path Rn(ū1ū2x̄,

u1u2y) passes through the edge e. And there are all the
path which pass through the edge e. Then by induction
hypothesis, we have

π(AQn,Rn, e) � π(AQn−1,Rn−1) + 2π(AQn−2,Rn−2)

= 2n−2 + 2 × 2n−3 = 2n−1.

So, we have π(AQn,R) � 2n−1. Based on the above
discussion, we get the result. �
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